
The Value of Abstraction

Mark K. Ho
Princeton University

David Abel
Brown University

Thomas L. Griffiths
Princeton University

Michael L. Littman
Brown University

Agents that can make better use of computation, experience, time, and memory can solve
a greater range of problems more effectively. A crucial ingredient for managing such finite
resources is intelligently chosen abstract representations. But, how do abstractions facilitate
problem solving under limited resources? What makes an abstraction useful? To answer such
questions, we review several trends in recent reinforcement-learning research that provide in-
sight into how abstractions interact with learning and decision making. During learning, ab-
straction can guide exploration and generalization as well as facilitate efficient tradeoffs—e.g.,
time spent learning versus the quality of a solution. During computation, good abstractions
provide simplified models for computation while also preserving relevant information about
decision-theoretic quantities. These features of abstraction are not only key for scaling up
artificial problem solving, but can also shed light on what pressures shape the use of abstract
representations in humans and other organisms.

Keywords: abstraction, reinforcement learning, bounded rationality, planning, problem
solving, rational analysis

Highlights

• Agents with finite space, time, and data can benefit
from abstract representations.

• Both humans and artificial agents rely on abstractions
to solve complex problems.

• Recent work in reinforcement learning elucidates what
makes abstractions useful.

• Abstractions guide learning, facilitate tradeoffs, and
simplify computation.

• This structure provides a basis for a rational analysis
of abstract representations.

Pre-print June 2019—to appear in Current Opinion in Be-
havioral Sciences themed issue on Artificial Intelligence.

Edited by Matt Botvinick and Sam Gershman.

We would like to thank the anonymous reviewers for their com-
ments that greatly improved previous versions of this paper. This
material is based upon work supported by the NSF under Grant No.
1544924.

Correspondence concerning this article should be addressed to
Michael L. Littman, Brown University, Providence, RI. Email:
mlittman@cs.brown.edu.

Introduction

In spite of bounds on space, time, and data, people are
able to make good decisions in complex scenarios. What en-
ables us to do so? And what might equip artificial systems to
do the same? One essential ingredient for making complex
problem solving tractable is a capacity for exploiting abstract
representation.

To illustrate why abstractions are needed for adaptive de-
cision making, consider hiking in a forest (Figure 1). A river
runs from mountains in the north down south through the
forest, and you have set up camp in a clearing just east of the
river. As the sun begins to set, you find yourself west of the
river and want to return to camp. How do you accomplish
this task? You might reason, “Since I am on the west side of
the river, I probably want to cross the river to get to the east
side of the river and then walk towards my campsite.” Such
a compact thought is possible because you have abstract rep-
resentations for that support decision making: These include
the general notion of being in a location relative to the axis of
the river, or the rough ideas of crossing the river and moving
towards the campsite.

Without abstractions, decision making would be confined
to specific, low-level states and actions—e.g., “At the cur-
rent state, rotate your left leg 25◦, place it down beside the
rock on the path, then swing your arm forward...”. In a huge
and complex scenario like navigating through a forest, this
approach is both cognitively unwieldy and, in a fundamental

2 MARK K. HO, DAVID ABEL, THOMAS L. GRIFFITHS, MICHAEL L. LITTMAN

Figure 1. An environment, an agent, and the agent’s abstract representation of a domain.

sense, computationally intractable (Bellman, 1957; Bylan-
der, 1994). The difficulty is due to decision-making costs
that arise from two interrelated sources. First, agents need to
learn about their environment, which costs time and experi-
ence (e.g., via exploration) (Kakade, 2003). Second, agents
need to compute decision-theoretic quantities, which costs
memory and thought (e.g., via planning) (Littman, Dean, &
Kaelbling, 1995). As problems grow, these costs grow ex-
ponentially. Abstractions are essential because they enable
decision makers to manage the growth of these costs.

Within psychology and neuroscience, abstraction plays
a key role in the hierarchical learning and organization
of motor sequences (Lashley, 1951; Rosenbaum, Kenny,
& Derr, 1983; Rosenbaum, Inhoff, & Gordon, 1984),
habits (Botvinick, 2008; Dezfouli & Balleine, 2013; Ribas-
Fernandes et al., 2011), and planning (Solway et al., 2014;
Botvinick & Weinstein, 2014). For this reason, researchers
in artificial intelligence (AI) and reinforcement learning (RL)
have long been interested in how to leverage abstraction
to provide human-like solutions to human-level problems
(Dayan & Hinton, 1993; Sacerdoti, 1974; Dietterich, 2000;
Givan, Dean, & Greig, 2003; Andre & Russell, 2002; Barto
& Mahadevan, 2003). In this paper, we discuss work in AI
and RL that helps elucidate how abstractions support efficient
decision making in both people and machines.

