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Is technological advancement constrained by biases in human cognition?
People in all societies build on discoveries inherited from previous gener-
ations, leading to cumulative innovation. However, biases in human
learning and memory may influence the process of knowledge transmission,
potentially limiting this process. Here, we show that cumulative innovation
in a continuous optimization problem is systematically constrained by
human biases. In a large (n = 1250) behavioural study using a transmission
chain design, participants searched for virtual technologies in one of four
environments after inheriting a solution from previous generations. Partici-
pants converged on worse solutions in environments misaligned with
their biases. These results substantiate a mathematical model of cumulative
innovation in Bayesian agents, highlighting formal relationships between
cultural evolution and distributed stochastic optimization. Our findings pro-
vide experimental evidence that human biases can limit the advancement of
knowledge in a controlled laboratory setting, reinforcing concerns about bias
in creative, scientific and educational contexts.
1. Introduction
All human societies depend on technology [1]—tools, concepts, skills and subsis-
tence techniques that help people solve physical and computational problems.
One of themost distinctive aspects of human technology is thatmany innovations
we rely on every day would be ‘unlikely or impossible for us to have achieved by
ourselves’ [2]. From kayaks to cryptographic hash functions, efficient solutions to
environmental challenges depend on cumulative innovation: ‘in most times and
places, individuals don’t invent tools; tools evolve gradually’ [3] as innovations
are transmitted from one generation to the next. This process of transmission
and accumulation of knowledge is called cumulative cultural evolution (CCE) [4].

Here, we examine whether biases in human learning and memory can influ-
ence the outcome of cumulative innovation in a large behavioural experiment.
Mathematical models suggest that efficient accumulation of knowledge depends
on high-fidelity transmission [5] of successful innovations [6] to new individuals
who themselves may innovate further [7]—the so-called ratchet effect [8]. Aspects
of this process can be studied experimentally. Behavioural studies (reviewed in [9])
show that cumulative innovation under controlled laboratory conditions allows
experimental micro-societies to discover increasingly functional solutions to pro-
blem-solving and optimization tasks in both physical [10–14] and virtual [15–18]
settings (e.g. paper aeroplane [10] or virtual arrowhead [16] design tasks).
Performance depends on factors such as population structure [11,19–21] and
transmission dynamics [22], as predicted by models [17,23,24].

However, theories of cultural evolution [6,25] also suggest that the outcome
of cumulative innovation may be constrained by a more fundamental problem.
Imagine trying to construct a canoe after travelling in one built by somebody
else. In many contexts, the transmission of knowledge from person to person
is an imperfect process relying on inference, estimation, and reconstruction of
ideas [25]. This introduces a problem of induction—the need to generalize
beyond what is observable—that can only be solved by inductive bias [26].
Bias is a requirement for inference whenever aspects of a learning problem are
not fully determined by the data observed. For instance, the structure and par-
ameters of tools, artefacts or subsistence techniques cannot be directly
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Figure 1. Transmission chain design. Participants were organized into transmission chains of 10 generations. A participant at generation t inherited the arrowhead
designed by the participant at generation t− 1 of their chain. The principle experimental manipulation was the design of the highest-scoring virtual arrowhead
(illustrated above), which varied between treatments (environments E1–E4). Each treatment was replicated in 25 independent chains. (Online version in colour.)
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communicated from one mind to another: instead, these
design features must often be inferred from limited experi-
ence, incomplete description, noisy perceptual information,
or potentially inaccurate or partial memories.

Inductive biases can also play an important role in instances
of ambiguous or conflicting social testimony. For example,
Henrich et al. [27] showed that human biases in category-
based induction may help to explain observed patterns of
culturally evolved adaptive food taboos in a Fijian population.
However, in specific cases where cultural information is indeci-
sive, biases in categorization and similarity-based inferences
can lead to non-adaptive taboos [27]. Cases like this exemplify
the potential for inductive biases to influence decision-making
and learning in functional settings when information trans-
mission is limited. While teaching [28–31] and other
pragmatic mechanisms for cooperative inference [32,33] can
improve information transmission, inferential bottlenecks [3]
create the opportunity for biases in human cognition to repeat-
edly influence the outcome of cultural transmission, raising the
question of their long-term consequences.

