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Cross-Linguistic Regularities
• Languages display remarkable regularities

• Greenberg’s universals (1963), e.g. gender categories in nouns re-used in 
pronouns

• Argument structure regularities (Fedzechkina et al., 2012) 
• Minimized dependency lengths (Futrell et al., 2015)

• Potential explanations (not mutually-exclusive!):
• Innate biases (“Universal Grammar”)
• Shared origin 
• Communicative efficiency / robustness
• Learnability 

• Language regularities are important for linguistics, psychology, 
neuroscience, machine learning

“Stable engineering solutions”
(Evans and Levinson, 2009)
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Today’s Talk
• Today: revisit a long-known (80+ y.o.) relationship in language: 

inverse relationship between a word’s length and the frequency 
of its use (Zipf, 1935)
• Show some evidence why this regularity might emerge as a 

“stable engineering solution”
• Statistical language modeling using formalisms from NLP
• Inference is at the heart of language processing!
• NLP = a set of hypotheses about inference in language
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Zipf (1935) and Word Length
• “the magnitude of words tends, on the 

whole, to stand in an inverse (not 
necessarily proportionate) relationship to 
the number of occurrences” 
• Motivated by “Principle of Least Effort”
• Most frequent code should be the 

shortest (variable length encoding)
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Generalizing Zipf’s Second Law
• Not length, per se, but distinctiveness of the audio signal, which 

varies with frequency
• Successful recognition depends on the number and strength of 

competitors
• Distinctive = low probability under the prior distribution on 

phone transitions; string is diagnostic of a particular word 
• Basic logic: A low frequency word needs a distinctive word form, 

otherwise it loses to higher-frequency competitors which are 
partially consistent with the observed phone sequence
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Outline
• Rational Model of Distinctiveness
• Relationship to Spoken Word Recognition
• Frequency vs. In-Context Predictability
• Analytical Methods
• Empirical Findings
• Implications (for NLP and more broadly)
• Simplifying Assumptions
• Future Work
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Bayesian Speech Recognition
• Upon hearing a string of sounds s a listener has to infer what 

word w was intended by the speaker. Should use Bayesian 
inference!

• Assuming sounds are produced faithfully, then 𝑃 𝑠# 𝑤 = 1
(and 𝑃 𝑠# 𝑤′ decreases as 𝑤′ is less similar to 𝑤)
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Word Form Probability
(distinctiveness = - log 𝑃(𝑠#))

Prior Probability
(Frequency or Predictability)



Distinctiveness and Frequency
• Two reasons to think that 𝑃 𝑤 ∝ 𝑃(𝑠#) (or 𝑃 𝑤 is inversely 

related to distinctiveness,−log	𝑃(𝑠#))

• 1) Measure of listener effort: Total effort is minimized when the 
most frequent words are the least distinctive
• 2) Uniform Recognizability: probability that any word is 

successfully recognized is approximately the same.
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Communicative Pressures

Distinctiveness:
Ease of 

distinguishing 
from other 

words, 
−log	𝑃(𝑠#)

Unpredictability, −log	𝑃 𝑤

Too much 
articulatory
effort

Too many 
communicative failures
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𝑃 𝑤 	∝ 𝑃(𝑠#)
String

Probability 
𝑃(𝑠#)

Word Probability 𝑃 𝑤

Too much 
articulatory
effort

Too many 
communicative failures

𝑃 𝑤 	∝ 𝑃(𝑠#)



Marginal String Probability

• Computing 𝑝 𝑠# is hard. Equivalent to asking “how likely will 
any word be confused for this word” 
• 𝑝 𝑠# = ∑ 𝑝 𝑠# 𝑤2 𝑝(𝑤2)�

#2∈5 	
• Trivial observation: high frequency words contain more common 

sequences
• Stronger test: compute distinctiveness under a type-weighted 

model 𝑝 𝑠# = ∑ 𝑝 𝑠# 𝑤2�
#2∈5 x 1

• Still need a way to compute 𝑝 𝑠# 𝑤2

• Treat 𝑠# as a sequence of phones
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Naïve Model of Distinctiveness
• Naïve model: equally probable, 

independent phones or 
characters (Mandelbrot 1954; 
Miller, 1957)
• Longer strings are less probable / 

more informative
• 𝑝 𝑙7 = 8

9
,  where 𝑣 is the size of 

the phone inventory
• 𝐷 𝑠# = −∑ 	log	𝑝 𝑙7�

7

• 𝐷 𝑠# = 𝑠# log 𝑣
• 𝐷 𝑠# ∝ 𝑠#
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People Are Many Things, But Not Naïve…
• People have rich knowledge of language structure. t is usually followed 

byi or e, but much less commonly by b or g
• “Sequential hangman” game from Shannon ‘51: guess each 

consecutive letter. Receive confirmation when right, and move to the 
next letter. 

