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Abstract

Autoregressive Large Language Models (LLMs) trained for
next-word prediction have demonstrated remarkable profi-
ciency at producing coherent text. But are they equally adept
at forming coherent probability judgments? We use probabilis-
tic identities and repeated judgments to assess the coherence
of probability judgments made by LLMs. Our results show
that the judgments produced by these models are often inco-
herent, displaying human-like systematic deviations from the
rules of probability theory. Moreover, when prompted to judge
the same event, the mean-variance relationship of probabil-
ity judgments produced by LLMs shows an inverted-U-shaped
like that seen in humans. We propose that these deviations
from rationality can be explained by linking autoregressive
LLMs to implicit Bayesian inference and drawing parallels
with the Bayesian Sampler model of human probability judg-
ments.

Keywords: Large Language Model, Probability Judgments,
Coherence, Bayesian model.

Introduction

While Large Language Models (LLMs) are primarily trained
to predict the next word in text, they have demonstrated a
remarkable breadth in their capabilities across various cogni-
tive tasks and domains (Bubeck et al.,[2023)). The success of
LLMs presents new opportunities to deepen our understand-
ing of both machine and human intelligence. Notably, LLMs
can generate long coherent passages of texts, although they
occasionally produce fabricated information, a phenomenon
referred to as “hallucination” (Radford et al., [2019). While
hallucination predominantly affects the factual accuracy of
the output, it generally does not compromise its coherence.
This raises an interesting question: are the judgments made
by LLMs also coherent, even when they are factually incor-
rect?

In this paper, we focus on evaluating probability judg-
ments —a domain where coherence can be rigorously assessed
against the rules of probability theory. We tasked LLMs with
estimating the probability of various future events set in the
year 2025 (see Table [I] for details). To quantitatively assess
the incoherence of these probability judgments, we employed
a series of probabilistic identities, comprehensively listed in
Figure|l} According to these identities, coherent judgments
should invariably yield a value of zero. Any deviation from
this benchmark serves as a measure of incoherence in the
LLMs’ probability judgments. This approach aligns with the
framework proposed by Costello and Watts (2014), who have
previously used these probabilistic identities to evaluate hu-
man probabilistic reasoning. Moreover, as LLMs generate
a probability distribution over probability judgments, we can
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also examine the stochasticity in these judgments (i.e., consis-
tency over time/information) by repeatedly resubmitting the
exact same prompt to evaluate the variability in responses.

To preview our results, we found that four state-of-the-
art LLMs varying in training dataset size, computational re-
sources, and the number of model parameters consistently ex-
hibit biases in probabilistic identities that mirror those found
in human cognition (Costello & Watts, 2014; Zhu et al.,
2020). Furthermore, when queries about the same event are
made repeatedly at temperature setting 1.0 (i.e., when the out-
puts of LLMs are based on the model’s learned probabili-
ties), we find that the mean and the variance of probability
judgments calculated over repetitions display a pattern resem-
bling an inverted-U shape, akin to the mean-variance rela-
tionships derived from human probability judgments (Sundh
et al.,[2023; Zhu et al.,[2023).

We propose that the human-like patterns in probability
judgments produced by the LLMs may stem from the use
of the autoregressive training objectives (cf. McCoy et al.,
2023). To understand this phenomenon, we examined two
prominent computational models that explain human proba-
bility judgments: the Probability Theory plus Noise (PT+N)
model (Costello & Watts, [2014)) and the Bayesian Sampler
model (Zhu et al., 2020). Although the LLMs’ responses do
not qualitatively differentiate between these two models, we
argue that the responses align more closely with the Bayesian
Sampler model. This model, which suggests responses are
guided by Bayesian inference, appears to better capture the
neural networks’ behavior than the PT+N model’s characteri-
zation based on the probability theory distorted by noise. This
hypothesis is bolstered by drawing parallels between the au-
toregressive processes in LLMs and implicit Bayesian infer-
ence mechanisms, as recently argued for in machine learning
(Griffiths et al., 2023 Xie et al.,[2021; Zhang et al., 2023).