Research in AI and RL focuses on two broad types of ab-
straction. First, state abstractions treat certain configurations
of the environment as similar by aggregating them or assign-
ing them shared features. For instance, in the hiking exam-
ple, being west of the river is not a single concrete configura-
tion of the environment, but rather an abstract representation
that covers many concrete states (e.g., being different dis-
tances west of the river). Second, temporal abstractions (of-
ten called “options”) are temporally extended macro-actions

that describe a general course of action. For example, the
idea of crossing the bridge is not a single specific action, but
rather captures many possible courses of action.

State and temporal abstractions enable compact represen-
tation of a domain. For instance, Figure 2a represents the
hiking example as a graph where nodes are specific config-
urations of the environment (i.e., ground states) and edges
are transitions to new configurations resulting from taking
actions. The appropriate abstractions could induce the sim-
pler problem representation in Figure 2b. This new model
ignores irrelevant details like the color of specific trees while
capturing useful distinctions such as your location relative to
the river. As a result, it supports efficient learning and re-
quires little thought to reason about compared to the original
version.

The foregoing discussion sketches out how abstractions
can support efficient decision making. But how could it
work in practice? Here, we dive into recent work in AI and
RL that provides some answers. Specifically, we focus on
three ways in which abstractions have been shown to facil-
itate efficient and scalable decision making. First, abstrac-
tions guide exploration and generalization by systematically
modifying the distribution of learning experiences. In par-
ticular, abstractions can guide how agents explore and gen-
eralize based on environmental structure or representational
simplicity. Second, abstractions facilitate efficient tradeoffs
in learning. For example, they enable learning time and op-
timality to be exchanged as well as support optimal transfer
between tasks. Finally, abstraction is essential for simplifying
computation. For instance, abstractions influence the cost of
computing a good plan by inducing simpler or more complex
planning models. In the following sections, we discuss each
of these benefits of abstraction.

THE VALUE OF ABSTRACTION 3

… …

……

(a) (b)
Figure 2. (a) A domain in all of its complexity, and (b) the representation induced by an effective set of state and temporal
abstractions for this domain. The representation in (b) facilitates efficient learning and computation, unlike the one in (a).

Abstractions Guide Exploration and Generalization

Suppose during your camping trip you want to learn to
fish. At first, you try a few spots along the river at random.
But soon, you notice a pattern: Certain areas have more veg-
etation, others have less. This information provides a new
and more efficient way for you to organize your fishing at-
tempts. For example, you could fish areas with high and low
vegetation to gain a range of experiences about how it affects
your catch. Or, on your first trip you may learn that your best
catch was in high vegetation areas, so that on your second
trip to a different river, you seek out similar areas. Here, the
abstract concept of river vegetation guides your exploration
in the current fishing task and tracks a generalizable feature
relevant to future tasks, which both allow you to make better
use of your limited time and experience.

In RL, abstractions similarly facilitate efficient learning
by guiding exploration and generalization. But what is the
basis of this guidance? Put another way, the concept of veg-
etation is useful, but what determines the identification of
such a concept in general? Below, we discuss two ways in
which abstractions can guide learning: domain structure and
representational simplicity.

Domain Structure

Many domains have meaningful structure based on the
topology of state connections. In the hiking example, be-
ing west of the river is an intuitive abstract state because all
the locations west of the river are more connected to one an-
other and less connected to locations east of the river. Early
research in RL identified a number strategies for learning
abstractions based on clustering or graph-theoretic notions
like “bottleneck” states (Şimşek & Barto, 2004). More re-
cent methods generalize such approaches to learn abstrac-
tions based on the state connectivity induced by a domain’s

structure. For instance, the successor representation (Dayan,
1993; Gershman, Moore, Todd, Norman, & Sederberg, 2012;
Momennejad et al., 2017) and successor features (Barreto et
al., 2017; Kulkarni, Saeedi, Gautam, & Gershman, 2016) are
state abstractions based on how likely an agent is to visit
other states or features. A similar idea underpins eigen-
options (Machado, Bellemare, & Bowling, 2017; Machado,
Rosenbaum, et al., 2017; Mahadevan, 2005). Specifically,
both successor representations and eigen-options involve de-
composing an a domain’s structure into a set of “principal
components” that compactly represent how certain regions
of a domain are connected or will be visited.

