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Abstract
A core challenge in cognitive science is understanding the bar-
riers to intelligence and the circumstances that favor cognitive
specialization. General intelligence requires a cognitive archi-
tecture that is successful across tasks. However, improving an
architecture for a given task is often observed to hinder perfor-
mance on others. Although trade-offs between tasks are a re-
curring element of explanations in cognitive science, they have
received little direct theoretical attention. We present a formal
framework that provides a principled understanding of when
trade-offs emerge. In particular, we build on recent advances in
applying rate-distortion theory to reinforcement learning. This
allows us to formalize the representational capacity an agent
can call upon in approaching tasks in terms of information.
We find trade-offs occur when components of a task conflict in
ways that cannot be easily coarse-grained by an agent’s encod-
ing scheme. Further, cognition may be general, specialized, or
implement a coverall strategy, depending on conditions.
Keywords: Trade-offs; Intelligence; Rate-Distortion Theory;
Reinforcement Learning; Resource Rationality

Introduction
While some cognitive systems display general-purpose intel-
ligence, others are specialized and domain-specific. Among
the mammals, chimpanzees display at least 20 different forag-
ing techniques customized to local conditions (Whiten et al.,
1999), while koalas only eat gumtree leaves. A prominent ex-
planation for why general intelligence is difficult to attain is
that improved performance on one task produces worse per-
formance on others. A famous result appearing to support this
proposition is the No Free Lunch Theorem, which states that
an algorithm cannot perform well across every possible task
(Wolpert & Macready, 1997). Unfortunately, the theorem
may be limited in explaining constraints on real-world intel-
ligence as its conclusion follows from a key assumption that
tasks are encountered within uniform probability. By con-
trast, structure in nature implies that real-world tasks are not
drawn from a uniform distribution, suggesting other factors
are responsible for constraining the generality of cognition.
Indeed, across many areas of cognitive science it has been
found in practice that tasks trade off with one another (Del
Giudice & Crespi, 2018). For example, research on cogni-
tive control suggests there are expediency benefits to reusing
the same cognitive architecture, but this leads to conflicts that
hurt general performance (Musslick & Cohen, 2021). Under-
standing when tasks trade off appears central to when cog-
nition can be successful across many domains, rather than
domain-specific.

General intelligence appears bound by the availability of
resources to distribute across tasks. Notably, the Space Hier-
archy Theorem suggests that as capacity is reduced, so is the
range of tasks a system can solve (Papadimitriou, 1994). To
illustrate, if an agent can only hold in memory two symbols
they cannot detect the pattern in ‘AABAAB’, which requires
three. Indeed, the expansion of capacity may underpin many
sophisticated forms of human intelligence, such as higher-
order causal reasoning and language (Cantlon & Piantadosi,
2024). Similarly, ‘resource rationality’ shows how limited
cognitive resources can explain departures from rational ac-
tion (Callaway et al., 2022; Bhui et al., 2021; Gershman et al.,
2015; Lieder et al., 2018; Lieder & Griffiths, 2020).

In this paper, we present a formal model that provides prin-
cipled understanding of why trade-offs emerge between tasks
as a consequence of their structure. In particular, we ex-
amine how limiting an agent’s representational capacity af-
fects the domain generality of its cognition. We formalize
this issue by capitalizing on recent advances in applying rate-
distortion theory to reinforcement learning (RL) (Abel et al.,
2019; Prystawski et al., 2023; Arumugam et al., 2024). The
problem formulation of RL provides a rigorous way to un-
derstand tasks: the relationship between states, actions and
rewards. Rate-distortion theory builds on information the-
ory to provide an equally rigorous method for examining
how changes in representational capacity affect the quality
of decision-making, and thereby underlying cognition. An
advantage of our approach is that it makes few assumptions
about cognitive architecture (for example, connectionist ver-
sus symbolic). Consequently, we are able to focus on the
minimal problem intelligent agents need to solve. Our model
affirms that capacity bounds general intelligence; however, it
locates the cause of task conflict in the mismatch between the
agents representation and its environment. We go on to iden-
tify aspects of task structure that explain when tasks will trade
off.