Background

There is a rich history of exploring biases in human proba-
bilistic reasoning, a line of inquiry that, arguably, dates back
to the early 19th century with the work of Laplace (Miller &
Gelman, [2020) and become influential via the “heuristics and
biases” research program (Gigerenzer & Gaissmaier, 2011}
Kahneman & Tversky, [1972)). Here, rather than testing spe-
cific biases or fallacies in LLMs, as has been explored in
Binz and Schulz (2023)) and Horton (2023)), we choose to fo-
cus on analyzing the statistical properties of LLMs’ proba-
bility judgments for a range of events. This can be achieved



Table 1: Twelve weather-related and twelve political pairs of events posed to the LLMs.

Weather A Weather B Politics A Politics B
Rainy Cold Britain left the EU Greece left the EU
Cloudy Stormy American cars increase Petrol price increases
Chilly Thundery Climate change impacts American weather World greenhouse gas emissions are reduced
Hot Windy The US is at war in the Middle East Major terrorist attack occurs in the US
Sunny Misty Europe grows poorer Unemployment in Europe rises above 20%
Foggy Wet Hurricanes and typhoons are more frequent Average world temperature increases
Freezing Humid Generative Al is a trillion-dollar market Al-designed antibiotics are available on prescription
Drizzly Breezy All television become Internet-based Al has made full-length movies
Hazy Warm Tech unemployment has risen The divide in income levels has expanded
Icy Snowy Cities ban fossil-fuel vehicles One-third of new cars are electric
Breezy Dry Depression becomes the No.1 disease burden Manufacturing jobs disappear in the West
Normal Typical The majority of UK homes are rented Married couples are a minority in the UK

through (i) the combination of individual probability judg-
ments into probabilistic identities, and (ii) the repeated elici-
tation of probability judgments for identical events.

Probabilities in Large Language Models

Autoregressive LLMs are trained to predict the next word,
where the training distribution is typically based on a large
sample of Internet text. These models typically use a neural
network architecture known as the Transformer (Vaswani et
al., 2017). To predict the next word, LLMs compute a con-
ditional probability given the preceding sequence of n words:
P(Wnt1|wi.). The precision of this distribution is controlled
by the temperature parameter. When the temperature is set
low (i.e., close to 0), the model is more likely to pick the
most probable next word based on its training. A higher tem-
perature setting makes the model’s word choices more equal
in probability, leading to more diverse outputs.

As Al systems based on LLMs are becoming more capa-
ble of interacting with people in real-world applications, Al
researchers have been studying the probabilities that these
systems predict for different events (e.g., Jiang et al., 2012;
Liang et al.,|2022). The primary objective within Al and ma-
chine learning is to calibrate these Al-generated probability
estimates with true frequencies (Kumar et al.,[2019; Shrivas-
tava et al., 2023; Zadrozny & Elkan, 2001). While it is vi-
tal to ensure that the probability judgments produced by Al
are well-calibrated, the coherence of probability judgments is
equally important. In fact, there are strong theoretical reasons
linking coherence and accuracy in boundedly rational agents
(Zhu et al.,2022).

It is true that accurate probability judgments (i.e., those that
perfectly reflect true frequencies) are also coherent. However,
the reverse is not always true: coherent probability judgments
are not necessarily more accurate. It has been proved that,
for any set of incoherent probability judgments, there exists
at least one set of coherent probability judgments that bet-
ter correspond to the true frequencies (Leitgeb & Pettigrew,
2010).