Thus, being west of the river and being east of the river
could emerge as successor-based state abstractions due to the
connectivity and visitation of their respective ground states.
A corresponding eigen-option would express the temporally
abstract action of going from the west side to the east side
since action sequences falling in this category capture a prin-
cipal source of variance in connectivity. Notably, abstrac-
tions based on state connectivity encode information about
the dynamics of a domain separate from its reward structure.
These reward-agnostic representations can be learned either
offline or during task learning, but, in either case, they pro-
vide an especially powerful and efficient way to adapt when
rewards change or when transferring to tasks with related dy-
namics.

Representational Simplicity

Abstractions also guide exploration and generalization
based on representational simplicity. Simplicity plays a key
role in understanding representations in humans (Chater &
Vitányi, 2003; Sanborn, Bourgin, Chang, & Griffiths, 2018)
and machines (Li & Vitányi, 2008). For finite decision mak-
ers, simplicity is important because it enables compression,
the representation of information using less physical space

4 MARK K. HO, DAVID ABEL, THOMAS L. GRIFFITHS, MICHAEL L. LITTMAN

(e.g., memory).
In RL, a number of methods have been developed that

leverage a bias towards representational simplicity. For
example, curiosity-driven learning (Schmidhuber, 1991;
Oudeyer, Kaplan, & Hafner, 2007; Bellemare et al., 2016;
Pathak, Agrawal, Efros, & Darrell, 2017; Ostrovski, Belle-
mare, Oord, & Munos, 2017; Kulkarni, Narasimhan, Saeedi,
& Tenenbaum, 2016) pits a motivation to learn a simple,
compressed representation of the world against a desire for
new experiences that do not easily fit within that represen-
tation. Placing these two processes in competition with one
another prevents the drive for simplicity from compressing
everything into a single undifferentiated representation (the
ultimate abstraction) that cannot support high quality deci-
sions and instead pushes the system to adaptively explore a
range of qualitatively different parts of a task. Doing so ul-
timately allows the architecture to both represent the world
compactly and explore it efficiently.

Simplicity also plays a role in the Option-Critic frame-
work (Bacon, Harb, & Precup, 2017; Harb, Bacon, Klis-
sarov, & Precup, 2018; Liu, Machado, Tesauro, & Camp-
bell, 2017), a neural network architecture that simultaneously
learns abstract macro-actions and the value of low-level ac-
tions that constitute them. By concurrently learning at multi-
ple levels of abstraction, the agent acquires a representation
that leads to better transfer to new tasks. The process at play
is closely related to the notion of a “blessing of abstraction”
in causal learning (Goodman, Ullman, & Tenenbaum, 2011)
and regularization in supervised learning (Bishop, 2006): A
bias towards simple, unifying representations not only saves
on representational space, but also prevents overfitting to a
particular task. An important consequence of this bias is that
the agent is able to transfer to new tasks more efficiently.

Abstractions Facilitate Efficient Tradeoffs

Decision making and learning involve tradeoffs when
space, time, and data are limited. But, it is important that
these tradeoffs be made efficiently (i.e., without unnecessary
costs). Here, we discuss how abstractions can efficiently
trade off learning time and optimality, as well as minimize
negative transfer between tasks.

Learning Time and Optimality

Imagine that every morning you wake up at your campsite
and need to navigate to the bridge crossing the river. What
kind of abstract states would be useful? It depends on how
much time you have to spend learning. One option is to learn
every tree, rock, and shortcut through the forest in great de-
tail. Doing so has the benefit of ensuring you learn a highly
efficient route to the bridge. An alternative strategy is to learn
a less detailed representation of the forest that takes you to
an obvious landmark—e.g., the river—and then take a simple
path to the bridge. This second approach may be more costly

in terms of the physical actions taken or time navigating, but
is simpler and faster to learn. Depending on how much time
and data are available, it may be better for the agent to pursue
the second strategy than the first.