Trade-offs, Capacity, and Task Structure
First, we informally lay out our central ideas through the sim-
plest possible examples, providing formal definitions later.
Consider a one-dimensional gridworld in which the agent
must navigate to rewards (Figure 1). The interaction between
the agent and environment can be seen through the lens of a
Markov Decision Process (MDP), as used in RL (Sutton &



Figure 1: Comparison of tasks that are simple (a) versus
complex (b). This complex environment sets conditions for
trade-offs when capacity constraints are present. To highlight
capacity limitations, tasks are contrived to make movement
costs equal.

Barto, 1998). Informally, this means the configuration of the
environment at a point in time is represented by its state. The
agent produces actions that move it through the state space
according to its policy, with the aim of achieving rewards. In
Figure 1, the state is the physical location of the agent on a
grid, available actions are moving left or right, and rewards
occur when the green states are entered. Figure 1 assumes
that rewards are consumed when encountered, so technically
the state space must include indicators of which rewards re-
main to be Markovian. A wide variety of quantities can be
considered states, making our findings about trade-offs be-
tween tasks broadly applicable. Examples of states include
pixels in visual input, forces applied to effectors, others’ be-
liefs, and stock prices.

We propose that trade-offs between tasks occur when the
agent has a limited capacity and multiple goals that are con-
figured in a conflicting way. Trade-offs cannot occur if there
is a single goal. Further, task conflicts arise from the interplay
between the state space, possible actions, and how rewards
can be attained. Compare the Single-Direction Task (Figure
1a) to the Dual-Direction Task (Figure 1b). In the Single-
Direction Task, the location of both rewards with respect to
the state space and available actions mean that the optimal
policy can take a single action (always move right) to gain
both rewards. By contrast, in the Dual-Direction Task, the
components of the MDP conspire such that the optimal pol-
icy must switch direction to gain both rewards. This means
that the Dual-Direction Task has necessary structure to pro-
duce a trade-off, if there is also limitations to the capacity
underpinning its policy. In particular, to switch between two
actions the agent’s policy must encode 1 bit of information.
With a lower capacity, the agent can only take a single action,
so must specialize and choose which way to move. Conse-
quently, a trade-off is produced because moving right comes
at the expense of moving left.

Our model focuses on the aspects of general intelligence
that lead to success on complex tasks on the basis of a pol-
icy generated by a sophisticated representation requiring high

capacity. Broadly, domain-general cognition is capable of
having success on complex tasks because it can succeed in
combining heterogeneous subtasks. For instance, the gen-
eral intelligence of chimpanzees allows them to engage in
nut-cracking, involving the subtasks of (1) selecting appro-
priate nuts, (2) finding rock ‘hammers’ and ‘anvils’, and (3)
precisely striking. To tractably examine general versus spe-
cialized cognition, we produce a stylized model with a small
number of states in a low number of dimensions. Nonethe-
less, ‘complex tasks’ can be modeled as circumstances where
subtasks are dissimilar, so that their informational encoding
is hindered. Illustrating by example, the Dual-Direction Task
is complex because its subtasks are dissimilar, as available
actions and states necessitate moving in opposite directions.
Within the MDP formulation, environments are inherently
agential, so that ‘environmental complexity’ actually depends
on the states the agent can detect, performable actions due to
effectors, and what constitutes reward. Therefore, when task
trade-offs occur in our model, it is by influencing which pol-
icy architectures can be successful given how the agent can
internally represent the external world. Our model does not
allow the agent to flexibly manage its capacity, like the a re-
source underpinning attention, instead we look at the upper-
limit of available information. Finally, we ignore tasks where
multiple goals cannot be achieved regardless of capacity, as
these equate to impossible challenges.

Theoretical Framework
Here we present a theoretical framework for analyzing how
a capacity-limited agent represents the external world. In the
next section, we present a concrete instance of this framework
that allows us to test its predictions.