Assessing Coherence via Probabilistic Identities

Coherent probability judgments should be consistent when
applied to events that are logically related. This type of coher-
ence can be studied using probabilistic identities, which are
formulated by combining individual probability judgments
from a pair of binary events, A and B (Costello & Watts,
2014; Zhu et al.,2020). In typical experimental setups, partic-
ipants are asked about either single events (e.g., P(A)), con-
junctions of the events (e.g., P(AN B)), or disjunctions of the
events (e.g., P(AUB)). These individual probability judg-
ments are asked independently and subsequently combined
to construct probabilistic identities. For example, the iden-
tity Z; is composed of four distinct probability judgments:
Zy =P(A)+P(B)— P(ANB) — P(AUB). A key feature of
these identities is that they should all equal to zero, according
to probability theory.

These identities serve as instrumental tools for quantify-
ing the degree of incoherence in an individual’s probability
judgments. An individual strictly following the rules of prob-
ability theory should make all such identities zero. Moreover,
when an agent uses an unbiased estimate of the underlying
probabilities (e.g., by drawing i.i.d. samples and using rel-
ative frequency for probability estimation), the identities de-
rived from her responses should also equal zero, on average.

When these probabilistic identities are tested on human
participants (see Figure [I] left panel), the results consis-
tently show that the extent of the deviations from zero ap-
pears to be influenced by the balance of positive and negative
terms within each probabilistic identity (Chater et al., 2020;
Costello & Watts, 2014} Zhu et al.,|2020). For instance, iden-
tities Z; and Z,, which each contain an equal number of pos-
itive and negative terms (two of each), typically yield mean
responses that approximate zero. In contrast, identities Z3
through Zg, which have one more positive term than nega-
tive, demonstrate a different pattern in mean responses. This
disparity becomes more pronounced in identities Z7 and Zg,
where there are two more positive terms than negative. Con-
sequently, the mean responses for Z; and Zg are observed to
be twice as large as those for Z3 through Zg.
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Figure 1: Bias and variability in human probability judgments as revealed by (left) probabilistic identities and (right) mean-
variance relationship. Error bars are 95% CI. Solid line represents the best-fitting linear regression. Data adapted from Zhu

et al. (2020) Experiment 1.

It is important to note that if an individual’s probability
judgments remain constant across various queries (for in-
stance, consistently responding with a probability of 0.5 for
all queries), their probabilistic identities would deviate in a
manner similar to that observed in human judgments. How-
ever, it is rarely the case that individuals respond to all queries
with a fixed probability value. In reality, even when presented
with the same query on different occasions, individuals often
exhibit variability in their probability judgments (Sundh et al.,
2023)). This is also true of LLMs, which generate stochastic
responses even when presented with identical prompts.

Repeated Judgments

Coherent probability judgments should also remain consis-
tent as long as the underlying information or evidence hasn’t
changed. If one judges the probability of an event at one mo-
ment, a coherent reassessment at a later time without new
information should yield the same probability. This kind of
self-consistency is studied using repeated judgments, as vari-
ability in probability judgments is important for understand-
ing the underlying mechanisms that people use to formulate
these judgments.

In economics and psychology, there have been numerous
experiments where individuals are asked to repeat the same
task at different times, sometimes even when these occasions
are close together in time (e.g., Mosteller and Nogee, [1951;
Sundh et al., [2023; Zhu et al., [2020). This has led to the ob-
servation of significant fluctuations in behavior. For instance,
preferences between different monetary gambles have been
noted to display marked variability within short time frames
(Loomes & Sugden, [1998; Mosteller & Nogee, |1951). More-
over, people’s probability judgments of the same event have
been found to differ from one instance to another, even in the
absence of any new information influencing these judgments
(Sundh et al.,|[2023; Zhu et al., 2020).

In addition to this observed variability, certain structures
have been identified using repeated probability judgments.
Notably, it has been observed that probability judgments
closer to 0.5 exhibit greater variability compared to those
near the extremities of 0 or 1 (Sundh et al.,2023). This phe-
nomenon renders an inverted-U-shaped relationship between

the mean and variance of repeated judgments (see Figure [I]
right panel). This inverted-U-shaped curve also demonstrates
variation across different participants and events (Sundh et
al.,[2023)). Generally, a downward shift in the curve indicates
a reduction in the variability of repeated judgments; an in-
ward shift of the curve suggests a ‘shrinkage effect,” which
has been theorized to occur when employing a ‘stronger’
prior to moderate all judgments (Zhu et al., 2023)).