Cognitive approaches to cultural evolution [25,34,35] have
emphasized this possibility: ‘Human cognitive abilities act
[…] as a filter on the representations capable or likely to be
widely distributed in human populations’ [25]. As a result
of the need for inductive generalization, artefact designs,
tool-use techniques, behavioural repertoires, or technical con-
cepts which people find difficult to remember or understand
are systematically less likely to survive the process of cultural
transmission. Instead, the process may favour decisions, con-
cepts, or design choices that people find intuitive. This
perspective is supported by formal models [34–36]. These
dynamics may arise as a consequence of inductive biases
that are themselves the result of development and learning
[37], or from innate or adaptive features of human cognition
[38]. Behavioural studies show that human biases can influ-
ence the transmission of conventional behaviours such as
artificial languages [39], signalling systems [40], stereotypes
[41], motor programs [42] and musical rhythms [43]. Cultural
transmission by serial reproduction (SR) can even be viewed
abstractly as an efficient algorithm for revealing cognitive
biases [44].

However, the impact of human biases has been difficult to
assess in functional settings. Understanding these effects poses
a challenge for theories of technology [3,45,46] and for exper-
imental studies of cumulative innovation in structured
problem-solving settings, which can be difficult to quantify
in cognitive terms [4,46–49]. Studies of innovation in simpler
optimization paradigms offer the potential formore continuity.
People are excellent at solving optimization problems as indi-
viduals [50], networked groups [51] and cultural populations
[24,52], often outperforming advanced algorithms [50,53].
Studies have focused on how social learning strategies
(reviewed in [54]) influence the potential for accumulation in
multi-modal, continuous optimization landscapes [22], and
on causal understanding [24] for example. However, the poten-
tial for human inductive biases to influence these dynamics
remains unknown, because studies often implement direct
transfer of solutions between individuals. Without a quanti-
tative theory relating psychological biases to inference and
cumulative innovation in a specific experimental setting,
these basic predictions have been difficult to test [4,55].

To help assess the impact of cognitive biases on CCE, we
developed a probabilistic cognitive model of learning and
innovation in chains of Bayesian learners. The model pro-
vides insight into functional and cognitive perspectives by
revealing a formal connection between CCE and distributed
optimization. Our analysis predicts that the biases of learners
should limit cumulative innovation in continuous optimiz-
ation problems. To test this prediction, we conducted a
large behavioural experiment in which transmission chains
of participants attempted to solve a multidimensional con-
tinuous optimization problem. Previous studies focused on
complex functional landscapes [22,52] and learning from
multiple models [16]. By contrast, our study used a trans-
mission chain design (figure 1), and we constructed a
simple hill-shaped landscape whose optimum should be
easy to discover (figure 2). These simplifications allowed us
to examine the biases of our participants that emerge directly
as a consequence of the process of knowledge transmission.