Markov Decision Process
We formulate a task as an infinite-horizon, discounted
Markov Decision Process (MDP) (Bellman, 1957; Puterman,
1994) defined by M = ⟨S ,A ,R ,T ,µ,γ⟩. S denotes a set of
states, A is a set of actions, R : S ×A → [0,1] is a reward
function, T : S×A→ ∆(S) is a transition function, µ ∈ ∆(S)
is an initial state distribution, and γ ∈ [0,1) is the discount
factor. Starting with an initial state s0 ∼ µ, at each timestep
t an agent observes the current state st ∈ S , selects an action
at ∈A , enjoys a reward rt = R (st ,at) ∈ [0,1], and transitions
to the next state st+1 ∼ T (· | st ,at) ∈ S .

An agent’s behavior is defined by a policy π : S → ∆(A)
such that at ∼ π(· | st). Agent performance in M is given by

V π(µ)≜ Es0∼µ [V π(s0)] = E
[

∞

∑
t=0

γtR (st ,at)

]
. The RL objec-

tive (Sutton & Barto, 1998) is to learn an optimal policy π⋆,
defined as achieving supremal value V ⋆(µ) = sup

π

V π(µ). To

any policy π, the stationary state visitation of π is dπ(s) =

(1− γ)
∞

∑
t=0

γtPπ(st = s), where each Pπ(st = ·) ∈ ∆(S) de-

notes the per-step distribution over states visited by policy π.
dπ represents the γ-weighted distribution over possible future



states encountered by π.

Rate-Distortion Theory
Rate-distortion theory (RDT) (Shannon, 1959) is the area of
information theory (Shannon, 1948; Cover & Thomas, 2012)
that studies lossy compression. A lossy compression prob-
lem requires two inputs: an information source and a distor-
tion function. An information source is a probability distri-
bution over uncompressed data. A distortion function is a
loss function quantifying error between compressed and un-
compressed data. RDT provides the fundamental limit on the
minimum expected distortion (error) that must be incurred
given an upper limit on rate (preserved information).

We take the states visited by π⋆ as an information source
S∼ dπ⋆ . We model a bounded agent’s internal abstract repre-
sentation of MDP states as a channel φ : S → ∆(S̃) given by
a conditional probability distribution over abstract states in S̃
given each state s ∈ S . For simplicity, our experiments will
assume |S |= |S̃ | such that an agent with sufficiently high ca-
pacity may always recover the identity mapping as φ. Given
the optimal policy π⋆, each channel φ induces an abstract pol-
icy πφ : S̃ → ∆(A) (Tishby et al., 1999; Abel et al., 2019).
Consequently, we define distortion as the KL-divergence be-
tween the policies at each state:

d(s, s̃) = DKL(π
⋆
s || π

φ

s̃ )≜ DKL(π
⋆(· | s) || πφ(· | s̃)).

An agent’s capacity is modeled as a rate limit R ∈ R≥0 on
how many bits of information an agent’s internal represen-
tation retains about original MDP states. Following Abel et
al. (2019), RDT informs us that an agent with a capacity of R
bits cannot behave optimally with expected error smaller than
distortion-rate function D(R), defined as:

D(R) = inf
φ(S̃ | S)︸ ︷︷ ︸

Encoding

E
[
DKL(π

⋆
S || π

φ

S̃
)
]︸ ︷︷ ︸

Exp. Distortion

s.t. I(S; S̃)︸ ︷︷ ︸
Rate

≤ R. (1)

The mutual information (Cover & Thomas, 2012) I(S; S̃)
measures how much information is retained by the abstract
states S̃ about the original states S visited by π⋆. As KL-
divergence measures the closeness between distributions, our
choice of d(s, s̃) models an agent who endeavors to emu-
late π⋆ as closely as possible with capacity limited to R bits.
We may interpret φ as a partition of ground states into ab-
stract states (Li et al., 2006; Abel et al., 2016), but it is a
soft partition (Singh et al., 1994). The φ solution to D(R) is
the information-theoretically optimal state abstraction for an
agent with capacity R to approximately preserve π⋆, and is
computable via the Blahut-Arimoto algorithm (Blahut, 1972;
Arimoto, 1972). This can be shown with a value-loss bound
that benchmarks the performance of the expected abstract
policy π̃φ(A | S) = ES̃∼φ(·|S)

[
πφ(A | S̃)

]
against π⋆: 1

1Please see the Appendix for the full proof.

