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set of contingencies than previous research. Using these judgments,
we evaluated the predictions of various Bayesian models. The
Bayesian model with priors estimated via iterated learning com-
pared favorably against the others. Experiment 3 estimated partic-
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1. Introduction

Inferring the relationship between causes and effects is an important skill that people rely on
every day in order to understand the structure of their environment. Psychological models of human
causal induction have often focused on the role of associative learning—how people’s judgments
might be related to the number of instances of an effect occurring in the presence and absence of
a cause (e.g., Cheng, 1997; Shanks, 1995; Ward & Jenkins, 1965). Recent work has explored how
ideas from Bayesian statistics might help to explain people’s intuitions, using causal graphical mod-
els to precisely define the problem of causal induction (Griffiths & Tenenbaum, 2005; Lu, Yuille,
Liljeholm, Cheng, & Holyoak, 2008) and to formalize the influence of prior knowledge (Griffiths &
Tenenbaum, 2009).

A key part of Bayesian models of causal induction is the assumptions they make about the expec-
tations people have about causal relationships. These assumptions are expressed in the form of prior
distributions (often shortened to just priors), and reflect the expectations of the learners about causal
systems prior to seeing any data. Bayesian models of human causal induction focus especially on the
learners’ prior beliefs about the strength of causal relationships, and two different specifications have
been proposed thus far—using either a non-informative prior that makes no assumptions about the
prior beliefs (Griffiths & Tenenbaum, 2005), or a prior based on theoretical assumptions about people’s
inductive biases (Lu et al., 2008). In this paper we present a new approach to identifying the expecta-
tions people have about causal systems, using the technique of iterated learning (Griffiths & Kalish,
2007; Griffiths, Christian, & Kalish, 2008). This technique allows us to estimate the values of unobserv-
able cognitive constructs, such as people’s priors, and produced predictions about human judgments
that are more accurate than previous methods.

The plan for the rest of the paper is as follows. In the next section we summarize relevant previous
work on Bayesian models of human causal induction. We then introduce the basic ideas behind iter-
ated learning, and apply it in Experiment 1 to empirically estimate participants’ prior beliefs about
causal systems. Next we discussed a potential issue in previous work on human causal induction—
models of causal induction are often evaluated based on small sets of stimuli that have certain specific
characteristics. To address this issue, in Experiment 2 we collected a large benchmark data set against
which the performance of different models can be better compared. We followed up with an investi-
gation on prior beliefs about several different causal systems in Experiment 3. Finally we conclude
with a discussion of the implications of these results for understanding causal induction as well as
some possible future directions.

2. Bayesian models of human causal induction

Historically, there have been two major approaches to psychological theories of causal induction
(Newsome, 2003). The mechanism-based approach focuses on understanding how knowledge about
the causal mechanisms influences reasoning. Here learners attempt to discover a process in which
causal power possessed by entities is transmitted to generate the event (Ahn, Kalish, Medin, &
Gelman, 1995). In contrast, the covariation-based approach focuses on how people use the contin-
gency about cause and effect to identify causal relationships (Cheng, 1997; Shanks, 1995). In particu-
lar, much psychological research on causal induction has focused on the problem of elemental causal
induction: given a number of observations of two binary variables with a plausible causal relationship,
how do people assess the relationship between them? For example, we can imagine a scientist study-
ing the effect of a certain chemical on clovers. While most clovers have three leaflets, some have four,
and the scientist wants to know whether the presence of the chemical has the power to increase the
proportion of four-leaf clovers. By planting a number of clover plants and applies this chemical on
some of them, he can use the resulted contingency data—number of clover plants exposed to or not
exposed to the chemical, number of four-leaf clovers resulted in each case—to evaluate this potential
causal relationship.

More recently, researchers have proposed various models based on Bayesian statistics. While these
models rely on covariation data, they explicitly represent the learners’ subjective beliefs about the



S. Yeung, T.L. Griffiths / Cognitive Psychology 76 (2015) 1–29 3
causal systems, and formally express how they update their beliefs after observing data. These models
have been found to be able to make good predictions about human judgments, and could explain
effects not predicted by previous models (Griffiths & Tenenbaum, 2005; Lu et al., 2008). This paper will
focus on these Bayesian models.1

2.1. Bayesian inference

Bayesian models of causal induction are special cases of the more general approach of modeling
human inductive inferences as applications of Bayesian statistics (Tenenbaum, Griffiths, & Kemp,
2006; Tenenbaum, Kemp, Griffiths, & Goodman, 2011). The principles of Bayesian inference indicate
how a rational learner should update his or her beliefs in light of evidence. In the context of causal
induction, this approach involves formally specifying a learner’s a priori beliefs concerning a causal
system in terms of prior probability, and a likelihood function that describes the likelihood of observ-
ing certain data given these prior beliefs. The prior probability and the likelihood function combine to
give the posterior probability, which represents the learner’s updated beliefs concerning the causal
system.

Formally, we represent a learner’s a priori subjective beliefs concerning a causal system using a set
of hypotheses H, in which each hypothesis h 2 H has a prior probability PðhÞ that reflects the agent’s
degree of belief in the hypothesis being true.2 Bayes’ rule indicates that the degree of belief in each
hypothesis after observing data d is given by
1 A d
conting
(Cheng
(2007).