• Baseline of uniform character probabilities: 13n guesses (excluding 
spaces)
• Expected for first phrase: 29x13= 377 guesses
• Human performance: 80 guesses
• People use this knowledge in spoken word recognition (Vitevitch & 

Luce, 1998; Tanenhaus, Marslen-Wilson & Welsh, 1978, inter alia) 13



Improving Distinctiveness Estimate
• We can improve distinctiveness with a probabilistic model of phone-

to-phone or character-to-character transitions from the language 
• Approximate probabilistic phonotactic knowledge with an n-gram 

model built over phones or characters (~phones; high correlation)
• Type-weighted to avoid circularities
• Order = 5, modified Kneser-Ney smoothing with interpolation on the 

higher orders 
• Distinctive = many unlikely transitions when inferring the identity of 

each sequential phone
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Phonological Information Content
• Once we have a generative model for strings, we can then get 

some measure of how predictable each word form is in a given 
language: phonological information content
• PIC = Phonological Surprisal = relative entropy of the observed 

distribution with respect to the expected distribution
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PIC Estimate vs. Length
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“There is no reverse on a motorcycle” - 115 guesses



Draws from the English Model
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• Future Work

18

Prior Probability

Word Form Probability
(distinctiveness = - log 𝑃(𝑠#))



Length and Neighborhood Density
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• Shorter words have more 
similar “neighbors” 
(competitors); long words 
have more sparse 
neighborhoods
• Neighbor: approximated by 

edit distance of one phone or 
character (Coltheart’s N)
• Complex effects of 

neighborhood density
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PIC and Neighborhood Density

• PIC: surprisal from incremental phone recognition
• consistent with the cohort model of Marslen Wilson, 1978

• PIC captures competition effects from early in the word for 
longer words 
• 40 possible candidates for thesis after the; compared with only 2 words 

within Levenshtein distance of 1: theses and Theseus
• Significantly better than length in predicting lexical decision times for 

nonwords
• Estimate of processing difficulty, by analogy with lexical surprisal (Levy, 

2008)
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In-Context Lexical Surprisal
• Piantadosi et al. 2011: What if length is driven by mean information content 

across contexts for a word rather than frequency
• Use lexical surprisal in place of frequency

• Where N is the number of tokens, w is the word, 𝑐7 is the context
• The frequency and lexical surpisal are highly correlated, so they partial out 

the former
• Test with n-gram models on Google 1T corpora (100B – 1T words, 

nominally)
24



In-Context Lexical Surprisal, Continued

• Significantly stronger correlation 
• Elegant connection to advances in 

sentence processing (Levy, 2008); 
relates word length primarily to 
processing pressures
• Here: also look if in-context mean 

predictability correlates with PIC
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Corpora and Preprocessing
• Google 1T (web), Google Books 2012 (books, limited to after 1800), OPUS  

2013 (movie subtitles)
• 13 languages in total (11, 7, 13 respectively), 43M to 266B words
• UTF-8, lowercase (specific to locale), punctuation removed, POS merged, 

stopwords retained

• For each (language * corpus), compute frequency, bigram and trigram 
surprisal; type inventory for phone and character models
• Type inventory for analysis: restrict to 25k highest frequency words in 

OPUS ∩ Aspell
• ZS: parallel decompression of n-gram tries (English trigrams 20TB 

uncompressed text)
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Generating Phonemic Transcriptions
• Orthography itself is influenced by efficient communication. 

“Don’t signal what can be reasonably assumed”
• Example: Spanish accents included only when they violate the 

usual pattern (end in consonant other than n or s: penultimate 
syllable)
• Phone transcriptions of the type list with a cross-linguistic 

speech synthesizer (espeak) that can output IPA 
• Variable quality. Confirmed with L1 or proficient L2 speakers a 

sample from English, German, Spanish, Hebrew, and French
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Empirical Findings

30

• PIC accounts for significantly 
more variance in frequency 
than does length
• Example: strong relationship 

between PIC and frequency 
among words of the same 
length

All words are
7 phones long



Improvements In Fit From PIC
• Differentiation
• something (27.13 bits ) vs. 

xylophone (34.48 bits)
• Inversion 
• depth (5 letters, 17.86 bits) 

vs. ground (6 letters, 12.85 
bits)