Learning the simpler but suboptimal policy depends on the
resolution of the state abstractions used—i.e., the amount of
detail one is willing to keep or ignore about the environment.
In RL, a number of approaches use abstraction in this man-
ner to efficiently balance optimality and learning time (Jiang,
Kulesza, & Singh, 2015; Ortner, 2013). For instance, if ab-
stractions are represented by aggregating ground states into
clusters, adaptively modulating the size of the clusters and
granularity of the state representation controls this trade-
off (Taiga, Courville, & Bellemare, 2018; Bellemare et al.,
2016; Mandel, Liu, Brunskill, & Popovic, 2016).

Optimizing Transfer between Tasks

Abstractions also facilitate effective transfer from one task
to another. Transfer can be positive (Sutton, Precup, &
Singh, 1999; Konidaris & Barto, 2007; Bacon et al., 2017;
Topin et al., 2015), but it can also be negative (Jong, Hes-
ter, & Stone, 2008). Ideally, an agent would learn abstrac-
tions that avoid negative transfer as much as possible while
increasing the possibility of positive transfer. One setting
in which this approach is feasible is in lifelong learning, in
which an agent is assumed to be continuously receiving tasks
from a distribution of tasks. Given separate phases of discov-
ering and using temporal abstractions, it is possible to ensure
that any learned options only help later learning and decision
making (Brunskill & Li, 2014). Used properly, temporal ab-
stractions can also guarantee that the amount of data needed
for learning is reduced even within a single task (Fruit &
Lazaric, 2017; Fruit, Pirotta, Lazaric, & Brunskill, 2017).
For agents with limited time, such abstractions can play a
critical role in ensuring efficient and effective use of data.

Abstractions Simplify Computation

Computation is costly for people (Griffiths, Lieder, &
Goodman, 2015) as well as artificial agents (Russell, 1997).
For example, if you were to plan a hike back to your camp-
site, you could simulate possible routes from your current
state or “work backwards” from your final destination. These
cognitive operations require time and mental effort. How-
ever, the total cost of computation depends directly on the
model such operations occur over (Givan et al., 2003). Plan-
ning can be easier given a good abstract representation (e.g.,
compare Figure 2a and Figure 2b). Recent work in RL lever-
ages this intuition to efficiently scale planning to complex do-
mains. Here, we focus on two broad approaches: algorithm-
specific abstractions, in which an abstraction scheme is tai-
lored to take advantage of particular features of a planning
algorithm, and end-to-end approaches, in which learning ab-

THE VALUE OF ABSTRACTION 5

stractions for planning occurs in the context of a more gen-
eral learning architecture.

Algorithm-Specific Abstractions

Algorithms such as Monte Carlo Tree Search (Abramson,
1987; Coulom, 2006; Browne et al., 2012) are based on the
notion of forward simulation: From an initial state, candidate
plans are generated, evaluated, and the best is chosen. The
major problem for these algorithms is branching: Each addi-
tional timestep into the future increases the number of plans
to evaluate multiplicatively. To keep branching manageable,
state-aggregation techniques simplify models by only stor-
ing relevant information. For instance, by treating all states
with the same optimal action as identical, branching due to
stochasticity in action outcomes can be reduced (Hostetler,
Fern, & Dietterich, 2014; Anand, Grover, Mausam, & Singla,
2015; Anand, Noothigattu, Mausam, & Singla, 2016). Along
similar lines, the model used for planning can be simplified
by aggregating states that lead to the same possible outcomes
within a few time steps (Jiang, Singh, & Lewis, 2014).

An alternative to forward simulation is backwards in-
duction, which involves starting from possible future states
and propagating information backwards to possible precur-
sor states. Abstractions can also assist computation in back-
ward induction. For instance, value iteration (Bellman, 1957)
repeatedly “sweeps” over a set of states and backs up infor-
mation to each precursor state. Since each iteration involves
looking at every state in the planning model, it is extremely
sensitive to the number of possible states. However, by in-
corporating temporal abstractions into the planning model,
more information can be propagated further backwards on
each sweep (Mann & Mannor, 2014) and it becomes possi-
ble to more efficiently trade off error in the approximation of
future rewards with computation (Mann, Mannor, & Precup,
2015).

Finally, relaxing the goal of planning provides opportuni-
ties to leverage powerful abstractions. For instance, plan fea-
sibility seeks to determine whether a plan can be constructed
that satisfies some set of constraints. Since the goal is no
longer optimality but simply satisfiability, relevant aspects of
the task can be translated into symbolic logic and efficiently
tested (Konidaris, Kaelbling, & Lozano-Perez, 2014, 2018;
McDermott et al., 1998).