Our key manipulation was to transpose the abstract
optimization problem into four virtual environments, each
defined by a different optimal solution to the same under-
lying problem. In this setting, the relevant biases are
reflected in the kinds of solutions that people are likely to
consider spontaneously or intuitively, before observing how
other people solve the task or engaging in within-task
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Figure 2. Optimization problem. (a) Illustration of the design space of possible arrowheads implied by the ability to manipulate base width and length (between 50
and 150 pixels). Arrowheads are regularly sampled points for illustration purposes in a continuous underlying space of possible designs. (b) The objective function
(score landscape) f (θ). Yellow denotes higher scores, blue denotes lower scores. The score landscape was a simple, smooth, hill-shaped function (quadratic surface)
with maximum at θ* (here θ*bw = 115, θ*l = 115, illustrating environment E4). Across environments, the position of the optimum design (θ*) varied but the
shape of the landscape remained constant and as displayed here. (Online version in colour.)
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learning. We estimated our participants’ biases in the task
using a SR paradigm, allowing us to independently measure
the consistency between these biases and each of the optimal
solutions in the four virtual environments. We then examined
whether information accumulation was equally effective in
all four environments, or whether information accumulation
was constrained in environments less consistent with our
participants’ biases.
2. Model
One way to connect models of cultural transmission with cog-
nitive theories of intelligence is to analyse populations of
Bayesian learners [56]. Some of the earliest models of cultural
transmission were based on this approach [6]. Bayesian models
naturally express the cognitive structures important to theories
of cultural transmission, such as technical knowledge [57],
cognitive attractors [45], latent solutions [58], learning biases
[36], adaptive instincts [38,59] and content biases [6]. These
inductive biases are expressed by a prior distribution over a
design space of possible solutions to a problem. Intuitive
or learnable solutions have high prior probability. Coun-
terintuitive solutions have lower prior probability. A prior
distribution which assigns differential probabilities to solutions
encodes inductive bias. For example, a simplicity bias [60]
assigns more complex solutions lower probability. More struc-
tured or domain-specific priors can result from conceptual
or semantic knowledge, such as intuitive physics [61], or
inductive biases for particular structural forms [62].

Bayesian models have been instrumental in understanding
how people’s inductive biases can shape SR [63] and iterated
learning [56]. These models have focused on the emergence
of conventional behaviours [36,64,65], particularly human
language [36,39,56,66]. We used this probabilistic paradigm
to analyse CCE in populations of individuals attempting to
solve an optimization problem and transmitting their solutions
to new learners. Following influential models of CCE
[6,7,34,67], we analysed transmission of a real-valued solution
θ. This allowed us to view CCE in terms of two components:
inductive biases, expressed as a prior distribution p(θ); and the
underlying optimization problem, expressed as a fitness land-
scape or objective function f(θ). We examined the dynamics
of cultural transmission under the assumption that the relevant
prior distribution is Gaussianwithmean μ and variance δ2, that
perception of transmitted designs is subject to Gaussian noise
(with variance σ2) and that innovation can be expressed as
incremental steps along the gradientruf(u) of the fitness land-
scape (see Methods).

(a) Predictions
The mathematical framework that descends from combining
these cognitive and functional assumptions has a surpris-
ingly familiar structure. A transmission chain of individuals
solving a continuous optimization problem through social
learning by Bayesian inference and individual learning
through bounded innovation has dynamics:

utþ1 ¼ ut � aruf(ut)þ l(m� ut)þ etþ1, (2:1)

where etþ1 is zero-mean Gaussian noise, α is an innovation
rate parameter, and λ = σ2/(σ2 + δ2). Equation (2.1) describes
a form of stochastic gradient descent—an optimization
algorithm at the heart of modern artificial intelligence and
machine learning [68]. This connection provides a formal
basis for the view that CCE can be interpreted as a form of
distributed computation [69], while also offering insight
into the relationship between function and cognition—
in equation (2.1), human inductive biases act as a form of
regularization. The balance of transmission fidelity and
bias strength plays the role of a regularization parameter,
determining the impact of human biases on the process
(see Methods).

We calculated the equilibrium behaviour of this process in
hill-climbing problems (see Methods), and found that it con-
verges towards a compromise between the mean μ of the
prior distribution p(θ) and the optimum θ* of the objective
function f (θ). This compromise can be written as

Et!1[ut] ¼ mþ b(u� � m): (2:2)
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Here, 0≤ β≤ 1 interpolates between processes dominated
by function, converging towards optimal solutions (β→ 1),
and processes dominated by inductive biases (β→ 0)
converging towards intuitive solutions closer to μ. This
interpolation parameter is determined by a principled
relationship between bias strength, transmission fidelity, the
rate of innovation, and the steepness of the fitness function
(see Methods).