• PIC of consonant clusters 
generally corresponds with 
length in characters
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Cross-Linguistic Correlation
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Vs. Lexical Surprisal?
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Unigram Surprisal ~ Sublexical Surprisal

Unigram Surprisal ~ Sublexical Surprisal

Trigram Surprisal ~ Sublexical Surprisal

Trigram Surprisal ~ Number of Characters

Trigram Surprisal ~ Number of Characters
Unigram Surprisal ~ Number of Characters

• Trigram surprisal not a good 
predictor of PIC (top)
• Trigram surprisal not good at 

predicting word length 
(middle)
• Advantage of trigram surprisal

w.r.t. frequency from 
Piantadosi et al. (2011) 
largely disappears when we 
use UTF-8 and limit words in 
the analysis to those in the 
dictionary (aspell)
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Estimating mean trigram surprisal in 
morphologically complex languages
• Sparsity problems for when we restrict to in-dictionary words?
• Example with vender:
• Handful of forms in English: sell, sells, sold, selling. 
• Spanish: 140 forms in the top 50k (verb conjugation + clitic object 

markers)
• Zipfian distribution: higher frequency lemma can have many 

lemmas in the analysis before one form of a lower frequency 
lemma
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Historical Fit
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• Changes in length captures deletion and epenthesis (e.g., luncheon 
to lunch)

• Change in length is the “nuclear option” in language change
• PIC captures other forms of weathering: assimilation, dissimilation, 

metathesis. (aks -> ask). How to test?

• Some words that are relatively uncommon now still have very high 
string probability (ewe)

• Is there such a thing as reverse weathering?
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Outline
• Rational Model of Distinctiveness
• Relationship to Spoken Word Recognition
• Frequency vs. In-Context Predictability
• Analytical Methods
• Empirical Findings
• Implications (for NLP and more broadly)
• Simplifying Assumptions
• Future Work
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Back to cross-linguistic regularities 
• Language structure shaped to support efficient inference
• Recipe for language: 
• general learning mechanisms: sequence learning
• rich, learned representations: n-gram model
• highly evolved substrate: 𝑃 𝑤 	∝ 𝑃(𝑠#)

• Compare with computer vision: natural scene statistics are not
subject to pressures from inference
• Languages are themselves part of the solution—it’s not just the 

processing architecture which is special! 
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Implications for NLP / Machine Learning
• Primarily, this work adapts tools from NLP to answer questions 

about regularities in natural language
• “Don’t need to know how feathers work to build an airplane”
• This is a trade-off at the level of aerodynamics…

• Emphasizes the prevalence of reduction: strong listener 
expectations license reduction / deviation from the target form 
• (probably -> prolly -> pry)

• Stresses the importance of priors: world-knowledge, discourse 
information, syntactic information
• Not noise!
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Simplifying Assumptions
• Treat words as discrete symbols
• Gradient effects in English (farmer’s market; black bird)
• Words in agglutinative languages (e.g., Turkish)

• Estimate distinctiveness with phones, not sub-phone features 
(see Futrell et al. in press)
• Word = an ordered collection of phone symbols
• No long-distance dependencies 

• Compute probabilities while observing word boundaries

39



Simplifying Assumptions, Continued
• Markov assumption… not marginalizing 

over possible preceding phones in the 
prediction
• More ambiguity in short words?
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Caveat Corpora
• Language use approximated by web pages, books, or 

subtitles
• Most common trigram ending in ‘Romanian’ from 

Google 1T is “Polish Portuguese Romanian” (~22% 
trigrams ending in Romanian)
• English 1T is kill-it-with-fire / remove from LDC bad
• ~20% of the unigram probability mass is taken by 

symbols corresponding to bound morphemes in the 
Hebrew Google Books dataset
• Looking for other (cross-linguistic) corpora (new work 

with OPUS 2016)
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Future Directions
• Extend to a larger cross-linguistic sample
• Explore token-weighted phonological model 
• token-weighted model displays human performance on the Shannon 

Game
• Investigate interaction with speech rate
• Look at historical changes in wordforms
• Change in predictability precedes a change in the wordform?

• Develop better information content estimates (e.g. LSTMs)
• How do PCFGs / n-gram models / LSTMs perform across languages?
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Conclusion
• The relationship between word length and frequency observed 

across natural languages supports efficient inference
• A relatively simple probabilistic language model (from NLP) 

gives us a significantly improved estimate of string 
distinctiveness
• The mapping between word form and use is not arbitrary: 

cognitive pressures shape word forms
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