Theorem 1. For an agent with rate limit R∈R≥0, let φ be the
state abstraction that achieves the distortion-rate limit (Equa-

tion 1). Then, V ⋆(µ)−V π̃φ

(µ)≤
√

D(R)√
2(1−γ)2 .

As π̃φ follows directly from Equation 1, V π̃φ

is the value
of the best policy a capacity-limited agent can execute with
only R bits of information at its disposal. Therefore, the
LHS of the inequality quantifies the worst-case gap in per-
formance between a capacity-unlimited optimal agent, π⋆,
and an optimal capacity-limited agent, π̃φ. Overall, this re-
sult implies that the performance shortfall of the latter agent
is upper-bounded by an expression that depends on the ex-
pected distortion D(R) incurred at a rate R. Our theorem
makes a clear prediction about how limits on capacity trans-
late into limits on the realizability of optimal behavior. More-
over, it affords a principled notion of environment complexity
as the minimum rate needed to incur zero expected distortion:
R⋆ ≜ inf{R̄ ∈ R≥0 | D(R̄) = 0}. A severely capacity-limited
agent should not have access to policies that yield high per-
formance in a complex environment. There is a triadic re-
lationship between: (1) the complexity of the environment
R⋆ (how much information is needed to encode the world for
optimal behavior), (2) the capacity of the agent R (how much
information is actually available to encode the world), and (3)
the discrepancies between π⋆ and π̃φ that may emerge when
R≪ R⋆ such that complexity exceeds capacity.

Testing the Framework’s Predictions
In this section, we describe how our framework applies to a
set of concrete problems that differ in complexity, varying
agent capacity to illustrate how capacity constraints trans-
late into trade-offs. We consider an agent acting in a fam-
ily of (contextual) MDPs (Hallak et al., 2015) that capture
multi-task RL: 3× 3 multi-task gridworlds (Figure 2). The
agent always begins in the center with a goal located in one
of the surrounding 8 cells, providing a +1 reward. The set
of actions A is {↑,↓,←,→} with deterministic transitions.
To accommodate multiple tasks, the agent’s goal may ran-
domly appear in one of two possible locations, so the state
space has a binary indicator denoting which location to pur-
sue S = {0,1}× {1,2,3}× {1,2,3}; this yields 6 possible
reward configurations. Further, we create the possibility of
asymmetries in the expected payoffs of subtasks by having
the probability of each goal occurring over trials being either
(.50, .50) or (.70, .30).

As mentioned, rate-distortion theory provides a method to
introduce capacity limitations into the reinforcement learning
set-up. To unpack, the objective of performing well at the
task enters via the expected distortion term E

[
DKL(π

⋆
S || π

φ

S̃
)
]
,

which ensures the abstract-state policy closely matches the
optimal policy. The objective of compression enters via the
mutual information I(S; S̃), which measures how much infor-
mation in the agent’s abstracted representation corresponds
to the optimal representation. The free-parameter R is how
we manipulate the agent’s capacity, bounding the informa-



Figure 2: Task complexity versus agent’s information capacity. Top row: each task (e.g., Adjacent Edges) ordered by complexity
due to their two subtasks. Arrows show the agent’s movement policy, with darker arrows indicating higher probability of action.
Policies displayed by task complexity (columns) versus capacity (rows). To consider asymmetries between subtasks, we varied
the probability of goals. Each capacity level is broken down into symmetric (top row) and asymmetric (bottom row) subtasks.
Symmetric condition had goals appear with probability .50. Asymmetric condition had the blue goal appear with probability
.70. ‘Perplexity’ is the average number of abstract states per ground state (labeled as in Figure 3).

tion available. When R is high, a low-compression and high-
fidelity encoding occurs allowing a close correspondence to
ground states. The distortion-rate function definition en-
forces that the encoding φ is chosen to minimize expected
distortion (the infimum) given constraints. In summary, the
distortion-rate function D(R) formalizes the best trade-off be-
tween performance and compression an agent with capacity
R can achieve.