The general result in equation (2.2) shows that previous
analyses of CCE [34,67] and SR [70] can be recapitulated as
special cases. Equation (2.2) predicts that participants transmit-
ting solutions to a continuous optimization problem will
discover a compromise between the mean μ of the prior p(θ)
and the optimum design θ*. Task success should be higher in
environments more consistent with participants’ biases.
Figure 3. Experimental results (bias estimate). Visualization of the sample-
based estimate of the mean m̂ of the prior distribution p(θ) implicitly
assumed by participants. Plot shows arrowheads produced by all n = 250
participants in the serial reproduction treatment faintly overlaid, illustrating
m̂. Inset shows prior mean arrowhead (m̂, black) positioned in design
space relative to optimum arrowheads in optimization treatments E1–E4.
(Online version in colour.)

R.Soc.B
288:20202752
3. Results
To test these predictions, we conducted a pre-registered
(https://osf.io/hx9jd/) behavioural study using a transmission
chain design (see figure 1 andMethods). Participants completed
an optimization task after briefly observing the solution pro-
duced by the previous participant and reconstructing it from
memory. We adapted an influential paradigm developed by
Mesoudi and colleagues [16,17,22,71,72]. Participants designed
virtual arrowheads (figure 2) to earn as many calories of food
as possible on a virtual hunt by modifying continuous proper-
ties of its design (the width of the arrowhead’s base and its
overall length, see figure 2a). Different combinations of arrow-
head features (base width = θbw, length = θl) lead to different
scores determined by the landscape f(θ) in figure 2. Note that
our goal is not to assess human biases in general for this task,
which are likely to vary across populations [27]. Our aim is
to estimate the biases of this specific population and predict
their impact.

(a) Estimated biases
Participants (n = 250, 25 chains of 10 generations) assigned to
the SR treatment completed a simplified version of the task
(reconstruction of an inherited arrowhead design after brief
observation, but no individual learning). Previous research
[73] shows that SR results in samples from the prior p(θ). We
used this connection to estimate people’s biases (see Methods)
about the stimulus design space (figure 2). The sample-mean
arrowhead design can be taken as an estimate (m̂) of the
mean μ of the prior distribution—the prototype arrowhead
design. Figure 3 illustrates the estimated prototype. In this
figure, faint depictions of all 250 arrowheads produced by par-
ticipants in the SR treatment are overlaid uniformly. The
position of this prototype in the design space is also shown
in figure 3 (inset). The prototype design is close to the centre
of the design space, but is statistically significantly longer
(M = 107.5, Z = 20 187, p < 0.001, Wilcoxon signed-rank test)
and wider (M = 103.2, Z = 16 874, p = 0.025) than would be
expected under random sampling.

(b) Task success
Participants (n = 1000) assigned to optimization treatments
(E1–E4) first reconstructed the inherited design before complet-
ing four individual learning trials (practice hunts) in which
they tested nearby variations on their arrowhead and gained
performance feedback. All four environments were deter-
mined by the landscape f(θ) shown in figure 2. However, we
manipulated the location of the optimum arrowhead design
(peak of the hill). Optimum designs are shown in figure 1.
We calculated the consistency of each environment with
human biases by measuring the absolute design space distance
between the optimum design (θ*) and the prototype (m̂).
Larger distance means the optimum is less consistent with
human biases. Environments are ranked in order of least to
most consistent: E1 is least consistent (ju�bw � m̂bwj ¼ 28:2,
ju�l � m̂lj ¼ 32:5); E2 (ju�bw � m̂bwj ¼ 11:75, ju�l � m̂lj ¼ 32:5)
and E3 (ju�bw � m̂bwj ¼ 28:22, ju�l � m̂lj ¼ 7:5) are more
consistent, E4 is most consistent (ju�bw � m̂bwj ¼ 11:75,
ju�l � m̂lj ¼ 7:5).