End-to-end Efficient Planning

Another approach is to learn planning abstractions while
also learning everything else about a task in an end-to-end
manner with neural networks. Using abstractions for plan-
ning is especially important because planning in a ground
state space (e.g., the pixels of a video game) is only possi-
ble for short time horizons (Oh, Guo, Lee, Lewis, & Singh,
2015). To address these limitations, architectures have been
developed that learn and use abstract representations for

planning. In particular, the abstract representation needs
to be trained to predict future rewards, thus preserving the
most relevant information for decision making in the plan-
ning model (Oh, Singh, & Lee, 2017; Silver et al., 2017).

Conclusion

Abstractions are key for efficiently scaling decision mak-
ing. In particular, recent research in RL demonstrates how
state and temporal abstractions guide exploration and gener-
alization, facilitate efficient tradeoffs, and simplify computa-
tions. In the context of learning and decision making with
limited resources, abstractions enable agents to strategically
manage finite space, time, and data, which is necessary for
scaling problem solving to complex tasks.

For psychologists, this analysis raises questions about
why biological agents like humans have certain types of ab-
stract representations. For instance, humans and other or-
ganisms may have certain abstractions not only because they
facilitate effective exploration and generalization but because
they support fast planning or modulate critical tradeoffs dur-
ing learning. Future work in both computer science and psy-
chology will need to identify other pressures that can shape
abstraction learning—such as the need to communicate and
coordinate with others—to offer a clearer understanding of
the value of abstraction.

Conflict of Interest Statement

The authors declare no conflict of interest.

Annotated References

• (**) (Bacon et al., 2017) - Proposes option-critic ar-
chitecture that demonstrates the effectiveness of jointly
learning abstract and low-level policies.

• (*) (Jiang et al., 2015) - Analyzes how state aggrega-
tion learning schemes can be used to efficiently trade
off data and solution quality, which is key when data is
costly or finite.

• (*) (Machado, Rosenbaum, et al., 2017) - Combines
learning eigen-options with learning successor repre-
sentations, which both leverage the transition structure
of a domain for learning abstract representations.

• (**) (Pathak et al., 2017) - Implements curiosity as an
intrinsic reward signal based on an agent’s error when
predicting the outcome of actions to enable effective
representation learning even in the absence of external
rewards.

• (*) (Oh et al., 2017) - Proposes the Value Predic-
tion Network architecture that learns an internal model
composed of abstract states for efficient model-based
planning.

6 MARK K. HO, DAVID ABEL, THOMAS L. GRIFFITHS, MICHAEL L. LITTMAN

• (*) (Barreto et al., 2017) - Introduces a generalization
of successor representations (Dayan, 1993) that en-
ables efficient transfer across tasks with shared causal
structure.

References

Abramson, B. D. (1987). The Expected-Outcome Model of Two-
Player Games (Unpublished doctoral dissertation). Columbia
University, New York, NY, USA.

Anand, A., Grover, A., Mausam, & Singla, P. (2015). ASAP-UCT:
Abstraction of State-Action Pairs in UCT. Twenty-Fourth Inter-
national Joint Conference on Artificial Intelligence.

Anand, A., Noothigattu, R., Mausam, & Singla, P. (2016). OGA-
UCT: On-the-Go Abstractions in UCT. Twenty-Sixth Interna-
tional Conference on Automated Planning and Scheduling.

Andre, D., & Russell, S. J. (2002). State Abstraction for Pro-
grammable Reinforcement Learning Agents. In Eighteenth na-
tional conference on artificial intelligence (pp. 119–125). Menlo
Park, CA, USA: American Association for Artificial Intelli-
gence.

Bacon, P.-L., Harb, J., & Precup, D. (2017). The option-critic
architecture. In Proceedings of the conference aaai (pp. 1726–
1734).

Barreto, A., Dabney, W., Munos, R., Hunt, J. J., Schaul, T., van Has-
selt, H. P., & Silver, D. (2017). Successor features for transfer
in reinforcement learning. In Advances in Neural Information
Processing Systems (pp. 4055–4065).

Barto, A. G., & Mahadevan, S. (2003). Recent advances in hierar-
chical reinforcement learning. Discrete event dynamic systems,
13(1-2), 41–77.

Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T., Saxton,
D., & Munos, R. (2016). Unifying count-based exploration and
intrinsic motivation. In Advances in Neural Information Pro-
cessing Systems (pp. 1471–1479).

Bellman, R. (1957). Dynamic programming. Princeton University
Press.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning.
Springer.

Botvinick, M. M. (2008). Hierarchical models of behavior and pre-
frontal function. Trends in Cognitive Sciences, 12(5), 201–208.
doi: 10.1016/J.TICS.2008.02.009

Botvinick, M. M., & Weinstein, A. (2014). Model-based hierarchi-
cal reinforcement learning and human action control. Philosoph-
ical Transactions of the Royal Society B: Biological Sciences,
369(1655), 20130480–20130480. doi: 10.1098/rstb.2013.0480

Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M., Cowling,
P. I., Rohlfshagen, P., . . . Colton, S. (2012). A survey of monte
carlo tree search methods. IEEE Transactions on Computational
Intelligence and AI in games, 4(1), 1–43.

Brunskill, E., & Li, L. (2014). PAC-inspired option discovery in
lifelong reinforcement learning. In International conference on
machine learning (pp. 316–324).

Bylander, T. (1994). The computational complexity of proposi-
tional STRIPS planning. Artificial Intelligence, 69, 161–204.

Chater, N., & Vitányi, P. (2003). Simplicity: a unifying principle in
cognitive science? Trends in Cognitive Sciences, 7(1), 19–22.
doi: 10.1016/S1364-6613(02)00005-0

Coulom, R. (2006). Efficient Selectivity and Backup Operators in
Monte-Carlo Tree Search. In International conference on com-
puters and games (pp. 72–83).

Dayan, P. (1993). Improving generalization for temporal difference
learning: The successor representation. Neural Computation,
5(4), 613–624.

Dayan, P., & Hinton, G. E. (1993). Feudal reinforcement learn-
ing. In Advances in Neural Information Processing Systems (pp.
271–278).

Dezfouli, A., & Balleine, B. W. (2013). Actions, Action Sequences
and Habits: Evidence That Goal-Directed and Habitual Action
Control Are Hierarchically Organized. PLoS Computational Bi-
ology, 9(12), e1003364. doi: 10.1371/journal.pcbi.1003364

Dietterich, T. G. (2000). Hierarchical reinforcement learning with
the maxq value function decomposition. Journal of Artificial
Intelligence Research, 13, 227–303.

Fruit, R., & Lazaric, A. (2017). Exploration–exploitation in MDPs
with options. arXiv preprint arXiv:1703.08667.

Fruit, R., Pirotta, M., Lazaric, A., & Brunskill, E. (2017). Regret
minimization in MDPs with options without prior knowledge. In
Advances in Neural Information Processing Systems (pp. 3169–
3179).

Gershman, S. J., Moore, C. D., Todd, M. T., Norman, K. A., &
Sederberg, P. B. (2012). The successor representation and tem-
poral context. Neural Computation, 24(6), 1553–1568.

Givan, R., Dean, T., & Greig, M. (2003). Equivalence notions and
model minimization in markov decision processes. Artificial In-
telligence, 147(1-2), 163–223.

Goodman, N. D., Ullman, T. D., & Tenenbaum, J. B. (2011). Learn-
ing a theory of causality. Psychological review, 118(1), 110.

Griffiths, T. L., Lieder, F., & Goodman, N. D. (2015). Rational Use
of Cognitive Resources: Levels of Analysis Between the Com-
putational and the Algorithmic. Topics in Cognitive Science,
7(2), 217–229. doi: 10.1111/tops.12142

Harb, J., Bacon, P.-L., Klissarov, M., & Precup, D. (2018). When
Waiting Is Not an Option: Learning Options With a Deliberation
Cost. Thirty-Second AAAI Conference on Artificial Intelligence.

Hostetler, J., Fern, A., & Dietterich, T. (2014). State Aggregation
in Monte Carlo Tree Search. AAAI 2014, 7.

Jiang, N., Kulesza, A., & Singh, S. (2015). Abstraction selection
in model-based reinforcement learning. In F. Bach & D. Blei
(Eds.), Proceedings of the 32nd international conference on ma-
chine learning (Vol. 37, pp. 179–188). Lille, France: PMLR.