Complex tasks contain dissimilar subtasks
A conceptual challenge is providing a quantity summarizing
the difficulty we expect an agent to have in approaching a
task. We solved this problem by formally defining ‘complex-
ity’ R⋆ as the amount of information required to encode a task
without loss. Our notion of complexity arises solely from the
configuration of state, actions, and rewards via the optimal
policy; the informational content is measured, but no lossy



compression has been enforced. We find that more complex
tasks have subtasks that are dissimilar in that they required
taking conflicting actions (Figure 2, Right). Further, complex
tasks contain subtasks that themselves are more difficult, re-
quiring more steps and changing actions. For instance, the
Opposite Corners task is the most complex and least com-
pressible because its subtasks require going to opposite edges
of the state space. This creates maximum conflict, while also
requiring more moves from the center. Broadly, complex
tasks require using a variety of actions that depend on state,
whereas simple tasks allow using the same actions more fre-
quently. Our formal definition of complexity fits intuition:
chess is challenging because its countless positions permit of
conflicting strategies, while tic-tac-toe is simple because its
solvable with a few action patterns.

Cognition varies in response to limited capacity
As capacity reduces, the agent must compromise on the de-
tails it represents, this leads to the intuition that agents may
lose ability across domains, causing specialization. By con-
trast, we find qualitatively different strategies emerge depend-
ing on task structure (Figure 2, Left). In particular, special-
ization only occurs when there are asymmetries in the ability
to exploit subtasks, so that lower capacity makes focusing on
one subtask favorable. For instance, in the Corner + Adjacent
Edge task a capacity-limited agent specializes by prioritizing
attaining the closer reward; this specialization is more pro-
nounced when that reward occurs more frequently. By con-
trast, when subtasks are symmetrical in their exploitability the
agent instead produces a bet-hedging strategy. That is, with
no reason to prioritize either subtask, a coverall strategy is fa-
vored. For instance, in Opposite Edges and Adjacent Edges
the optimal strategy is moving to each reward with probabil-
ity ½. This result suggests that the relative attainability of
subtasks determines if capacity constraints lead to genuine
specialization or a coverall strategy.

Greater representational chunking occurs in
complex environments
As capacity decreases the agent is forced to represent its envi-
ronment with only a few abstract states. Formally, this means
there are more ground states mapped to abstract states on av-
erage (Figure 3, Right); this measure is known as ‘perplex-
ity’ in information theory, as the observer would be more
confused about their ground state. We find chunking is the
cause of task conflicts, even when little is assumed about cog-
nitive architecture. Complex tasks require fine distinctions,
and these must necessarily be more severely chunked when
capacity is limited. For example, Opposite Corners is the
most complex task requiring an intricate production of ac-
tions depending on state. As capacity becomes limited the
agent cannot encode this intricate trajectory so favors sim-
ply moving randomly in any direction, producing a strategy
that approaches a random walk. This result affirms the hy-
pothesis that the cause of task conflict is the attempt to reuse
representations that are not rich enough for the environment,

suggesting it holds across different cognitive architectures.

Performance drops when effective representations
are exhausted
The degree to which task performance is lessened by com-
pression depends on the specifics of task structure and cur-
rent encoding scheme. Distortion from optimal performance
always increases as capacity decreases (Figure 3 Left). How-
ever, the severity of this dropoff varies. A decrease in capacity
causes a severe drop in performance when there are no longer
effective ways to chunk states. This is evident in the gradient
of the distortion slope becoming steeper as capacity reduces.
In particular, the distortion gradient can be thought of as a
measure of the degree to which tasks trade off. The exhaus-
tion of effective ways to chunk also accounts for why sim-
pler tasks may lead to greater distortion than complex tasks.
For example, Opposite Edges can nearly be perfectly encoded
with 1 bit because the agent simply needs to determine mov-
ing up or down. However, performance drastically drops with
less capacity. Indeed, an agent with low capacity in Oppo-
site Edges produces worse performance than an equivalent
attempting Adjacent Corners. This occurs because although
Adjacent Corners is more complex, subtasks are similar with
more shared structure that can be shared.