Figure 4 shows task success (produced arrowhead scores)
across treatments. Participants assigned to E4 achieved the
highest scores (M = 950, s.d.=66), followed by E3 (M = 934,
s.d. = 78) and E2 (M = 883, s.d.=111). Participants assigned
to the E1 treatment had least success (M = 856, s.d. = 151).
A pre-registered one-way analysis of variance showed that
the effect of environment on task success was significant
(F(3, 996) = 41.66, p < 0.0001). However, a Levene test for
homogeneity of variance showed that the assumption of
equal variances was not met. A non-parametric alternative
(the Kruskal–Wallis test by rank) confirmed that the effect
of environment on task success was significant (H(3) =
113.4, p < 0.001). Pairwise comparisons using Wilcoxon’s
rank-sum test with Bonferroni adjustments showed that
participants in the E4 treatment achieved significantly
higher task success than participants in treatments E3
(p = 0.006), E2 (p < 0.0001) and E1 (p < 0.0001). Participants
in the E3 treatment achieved significantly higher task
success than participants in treatments E2 (p < 0.001) and
E1 (p < 0.0001). There was no statistically significant differ-
ence in task success between participants in the E1 and E2
treatments (p = 1).

https://osf.io/hx9jd/
https://osf.io/hx9jd/
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Figure 4. Experimental results (task success). Task success across optimiz-
ation treatments. Triangles show mean score for individual chains. Faint
dots show individual participant scores. Greater distance between the opti-
mum and the prior mean resulted in worse performance. (Online version
in colour.)
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(c) Arrowheads discovered
The main prediction of our formal analysis is that people will
converge on a linear compromise between the prototype m̂

and the optimum θ*. We performed a pre-registered
regression analysis to test this prediction. We analysed base
width and length separately. First, we performed a regression
analysis with arrowhead base width as dependent variable
and the difference between the prototype and the optimum
(m̂bw � u�bw) as predictor. Our formal hypothesis was sup-
ported. Accounting for the mean of the prior (β = 0.98, p <
0.0001) and the difference between the prior and optimum
(β = 0.33, p < 0.0001) accounted for 97% of the variance in
arrowhead base width (adjusted R2 = 0.966). Second, we per-
formed the same analysis with arrowhead length as the
dependent variable. Accounting for the mean of the prior
(β = 1., p < 0.0001) and the difference between prior and opti-
mum (β = 0.34, p < 0.0001) accounted for 97% of the variance
in arrowhead length (adjusted R2 = 0.968).

(d) Exploratory analyses
We first established that optimization chains had converged
to an equilibrium state. Regression analyses of the optimiz-
ation treatments with environment, generation, and chain
id as predictors showed generation was not a statistically
significant predictor of task success (β = 1.43, p = 0.45), arrow-
head base width (β =−0.51, p = 0.12), or length (β = 0.16,
p = 0.65) after generation three, indicating convergence
(figure 5b). We then examined the contributions of bias and
individual learning to task success. Figure 5 shows expected
task success under a random walk over the fitness landscape
(dot-dash lines). We quantified this expectation by numerical
integration over the fitness landscape within the range of the
design space, which provides an approximation to the aver-
age task success that would be achieved by selecting an
arrowhead design uniformly at random under the constraints
of the task in each environment without transmission or inno-
vation. This baseline helps to contextualize task success rates
achieved through transmission and innovation.
As an additional reference point, we also examined task
success rates under a model that includes innovation but not
biased learning. Our mathematical analysis showed that
unbiased learning via Bayesian inference (δ2→∞) in the con-
text of gradient-based innovation predicts discovery of the
optimal solution (see equation (2.2) and Methods). Simulation
of a simpler model of innovation supports this prediction.
We simulated the experimental conditions (25 chains of 10
generations per treatment) under a model that assumes indi-
viduals sample four arrowhead designs uniformly at random
within the bounded region of design space surrounding the
design they inherited, and transmit the highest scoring
sampled design. This process leads to convergence towards
the optimum design in all treatments, and therefore does not
provide an alternative explanation of our findings (Kruskal–
Wallis test by rank showed no significant differences in task
success between environments after generation 5 at α = 0.01
in 912 of 1000 simulations of the experiment).