Evaluating Coherence in LL.Ms

The probabilistic identities and repeated judgments used to
study the coherence of human judgments provide an oppor-
tunity to study coherence in LLMs. To this end, we evalu-
ated four distinct LLMs with varying levels of sophistication
and model transparency. These included OpenAIl’s GPT-4
and GPT-3.5-turbo (Achiam et al., 2023)), as well as Meta’s
LLaMA-2-70b and LLaMA-2-7b (Touvron et al., 2023)).

Methods

Each of these LLMs is equipped with a system message fea-
ture, which facilitates the application of instructions and en-
sures the consistency of constraints across different scenar-
ios. For our experiment, we used a uniform system message
for all probability queries, directed to each of the LLMs. The
message instructed: “You will estimate probabilities of some
real-world events. Respond only with a number correspond-
ing to a probability between 0 and 1. Do not respond with any
other text. We are interested in your subjective evaluation of
the probability so just respond what you think.”

We presented LLMs with 24 pairs of constituent events,
denoted A and B (detailed in Table [I). The LLMs were
tasked with assessing the probability of various combinations
of these events, specifically P(A), P(B), P(ANB), P(AN—B),
P(BN—A), P(AUB). Of the 24 event pairs, 12 were related to
weather conditions and the remaining 12 pertained to political
scenarios. For the weather-related events, the prompts posed
to the LLMs were framed as follows: “What is the proba-
bility that the weather will be X on a randomly-selected day
in England during the year 2025?”. In contrast, for the po-
litical events, the prompts were structured as: “What is the
probability that X by the year 2025?”. Appropriate logical



Z,=P(A)+P(B)—P(AnB)-P(AUB){

Z; =P(A) +P(B n—A) —P(B) = P(An —B) q

Probabilistic Identities Derived from GPT-3.5-turbo's Responses

@ temperature=0.0
©® temperature=1.0

Z3=P(A) +P(B n =A) — P(A U B) 4 e
Z4=P(B) +P(An—B)— P(AUB) == -
Zs=P(An—B)+P(AnB)—PA) o =
Zg=P(B n-A) +P(AnB) - P(B) —%s—
Z7=P(AN=B)+P(B N -A)+PANB)~PAUB) 4 ===
Zg=P(An —B) +P(B n —A) + 2P(An B) - P(A) - P(B) { ——

-0.2

C

Z,=P(A)+P(B)-P(AnB)—P(AUB)q

=
Z,=P(A) + P(B n ~A) - P(B) — P(A n =B) { m—@7—

0.0 0.2 0.4 0.6 0.8 1.0 12 14
Probability

Probabilistic Identities Derived from LLaMA-2-7b's Responses

@ temperature=0.0
® temperature=1.0

B,

Probabilistic Identities Derived from GPT-4's Responses

[= =N @ temperature=0.0
—p—- @ temperature=1.0
S
e
=
—e—i
—e—
; S
s

-0.2

D ]

0.0 0.2 0.4 0.6 0.8 1.0 12 14
Probability

Probabilistic Identities Derived from LLaMA-2-70b's Responses

@ temperature=0.0
® temperature=1.0

=
e
—e—
—e—
—e i

—e——

Z3=P(A) +P(B n —A) - P(AUB) 4 e
Z4=P(B) +P(An=B) — P(AUB) ——
Zs=P(An -B)+P(AnB) - P(A) e,

Zs=P(Bn —A) +P(AnB) - P(B) { —e—
Z7=P(An=B)+P(Bn—A)+PAnB)—PAUB) o ——,
Zs=P(An -B) +P(B n —~A) + 2P(An B) — P(A) — P(B) 4 ——,