Discussion
Being intelligent across domains appears to hinge on how
much performance on one task conflicts with others. We ex-
amined trade-offs between tasks using a stylized model based
on the application of rate-distortion theory to reinforcement
learning. This led to a formal definition of task complexity as
the minimum amount of information an agent must compress
to encode the optimal solution. Intuitively, complex tasks turn
out to be those with subtasks that are dissimilar, requiring
conflicting actions. Our model affirmed that trade-offs occur
when capacity limitations are present, but found that the form
of cognition depends on the details of the subtasks involved.
In particular, limited capacity results in specialization if one
subtask can more fruitfully be exploited; by contrast, a cov-
erall strategy is favored if subtasks are similarly profitable.
When capacity is high, the agent can possess general cogni-
tive that performs effectively across the entire domain.

Our model made few assumptions about cognitive architec-
ture, but nonetheless recovered the notion that task conflict is
caused by the coarse-graining of representations in ways that
mismatch the environment. Further, we provided a precise
way to understand representational chunking as compressing
a high-dimensional environment into a few abstract states. In
particular, the severity of task conflict can be thought of as
the decline in performance with a reduction in capacity, and
formalized as the gradient of the distortion-rate function. Sur-
prisingly, complex tasks do not always lead to worse perfor-
mance. What matters is the degree of exploitable overlapping
structure between tasks, compared to the agent’s encoding
scheme. In our simplest tasks, optimal behavior could be en-
coded with 1 bit, but performance plummeted when capacity



Figure 3: Agent performance and representations as a function of capacity (Rate). Left: As capacity (Rate) decreases,
performance becomes worse (Distortion). Right: Reducing capacity increases the average number of ground states per abstract
state (i.e., ‘Perplexity’).

was reduced further because avenues to maintain successful
representations were actually more tenuous in such a simple
environment. Taken together, our work highlights that trade-
offs between tasks arise from a subtle interplay between task
structure and the representational resources of the agent.

Our model highlights particular aspects of tasks that in-
fluence when trade-offs will occur. Multiple lines of re-
search produce explanations based on conflict between tasks
(Musslick & Cohen, 2021; Cohen et al., 1990; Pashler, 1994;
Vandierendonck et al., 2010). A prominent example is the
study of continual learning in neural networks which grap-
ples with the fact that networks perform poorly on previous
tasks when trained for new tasks (McCloskey & Cohen, 1989;
Kirkpatrick et al., 2017). We provide principles that describe
when task structure leads to conflict. In particular, our model
highlighted that two properties of subtasks dictate the form
of cognition. In particular, ‘similarity’ is the property that
actions that move towards the goal of one subtask also bring
the agent closer to the other. Similarity is important because
it allows the possibility of effective chunking and representa-
tion sharing. Secondly, subtask ‘asymmetry’ is the degree to
which one goal is more profitable to exploit. Asymmetry pro-
duces a representational priority for the agent, allowing them
to more readily discard information about the less valuable
subtask. Broadly, we found all tasks do not trade off equally,
with the severity of task trade-off depending on specific con-
flicts in structure between subtasks. In other words, whether a
‘Jack-of-all-trades is a master of none’ depends on the trades.

Although our model is highly stylized, our results affirm
and extend prior research on cognitive constraints. Theories
of resource and bounded rationality emphasize that limited
cognitive resources lead to imperfect heuristics (Gershman et
al., 2015; Lieder & Griffiths, 2020). Similarly, our model
characterizes the optimal policy an agent with limited capac-
ity should endeavor to learn. While our model does not ad-
dress learning this resource-rational policy, we anticipate that
future work studying capacity-limited RL (Tishby & Polani,

2010; Rubin et al., 2012; Lai & Gershman, 2021) will bene-
fit from these information-theoretic tools and insights. Fur-
thermore, while our model does not assume observational
noise, extending it to partially observable MDPs (Poupart &
Boutilier, 2002), where noisy observations constrain cogni-
tion (Doshi et al., 2012), is another plausible avenue for future
work.