Figure 5 shows scores that would have been awarded to
arrowheads designed by participants in the SR treatment
(pale box plots). These hypothetical scores quantify the distri-
bution of task success we would expect if participants relied
exclusively on their biases as a source of information influen-
cing their arrowhead designs. The comparison is useful
because it establishes a baseline score distribution in the
absence of cultural accumulation of information about the
score landscape f. Examining arrowheads after generation
three, we found that the hypothetical scores of participants
in the SR treatment were significantly different from baselines
in E4 (Z = 14 719, p < 0.001, Wilcoxon signed-rank test), E3
(Z = 13 219, p < 0.001) and E2 (Z = 10 577, p < 0.001), but not
in E1 (Z = 8810, p = 0.098). Participants’ biases helped in
some but not all environments. However, arrowheads
designed by participants in the optimization treatments
achieved significantly greater task success than arrowheads
designed in the SR treatment in all environments (Mann–
Whitney one-sided tests, E1: W = 20 255.5, p < 0.001;
E2: W = 19 985.5, p < 0.001; E3: W = 22 830, p < 0.001; E4:
W = 21 035.5, p < 0.001; two-sided tests concurred). Individual
learning contributed to task success in all environments.
4. Discussion
Is technological advancement potentially constrained by
human biases? This question is central to theories of human
technological culture, but has been difficult to answer
empirically. Functional perspectives highlight the capacity to
discover efficient solutions to diverse environmental problems
[1,5,6,16]. Cognitive perspectives highlight the transforma-
tive impact of human cognition on cultural transmission
[25,34,55,74]. The integration of these perspectives into formal
cognitive models and behavioural experiments is a challenge
for modern approaches to human culture [4,46,48].

We developed a probabilistic model of CCE to quantify
these effects. Our analysis combined a Bayesian formulation
of cultural transmission with an optimization-based model of
innovation through individual learning. The resulting math-
ematical framework predicts a trade-off between inductive
biases and objective function in cumulative innovation.

Our analysis highlights formal connections between
cultural evolution, stochastic optimization algorithms, and
Bayesian inference, extending known connections between
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evolution, learning, and optimization [75–81] to cultural
transmission. An optimization objective is an assumption
of the model; however, the fact that the population dynamics
has the form of a well-defined algorithm computing sol-
utions to this optimization problem is not an assumption,
but a finding that derives from the combination of simpler
assumptions about bounded individual cognition. This con-
nection to stochastic optimization algorithms establishes the
relevance of a large mathematical literature on the properties
of these processes that may help illuminate aspects of
human technological cultures in the same way that evol-
utionary theory has offered quantitative insights and
predictions. Here, for example, we found that human induc-
tive biases can act as a form of regularization. Regularization
is known to play an important role in the generalization pro-
file of stochastic optimization processes [82], raising the
question of whether analogous functional consequences of
human learning biases may also be relevant to cultural
accumulation, for instance.

More generally, our analysis illustrates a way of viewing
cultural processes directly in terms of the computations
performed by individuals and by the population, creating
continuity between models of cognitive and cultural
processes. Computational approaches to cognition view
learning in terms of the information processing carried out
by individuals—the computations people perform and their
dependencies on data and bias. Our results extend this per-
spective to the cultural process as a whole, by formalizing
the computation performed by the population. This offers a
quantitative formulation of the idea that populations can
implement distributed computations over generations [69],
and that cultural processes can lead to products that go
beyond the information processing limits of individuals
[1]—a core principle of CCE that has been notoriously
difficult to quantify [4].

Our study contributes to an increasingly detailed empirical
picture of how human cognition can influence cultural evol-
ution [14,31,42,54], by quantifying biases that are introduced
simplyas a consequence of the process of cultural transmission.
Our model makes predictions about the impact of inductive
biases in general on the outcome of cultural transmission.
To test these predictions, we selected a specific population of
participants, measured their biases on a widely used task,
and showed that the results aligned with our model predic-
tions. Participants performed worse at solving a continuous
optimization problem when the solution was less consistent
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with the relevant prior distribution, confirming mathematical
predictions and substantiating the assumptions of influential
theories [3,25].