-0.2 0.0 0.2 0.4 0.6 0.8 1.0

Probability

12 14 0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 14
Probability

Figure 2: Probabilistic identities based on LLM responses. For coherent judgments, all probabilistic identities should be zero.
(A) GPT-3.5-turbo model. (B) GPT-4 model. (C) LLaMA-2 model with 7b parameters. (D) LLaMA-2 model with 70b
parameters. Error bars represent 95% CI across the 24 event pairs. Increasing the configured temperatures within each LLM,
thereby introducing more stochastic responses, slightly elevates the average level of incoherence observed.

operators, including negation, conjunction, and disjunction,
were applied to the pairs of events.

We configured the temperature parameter for all four
LLMs to both 0 and 1. A zero temperature setting was se-
lected to prompt each model to generate its most probable
response. Conversely, a temperature setting of 1 was em-
ployed to make the LLMs to produce responses based on their
learned probability distributions. To assess the variability of
the responses, we submitted identical prompts to each LLM
five times, with the temperature parameter maintained at 1
during these repetitions.

Results

As shown in Figure 2] the responses of LLMs exhibit char-
acteristics akin to human reasoning biases. This similarity is
primarily due to the way positive and negative terms within
each identity collectively influence the extent of deviations
from zero. The relationship between the balance of positive
and negative terms and the magnitude of deviations from zero
remains consistent across different types and variants of mod-
els. Moreover, the mean-variance relationships of repeated
probability judgments produced by LLMs also resemble the
human pattern (see Figure [3). The consistency of reproduc-
ing human patterns across LLMs strongly implies that these
statistical properties of LLM responses is an inherent charac-
teristic of autoregressive models.

On average, model variants characterized by either an in-
creased number of model parameters or a lower tempera-
ture setting exhibit reduced deviations from zero in proba-
bilistic identities, a trend observed across both the GPT and
LLaMA series. Additionally, variants with a greater num-
ber of model parameters display reduced variability and a
less pronounced ’shrinkage effect,” as evidenced by the mean-
variance curves shifting concurrently downward and outward.

These observed patterns suggest a correlation between in-
creased model size and enhanced coherence, although it is
important to note that perfect coherence is not achieved in
any model.

Theories of Human Probability Judgments

Before we delve into possible accounts for the observed pat-
terns in probability judgments produced by LLMs, it is in-
structive to revisit theories of human probability judgments
due to the behavioral parallels observed between LLMs and
people.

Human biases in probability judgments have been ex-
plained using two leading models: PT+N (Costello & Watts,
2014) and the Bayesian Sampler model (Zhu et al., [2020).
Both models posit the existence of an underlying event prob-
ability, denoted 0, which, while coherent, may not necessar-
ily align with actual probabilities. For example, when judg-
ing P(head) and P(tail) for a fair coin, ® can manifest as
both coherent and accurate, exemplified by Opeaq = Oyl =
0.5. Alternatively, 0 can be coherent yet inaccurate, such as
Onead = 0.6, B,51 = 0.4, where the underlying probabilities de-
viate from the actual probabilities of 0.5 in a fair coin. The
key to coherence, in this example, lies in the condition that
Ohead = 1 — Brai1, ensuring the internal consistency of logically
related events.

Both PT+N and Bayesian Sampler models incorporate the
concept of an approximation process, which involves draw-
ing samples from the underlying event probability 6. A cru-
cial distinction between the two theories lies in the handling
of these samples: the PT+N model posits that these sam-
ples are subject to corruption by independent noise factors
(Costello & Watts, 2014). Therefore, the PT+N’s interpreta-
tion of the observed patterns in probabilistic identities hinges
on the presence of additive noise within individual probability
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Figure 3: The relationship between mean and variance in repeated probability judgments produced by LLMs exhibits an
inverted-U shape. Solid lines represent the best-fitting regression models. Variants with more parameters tend to shift the curve
outward and downward. (A) GPT-3.5-turbo model. (B) GPT-4 model. (C) LLaMA-2 model with 7b parameters. (D) LLaMA-2
model with 70b parameters. The temperature parameters were fixed at 1.0 for all models.

judgments. This model suggests that an increase in the addi-
tive noise is likely whenever there is an imbalance between
positive and negative terms.