Our results aid in understanding the diversity of animal in-
telligences that have evolved. Some animals appear to have
entered a cognitive-niche investing more in their brains, with
humans being the most prominent example (Laland, 2017).
Recently, it has been proposed that increases in informational
capacity explains a wide variety of sophisticated forms of
human intelligence, such as our capacity for symbolic lan-
guage (Cantlon & Piantadosi, 2024). Our model supports this
hypothesis, suggesting that general intelligence is bounded
by capacity. By contrast, other animals have more spe-
cialized cognition. For example, while the mosquito most
have encountered is actually a human-specialist, a general-
ist mosquito exists in Africa that feeds on a wide-range of
species including cows, birds, and lizards (McBride et al.,
2014). Our model predicts that specialization should be fa-
vored when a capacity-limited agent faces an environment
where some subtasks produce greater profit for effort; this
matches hypotheses about mosquito evolution that suggest
specialization occurred because humans are outliers com-
pared to other animals (e.g., humans are hairless). Our
findings support the expectation that small brained animals
should display either greater specialization or a coverall strat-
egy, depending on the landscape of subtasks. Environmen-
tal complexity is already considered an important factor in
cognitive evolution (Turner & Walmsley, 2021; Turner et al.,
2024). Our work here underscores how the design of cogni-
tion can be understood with reference to the tasks it attempts
to solve.
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Proof of Theorem 1
Theorem 1. For an agent with rate limit R∈R≥0, let φ be the state abstraction that achieves the distortion-rate limit (Equation
1). Then,

V ⋆(µ)−V π̃φ

(µ)≤
√

D(R)√
2(1− γ)2

.

Proof. For notational convenience, let χπ denote the stationary state-action visitation distribution of any policy π, defined as
χπ(s,a) = dπ(s)π(a | s). Intuitively, as dπ is the state visitation distribution of π that captures the distribution over states encoun-
tered by executing π in the environment, χπ simply captures the distribution over state-action pairs obtained from executing
π.

Proving our result requires Lemma 3 of Achiam et al. (2017), which establishes that for any two policies π and π′

||dπ−dπ′ ||1 ≤
2γ

(1− γ)
Es∼dπ

[
DTV(π(· | s) || π′(· | s))

]
.

Here DTV(p || q) = 1
2 ||p−q||1 denotes the total variation distance between probability distributions. We may then establish an

analogous result for any two policies π and π′ in terms of the stationary state-action visitation distributions:

||χπ−χ
π′ ||1 ≤

2
(1− γ)

Es∼dπ

[
DTV(π(· | s) || π′(· | s))

]
.

This follows as

||χπ−χ
π′ ||1 = ∑

s∈S
∑

a∈A
|χπ(s,a)−χ

π′(s,a)|

= ∑
s∈S

∑
a∈A
|dπ(s)π(a | s)−dπ′(s)π′(a | s)|

= ∑
s∈S

∑
a∈A
|dπ(s)π(a | s)−dπ(s)π′(a | s)+dπ(s)π′(a | s)−dπ′(s)π′(a | s)|

≤ ∑
s∈S

dπ(s) ∑
a∈A
|π(a | s)−π

′(a | s)|+ ∑
s∈S

∑
a∈A

π
′(a | s)|dπ(s)−dπ′(s)|

= ∑
s∈S

dπ(s) ·2 · 1
2 ∑

a∈A
|π(a | s)−π

′(a | s)|+ ∑
s∈S
|dπ(s)−dπ′(s)| ∑

a∈A
π
′(a | s)︸ ︷︷ ︸
=1

= 2Es∼dπ

[
DTV

(
π(· | s) || π′(· | s)

)]
+ ||dπ−dπ′ ||1

≤ 2Es∼dπ

[
DTV

(
π(· | s) || π′(· | s)

)]
+

2γ

(1− γ)
Es∼dπ

[
DTV

(
π(· | s) || π′(· | s)

)]
=

2
(1− γ)

Es∼dπ

[
DTV

(
π(· | s) || π′(· | s)

)]
.