The current study focuses on a gradient optimization
setting and is limited to transmission-chain population struc-
tures. These are significant simplifications. While these
simplifications allowed us to identify a basic property of cumu-
lative innovation, examining the impacts of inductive bias in
more structured tasks and richer population dynamics is an
important goal for future research. Extending our gradient-
based model of innovation to more sophisticated algorithms
that better approximate human search is also a priority. A
more complete understanding requires analysis of important
cases such as preferential selection among multiple social
models [6], heterogeneous or dynamic priors, and varying
environmental objectives. Whether these factors counteract or
amplify the impacts of inductive bias remains unknown.

Another important assumption of our analyses is that the
prototype arrowhead design measured using SR is a useful
approximation to inductive biases that are at least partly
shared among participants. SR has desirable properties as an
estimation procedure: it provides a mathematically motivated,
data-efficient approach to estimation of a prior distribution
(see Methods and e.g. [83]) from participant responses in a
social task, and previous research has shown that this approach
accords with alternative methods [44,83]. However, this
method and ourmodel relyon the assumption that participant’s
inferences are approximately Bayesian with respect to a prior
distribution that is shared, which is a clear simplification. Our
model and experimental results indicate that quantifying a
shared prototype design by estimating the mean of a prior
distribution through SR provides an empirically useful approxi-
mation. However, the estimated prior prototype design should
be interpreted as a useful summary statistic of a potentially
complex distribution, rather than a platonic ideal design.
Future research might profitably explore this simplification.

Our findings provide experimental evidence that human
inductive biases can impact the discoveries people are able to
make as a population in a controlled laboratory setting, as pre-
dicted by theories of cultural evolution [3,6,25,34,55]. Some
theories have emphasized how technical knowledge [57] and
other adaptive human priors [25,38] are well aligned with
environmental problems. Other theories have emphasized
the many problems people face with highly counterintuitive
solutions [1,6,16]. Our framework is applicable to both
contexts. Our results suggest that there are significant connec-
tions between evolutionary theories of cumulative culture and
computational theories of inductive inference. Understanding
these connections may help to integrate diverse approaches
to the evolution of human technology and clarify conditions
that facilitate effective accumulation from a cognitive perspec-
tive. These results reinforce the importance of mechanisms
that help to alleviate bias in creative, educational and
scientific contexts.
5. Methods
(a) Model
Wemade the simplifying assumption that dimensions θi of amulti-
dimensional parametrization Θ can be treated independently.
Under aGaussian prior distribution p(ui) ¼ N (ui; mi, d

2
i ) andGaus-

sian noise-corrupted observation of uti (with variance s2
i ), the
sampling distribution p(ûijui, mi, si, di) for the design induced (ûi)
is the posterior distribution, which is Gaussian with expectation

E[ûi] ¼ s2
i

si
mi þ

d2i
si
ui, (5:1)

where si ¼ s2
i þ d2i . We quantified bounded innovation by assum-

ing that people experiment with nearby variations on an inherited
solution and use performance feedback to attempt a (guided) inno-
vation. A generic way to capture the outcome of this process is
gradient-based learning [84,85], casting innovation as a step along
the gradient (slope) of f denoted byruf (ui). The rate of innovation
(the magnitude of the step α > 0) is a model parameter. The chain
dynamics are given by equation (2.1). The expected change per
generation is

E[utþ1
i � uti ] ¼

s2
i

si
mi þ

d2i
si
uti � aruf (uti )� uti

¼ s2
i

si
(mi � uti )� aruf (uti ):

(5:2)

which implies no further accumulation in expectation if ruf (ui)
reaches the threshold

r�
i ¼

s2
i

si

mi � uti
a

: (5:3)

If f(θi) is a quadratic surface with optimum θi
* then f(θi) has gradi-

ents ruf (ui) ¼ a(ui � u�i ) for some constant a. Solving for r�
i leads

to equation (2.2) with

bi ¼
aas

aasþ s2 (5:4)