In contrast, the Bayesian Sampler model postulates that
these samples are integrated with a prior, p(0), reflecting the
prior knowledge of the underlying event probability (Zhu et
al.,[2020):

p(x[6)p(8)

plof) = 22

ey

where p(x|0) represents an approximation of the underlying
event probability. Furthermore, the mean probability judg-
ment as predicted by the Bayesian Sampler model corre-
sponds to the mean of the posterior distribution in Equation

(It

_ J6p(x[6)p(6)a6

~Trepeae

E[0] = /9p(6|x)d9

Thus, the interpretation offered by the Bayesian Sampler
model is grounded in the repeated use of the prior, p(6),
in each instance of probability judgment. According to this
model, the imbalance between positive and negative terms in
an probabilistic identity serves to magnify the influence ex-
erted by the prior.

To further illustrate the mechanisms of the Bayesian Sam-
pler model, let’s consider a symmetric Beta prior for p(8),
denoted as Beta(f, B), and a binomial distribution for p(x|6),
denoted as Bin(N,0). That is, the agent is assumed to draw
N i.i.d.-samples from the underlying event probability 6. The
posterior as predicted by the Bayesian Sampler model is in
the form of Beta(P + x, + N —x) and x ~ Bin(N,0), which
has mean and variance:

N p
E[6] = N+2[39+N+2[3 3)
N
Vie] = me(l —0) 4)

Considering Z3 as an example, the predicted mean values

for the identity can be articulated as follows:

E[Z3] = E[84] 4 E[6pn-4] — E[64us] (5)
N

= m(eA +0pn-4 —0auB) + T (6)
B

T N+2PB )

Given that the underlying event probabilities 6 are coher-
ent, it follows that 04 +0pn-4 — 648 = 0. Therefore, it is the
number of terms %2[5 that prompts the identities to deviate
from zero, which is related to the imbalance of positive and
negative terms within an identity.

In scenarios where the agent does not draw any samples for
estimating the underlying event probability (namely, N = 0),
and the prior distribution of this probability is symmetric, the
expected deviation from zero is 0.5 for identities Z3.¢ and
1 for identities Z7.3. These values can be considered as the
maximal limits of incoherence within probabilistic identities.
This analysis has two key implications: (1) An agent demon-
strating incoherence levels behind these extremes is indica-
tive of a more accurate approximation of the underlying event
probabilities; (2) Conversely, any factor impeding the accu-
rate approximation of the underlying event probability will
result in identities exhibiting deviations that converge towards
these bounds.

The Bayesian Sampler model also predicts the inverted-
U-shaped relationship between the mean and variance of re-
peated probability judgments (Sundh et al., 2023). By rear-
ranging the predicted mean and variance, we derive the fol-
lowing relationship for the aforementioned example:

BIN+B)

~ N(N+2p)? ®

1

V(o] = - E[6](1-E[6])

In this equation, the inverted-U shape is a result of the
quadratic relationship between mean and variance. As a
corollary, an increase in the sample size N (i.e., obtaining a
more accurate approximation of the underlying event proba-
bility) is predicted to shift the curve downward. Furthermore,
the shrinkage effect that shifts the curve inward is driven by



the incorporation of the Beta(P, ) prior. An increase in the
value of B (i.e., a stronger prior) is expected to cause an in-
ward shift of the mean-variance curve.

Connecting LLLMs to Bayesian Inference

We now consider a possible explanation for the systematic
deviations from rationality observed in LLMs. Our approach
begins with a formalization of the autoregressive process em-
ployed by LLMs in the generation of probability judgments.