To make use of the above result in a value-loss bound, we will leverage the fact that the total variation distance is an integral
probability metric (IPM) (Müller, 1997; Sriperumbudur et al., 2009) and so, for any p,q ∈ ∆(X ),

DTV(p || q) = sup
f∈F∞

|Ep [ f (X)]−Eq [ f (X)] |,

where F∞ = { f : X →R | || f ||∞ ≤ 1}. Recall that we assume all rewards are in the unit interval such that ||R ||∞ = 1. Moreover,
it is a well-known fact that the value function of any policy can be written as

V π(µ) =
1

(1− γ)
E(sπ

γ ,a)∼χπ

[
R (sπ

γ ,a)
]
.

So, applying the definitions of the total variation distance as an IPM and as the halved L1-distance between probability distri-



butions alongside the above lemma, we obtain

V ⋆(µ)−V π̃φ

(µ) =
1

(1− γ)

(
E

χπ⋆

[
R (sπ⋆

γ ,a)
]
−E

χπ̃φ

[
R (sπ̃φ

γ ,a)
])

≤ 1
(1− γ)

∣∣∣∣Eχπ⋆

[
R (sπ⋆

γ ,a)
]
−E

χπ̃φ

[
R (sπ̃φ

γ ,a)
]∣∣∣∣

≤ 1
(1− γ)

sup
f∈F∞

∣∣∣∣Eχπ⋆

[
f (sπ⋆

γ ,a)
]
−E

χπ̃φ

[
f (sπ̃φ

γ ,a)
]∣∣∣∣

=
1

(1− γ)
DTV(χ

π⋆ || χπ̃φ

)

=
1

2(1− γ)
||χπ⋆ −χ

π̃φ ||1

≤ 1
(1− γ)2 ·Esπ⋆

γ ∼dπ⋆

[
DTV(π

⋆(· | sπ⋆

γ ) || π̃φ(· | sπ⋆

γ ))
]

All that remains is to relate this upper bound on value loss back to the agent capacity used to obtain the underlying state
abstraction φ. To do that, we employ Pinsker’s inequality (Pinsker, 1964) and two successive applications of Jensen’s inequality
(where the second use leverages the fact that the KL-divergence is jointly convex in its arguments).

V ⋆(µ)−V π̃φ

(µ)≤ 1
(1− γ)2 ·Esπ⋆

γ ∼dπ⋆

[
DTV(π

⋆(· | sπ⋆

γ ) || π̃φ(· | sπ⋆

γ ))
]

≤ 1
(1− γ)2 ·Esπ⋆

γ ∼dπ⋆

[√
1
2

DKL(π⋆(· | sπ⋆

γ ) || π̃φ(· | sπ⋆

γ ))

]

≤ 1
(1− γ)2 ·

√
1
2
·Esπ⋆

γ ∼dπ⋆

[
DKL(π⋆(· | sπ⋆

γ ) || π̃φ(· | sπ⋆

γ ))
]

=
1

(1− γ)2 ·
√

1
2
·Esπ⋆

γ ∼dπ⋆

[
DKL(π⋆(· | sπ⋆

γ ) || Esφ∼φ(·|sπ⋆
γ )

[
πφ(· | sφ)

]
)
]

≤ 1
(1− γ)2 ·

√
1
2
·Esπ⋆

γ ∼dπ⋆

[
Esφ∼φ(·|sπ⋆

γ )

[
DKL(π⋆(· | sπ⋆

γ ) || πφ(· | sφ))
]]

=

√
D(R)√

2(1− γ)2
.

One observation is that, for a small rate R, the distortion-rate function D(R) may grow large enough to make this bound vac-
uous, largely stemming from the use of Pinsker’s inequality and the fact that total variation distance is always upper bounded by
1. In such cases, a more meaningful bound may be obtained by following the same steps above but employing the Bretagnolle-
Huber inequality (Bretagnolle & Huber, 1978; Canonne, 2022) in lieu of Pinsker’s to yield

V ⋆(µ)−V π̃φ

(µ)≤ 1
(1− γ)2 ·

√
1− exp(−D(R)).
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