Jiang, N., Singh, S., & Lewis, R. (2014). Improving UCT planning
via approximate homomorphisms. In Proceedings of the 2014
international conference on autonomous agents and multi-agent
systems (pp. 1289–1296).

Jong, N. K., Hester, T., & Stone, P. (2008). The utility of tempo-
ral abstraction in reinforcement learning. In Proceedings of the
Conference on Autonomous Agents and Multiagent Systems (pp.
299–306).

Kakade, S. M. (2003). On the sample complexity of reinforcement
learning (Unpublished doctoral dissertation). University of Lon-
don, England.

Konidaris, G., & Barto, A. G. (2007). Building portable options:
Skill transfer in reinforcement learning. In Proceedings of the
International Joint Conference on Artificial Intelligence (Vol. 7,
pp. 895–900).

THE VALUE OF ABSTRACTION 7

Konidaris, G., Kaelbling, L. P., & Lozano-Perez, T. (2014). Con-
structing symbolic representations for high-level planning. In
Aaai (pp. 1932–1938).

Konidaris, G., Kaelbling, L. P., & Lozano-Perez, T. (2018). From
Skills to Symbols: Learning Symbolic Representations for Ab-
stract High-Level Planning. Journal of Artificial Intelligence Re-
search, 61, 215–289.

Kulkarni, T. D., Narasimhan, K., Saeedi, A., & Tenenbaum, J.
(2016). Hierarchical deep reinforcement learning: Integrating
temporal abstraction and intrinsic motivation. In Advances in
Neural Information Processing Systems (pp. 3675–3683).

Kulkarni, T. D., Saeedi, A., Gautam, S., & Gershman, S. J.
(2016). Deep successor reinforcement learning. arXiv preprint
arXiv:1606.02396.

Lashley, K. S. (1951). The problem of serial order in behavior.
In Cerebral mechanisms in behavior; the hixon symposium. (pp.
112–146). Oxford, England: Wiley.

Li, M., & Vitányi, P. (2008). An Introduction to Kolmogorov Com-
plexity and Its Applications. New York, NY: Springer New York.
doi: 10.1007/978-0-387-49820-1

Littman, M. L., Dean, T. L., & Kaelbling, L. P. (1995). On the com-
plexity of solving markov decision problems. In Proceedings of
the eleventh conference on uncertainty in artificial intelligence
(pp. 394–402).

Liu, M., Machado, M. C., Tesauro, G., & Campbell, M.
(2017). The eigenoption-critic framework. arXiv preprint
arXiv:1712.04065.

Machado, M. C., Bellemare, M. G., & Bowling, M. (2017). A lapla-
cian framework for option discovery in reinforcement learning.
arXiv preprint arXiv:1703.00956.

Machado, M. C., Rosenbaum, C., Guo, X., Liu, M., Tesauro, G., &
Campbell, M. (2017). Eigenoption discovery through the deep
successor representation. arXiv preprint arXiv:1710.11089.

Mahadevan, S. (2005). Proto-value functions: Developmental re-
inforcement learning. In Proceedings of the 22nd international
conference on machine learning (pp. 553–560).

Mandel, T., Liu, Y.-E., Brunskill, E., & Popovic, Z. (2016). Effi-
cient bayesian clustering for reinforcement learning. Proceed-
ings of the International Joint Conference on Artificial Intelli-
gence.

Mann, T., & Mannor, S. (2014). Scaling up approximate value
iteration with options: Better policies with fewer iterations. In
International conference on machine learning (pp. 127–135).

Mann, T., Mannor, S., & Precup, D. (2015). Approximate value
iteration with temporally extended actions. Journal of Artificial
Intelligence Research, 53, 375–438.

McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A.,
Veloso, M., . . . Wilkins, D. (1998). Pddl-the planning domain
definition language.

Momennejad, I., Russek, E. M., Cheong, J. H., Botvinick, M. M.,
Daw, N. D., & Gershman, S. J. (2017). The successor rep-
resentation in human reinforcement learning. Nature Human
Behaviour, 1(9), 680–692. doi: 10.1038/s41562-017-0180-8

Oh, J., Guo, X., Lee, H., Lewis, R. L., & Singh, S. (2015).
Action-conditional video prediction using deep networks in atari
games. In Advances in Neural Information Processing Systems
(pp. 2863–2871).