(b) Prior estimation
Mathematical results show that cultural transmission by SR in a
transmission chain can be analysed as a Markov chain in which
the representation (the arrowhead design θt in the current con-
text) induced by an individual at generation t depends only on
the representation induced by the individual at generation t− 1
[56]. If the inferences made by the individuals in this chain can
be approximately characterized as Bayesian inference under a
prior distribution p(θ), then it can be shown that (under relatively
general technical conditions: see [56]) the chain converges to a
stationary equilibrium distribution in which the probability
that any individual induces a design θ is the same as the prob-
ability of the design under the prior distribution p(θ). This
result indicates that the arrowheads produced by individuals in
SR chains can be seen as samples from the prior distribution.

One benefit of this finding is that it justifies analysing the
designs produced along the chain, rather than for example
being restricted to analysing the designs produced at the final
generation of the process, providing a more stable estimate of
the properties of the prior distribution (such as its expectation,
which we analysed as m̂i ¼ (1=n)

Pn
k¼1 ui, where k ranges over

all n = 250 participants assigned to the SR treatment). Each of
the 25 SR chains was initialized at one of five arrowhead designs
(assigned using block randomization) chosen to offer an
unbiased coverage of the design space (designs occupied four
corners and the centre of a square positioned at the centre of
design space; these designs are pictured in figure 1). Estimating
prior distributions by SR has been evaluated by prior research
and shown to have desirable characteristics and to accord with
alternative methods in the domains of function learning [44]
and category learning [73], for example.

(c) Participants
Participants were recruited on Amazon’s Mechanical Turk over
two sessions (US only, approval rating ≥95) and compensated
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1 USD for participation plus performance-dependent compen-
sation of up to 0.50 USD. Most participants completed in less
than 5 min. Participants who failed attention checks (constructed
from pilot data: minimum completion time; minimum reproduc-
tion accuracy; at least two unique arrowheads evaluated on
learning trials) were excluded and a replacement was immedi-
ately re-recruited. No demographic data (e.g. age, gender
identity) were collected.

(d) Stimuli
Scores were determined by a quadratic function f (θi) = (1/
2)a(θi− θi

*)2 + c, where θi
* is the optimum value for feature θi.

We required a parametrization which did not include negative
scores and had an optimum (maximum) score in a semantically
reasonable range. To meet these requirements, we set α =−30
and c = 10 000 and divided the result by 100. The maximum
available score was 1000 calories. To award a score, we computed
f (θi) for both arrowhead dimensions and awarded the mean.

(e) Procedure
Participants were assigned to one of five treatments (E1 - E4, SR)
using block randomization. The experiment had three trial types:
an inheritance trial (IT); testing trials (TT × 4) and a production
trial (PT). In IT, participants observed an arrowhead produced
by the participant at the previous generation (or one of five
seeds at generation 1). The inherited design was presented in
the centre of the screen on a white background for 3000ms, pre-
ceded by a fixation cross (1000ms). Participants were instructed
to reconstruct the design as accurately as possible using HTML
range-sliders which dynamically redrew the arrowhead in
the centre of the screen. Range-slider initial position was
randomized. Participants could not proceed until both sliders
had been moved. The arrowhead appeared upon modification
of the sliders. Participants completed one task-familiarization
trial (recreating a briefly observed random arrowhead design)
before the inheritance trial.

During TT participants tested variations on their reconstruc-
tion of the inherited design. Range-sliders allowed testing of
designs within 30 units (pixels) either side of the participant’s
reconstruction. Participants could click a ‘Shoot’ button at any
time to test the current design. Clicking the shoot button trig-
gered an animation in which the current design flew off screen
right. Score was presented immediately after test, concluding
TT. The participant’s initial reconstruction and its score, along
with any tested designs and their scores, were presented
throughout at the top of the screen. In PT, participants were
instructed that the AD produced on this trial will determine a
bonus payment, at a rate of 0.10 USD per 200 calories. Previous
designs and their scores remained visible. Score feedback was
presented after PT, concluding the experiment.
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