Let w,,+1 be the model-predicted probability judgment and
wi., the query (e.g., “what is the probability that Greece has
left the European Union by the year 20257”). We note that
the process for generating probability judgments in autore-
gressive LLMs can be understood as p(wy1|wi.,). Under
the exchangeablility assumption'} we can rewrite the autore-
gressive objective as an implicit Bayesian inference process
using de Finetti’s theorem (Korshunova et al., 2018} Zhang
et al.,[2023):

Pt |Wis) = / pwns110)p(Olwi)d®  (9)

where 0 represents the latent generative process underlying
the data or, in our study, the underlying probability of the
event in the query. Equation [9]links the concept of learning
to fit the autoregressive distribution (i.e., the left hand side)
with conducting Bayesian inference on the latent generative
process underlying the data (i.e., the right hand side) (Zhang
et al., 2023). In our context, it is specifically the underlying
event probabilities on which the Bayesian inference is exe-
cuted.

This decomposition of the autoregressive distribution re-
sembles the Bayesian inference process applied to samples in
the Bayesian Sampler model:

Wntl = argmai(p(wn+l|wlzn) (10)
Wnt
= argmayl(/p(wn+1|9)p(9|w1;n)d6 (11)
Wn+
= argmglxp(e\wl:n) (12)
JOp(w1:|0)p(6)d®
~ [ Op(B|w1.,)dO = (13)
J ertoena)as = e e

where we assume in Equation 12 that p(w,1; = 0]6) = 1
(i.e., p(wpy1 # 6]0) = 0) and in Equation 13 that the mode
is approximated by the mean of the integral. By contrasting
Equation|13|with 2} we postulate a possible link between the
probability judgments produced by LLMs and the Bayesian
Sampler model. In this framework, the prompt wy., acts as
the target for approximating the underlying event probability
in LLMs.

'While this assumption might not be rigorously applicable at the
token level in LLMs, it can nonetheless function as a valuable proxy
within the semantic space to explain LLMs’ responses (Xie et al.,
2021; Zhang et al.,|2023).

Discussion

We have presented empirical evidence demonstrating the in-
coherence of probability judgments generated by LLMs. Fur-
thermore, through the analysis of probabilistic identities and
mean-variance relationship, we identified shared patterns of
incoherence in LLMs and humans. These structures offer in-
sights into the underlying mechanisms employed by LLMs
in the formation of probability judgments. We conjecture
that this process originates from the implementation of au-
toregression for the four LLMs. Specifically, we postulated a
possible connection between the autoregressive training ob-
jective and the Bayesian Sampler model, which has been pre-
viously employed to account for similar patterns of incoher-
ence observed in human judgments (Sundh et al., 2023 Zhu
et al., 2020} [2023).

Our results suggest a novel approach for enhancing the ac-
curacy of probability outputs generated by Al systems. This
improvement might be achieved not through calibration with
true frequencies, but rather by adjusting the degree of inco-
herence in the output. The established relationship between
coherence and accuracy in probability estimation, particularly
in the context of agents with bounded rationality (Leitgeb
& Pettigrew, [2010; Zhu et al., [2022), provides a theoretical
foundation for this method. Applying this relationship to re-
calibrate incoherent judgments offers a promising avenue for
future research. We see this approach as having the poten-
tial to help refine Al-based probability judgments, making
the resulting models more reliable and effective in practical
applications.

Our work also exemplifies the idea that Bayesian and neu-
ral network models are complementary approaches in under-
standing machine and human intelligence (Griffiths et al.,
2023). The Bayesian model serves as a valuable tool for
defining the computational-level objectives that a neural net-
work model aims to achieve. This synergy between Bayesian
and neural network models provides a more holistic under-
standing of intelligence, offering insights into the interplay
between computational-level objectives and algorithmic-level
execution in artificial and natural cognitive processes.
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