Oh, J., Singh, S., & Lee, H. (2017). Value prediction network. In

Advances in Neural Information Processing Systems (pp. 6118–
6128).

Ortner, R. (2013). Adaptive aggregation for reinforcement learning
in average reward Markov decision processes. Annals of Oper-
ations Research, 208(1), 321–336.

Ostrovski, G., Bellemare, M. G., Oord, A., & Munos, R. (2017).
Count-based exploration with neural density models. In Inter-
national conference on machine learning (pp. 2721–2730).

Oudeyer, P.-Y., Kaplan, F., & Hafner, V. V. (2007). Intrinsic
motivation systems for autonomous mental development. IEEE
transactions on evolutionary computation, 11(2), 265–286.

Pathak, D., Agrawal, P., Efros, A. A., & Darrell, T. (2017).
Curiosity-driven Exploration by Self-supervised Prediction. In
Proceedings of the 34th international conference on machine
learning - volume 70 (pp. 2778–2787). JMLR.

Ribas-Fernandes, J., Solway, A., Diuk, C., McGuire, J., Barto, A.,
Niv, Y., & Botvinick, M. (2011). A Neural Signature of Hier-
archical Reinforcement Learning. Neuron, 71(2), 370–379. doi:
10.1016/J.NEURON.2011.05.042

Rosenbaum, D. A., Inhoff, A. W., & Gordon, A. M. (1984). Choos-
ing between movement sequences: A hierarchical editor model.
Journal of Experimental Psychology: General, 113(3), 372–
393. doi: 10.1037/0096-3445.113.3.372

Rosenbaum, D. A., Kenny, S. B., & Derr, M. A. (1983). Hierar-
chical control of rapid movement sequences. (Vol. 9) (No. 1).
US: American Psychological Association. doi: 10.1037/0096-
1523.9.1.86

Russell, S. J. (1997). Rationality and intelligence. Artificial Intelli-
gence, 94(1-2), 57–77. doi: 10.1016/S0004-3702(97)00026-X

Sacerdoti, E. D. (1974). Planning in a hierarchy of abstrac-
tion spaces. Artificial Intelligence, 5(2), 115 - 135. doi:
https://doi.org/10.1016/0004-3702(74)90026-5

Sanborn, S., Bourgin, D. D., Chang, M., & Griffiths, T. L. (2018).
Representational efficiency outweighs action efficiency in hu-
man program induction. In T. Rogers, M. Rau, X. Zhu, &
C. Kalish (Eds.), Proceedings of the 40th annual meeting of the
cognitive science society (pp. 2400–2405). Austin, TX: Cogni-
tive Science Society.

Schmidhuber, J. (1991). A possibility for implementing curiosity
and boredom in model-building neural controllers. In Proc. of
the international conference on simulation of adaptive behavior:
From animals to animats (pp. 222–227).

Silver, D., van Hasselt, H., Hessel, M., Schaul, T., Guez, A., Harley,
T., . . . Degris, T. (2017). The predictron: end-to-end learning
and planning. JMLR.

Şimşek, Ö., & Barto, A. G. (2004). Using relative novelty to
identify useful temporal abstractions in reinforcement learning.
In Twenty-first international conference on machine learning -
icml ’04 (p. 95). New York, New York, USA: ACM Press. doi:
10.1145/1015330.1015353

Solway, A., Diuk, C., Córdova, N., Yee, D., Barto, A. G., Niv, Y., &
Botvinick, M. M. (2014). Optimal Behavioral Hierarchy. PLoS
Computational Biology, 10(8), e1003779. doi: 10.1371/jour-
nal.pcbi.1003779

Sutton, R. S., Precup, D., & Singh, S. (1999). Between MDPs and
semi-MDPs: A framework for temporal abstraction in reinforce-
ment learning. Artificial Intelligence, 112(1), 181–211.

Taiga, A. A., Courville, A., & Bellemare, M. (2018). Approxi-

8 MARK K. HO, DAVID ABEL, THOMAS L. GRIFFITHS, MICHAEL L. LITTMAN

mate exploration through state abstraction. ICML Workshop on
Exploration in RL.

Topin, N., Haltmeyer, N., Squire, S., Winder, J., desJardins, M., &
MacGlashan, J. (2015). Portable option discovery for automated

learning transfer in object-oriented Markov decision processes.
In Proceedings of the International Joint Conference on Artifi-

cial Intelligence (pp. 3856–3864).