2 In
distribu
PðhjdÞ ¼ PðdjhÞPðhÞP
h02HPðdjh0ÞPðh0Þ
where PðdjhÞ is the likelihood and PðhjdÞ is the posterior probability. The posterior probability thus
represents the learner’s belief after the observations, and can be compared to empirical data as a
way to evaluate to what extent the proposed model can approximate people’s computations in causal
induction.

Because these Bayesian models rely on computations concerning people’s beliefs, these beliefs
need to be formalized mathematically. However, formally specifying a prior distribution that captures
the expectations of humans (or even just a select group of a more homogeneous population) is partic-
ularly difficult, and will be the main concern of the present paper.

2.2. Modeling causal induction

Griffiths and Tenenbaum (2005) presented a Bayesian analysis of causal induction, in the spirit of
Marr (1982) and Anderson (1991). This analysis used causal graphical models to formulate the prob-
lem of causal induction and outlined a rational solution to this problem based on Bayesian inference.
Causal graphical models are probabilistic models in which graphs are used to denote the causal rela-
tionships between variables (Pearl, 2009; Spirtes, Glymour, & Scheines, 2001). In these graphs, nodes
represent variables and edges represent the causal connections between those variables. An elemental
causal system is formalized using three variables: the background cause B, the candidate cause C, and
the effect or outcome E (Fig. 1). In the scientist example discussed earlier, we have an observed effect E
(four-leaf clovers), which might be caused by the candidate cause C (the chemical), or the background
cause B (representing any other causes that are not of interest). We assume that both B and C can
cause E, and this relationship is expressed by edges going from both B and C to E. We further assume
B is always present and is generative, increasing the probability of the outcome, while C can be present
or absent, and generative or preventive. In the generative case, either B or C can cause E; in the
ifferent class of covariation-based computational models of causal reasoning focuses on deriving algebraically from a
ency table people’s evaluation of causal relationships. These models include DP (Ward & Jenkins, 1965), causal power
, 1997), EI rule (Perales & Shanks, 2007), etc. A comprehensive treatment of these models appears in Perales and Shanks

this paper we use the convention of using pðÞ to represent continuous distributions, and PðÞ to represent discrete
tions and proportions.
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Fig. 1. Causal graphical model. The elemental model involves three variables: B the background cause, C the candidate cause,
and E the effect of interest. While B is always present, C and E might be present or absent. B and C are assumed to be
independent. B is always generative; C could be generative or preventive. Independently, B and C have probabilities w0 and w1,
respectively, of influencing E. Their joint functional form is formalized using noisy-OR in the generative case and noisy-AND-
NOT in the preventive case.
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preventive case, only B can cause E, while C may suppress E. Finally, E cannot occur unless B or C
caused it. Each cause is assumed to have the power to cause (or prevent) the effect independently,
doing so with a probability that reflects its strength. We denote the strengths of B and C as w0 and
w1 respectively.

Although the graph structure specifies the causal relationships among variables, the exact nature
of those relationships is not clear without specifying their functional forms. Functional forms are the
formal specifications associating the states of causes to the probability of different outcomes, and
are a key component in the likelihood function. To define the functional form of a causal relation-
ship, we need to make the distinction between generative and preventive causes—generative causes
have the power to produce the effect, whereas preventive causes have the power to prevent the
effect from occurring. While many early theories of causal induction did not make an explicit dis-
tinction between these kinds of causal relationships, more recent research suggested that people
reason about generative and preventive causal relationships differently (Dennis & Ahn, 2001;
Williams & Docking, 1995). As a consequence, recent models of causal induction have distinct vari-
ants for characterizing judgments about generative and preventive causes (Cheng, 1997; Griffiths &
Tenenbaum, 2005).

In previous models of causal induction, noisy-OR (for generative causes) and noisy-AND-NOT (for
preventive causes) parameterizations have been used to characterize the functional form of causal
relationships (Cheng, 1997; Griffiths & Tenenbaum, 2005). Noisy-OR gives the probability of observing
the effect E as
pðeþjc; w0;w1Þ ¼ 1� ð1�w0Þð1�w1Þc ð1Þ
where c is a binary value representing the presence or absence of C with c ¼ 1 for cþ (presence of the
candidate cause) and c ¼ 0 for c� (absence of the candidate cause), whereas noisy-AND-NOT gives
pðeþjc; w0;w1Þ ¼ w0ð1�w1Þc ð2Þ
Again, w0 and w1 represent the strength of B and C respectively. These formulations reflect the above
assumptions we made concerning elemental causal induction.

Recent work by Lu et al. (2008) demonstrated how this framework could be used to make accurate
predictions about people’s estimates of the strength of causal relationships. Here the hypotheses space
is represented by the prior probability over w0 and w1. For any particular value of w0 and w1, the like-
lihood function for the observed contingency data d is
pðdjw0;w1Þ ¼
Y
e;c

pðejc; w0;w1ÞNðe;cÞ ð3Þ
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where pðejc; w0;w1Þ is given by the noisy-OR or noisy-AND-NOT as specified above. Nðe; cÞ represents
the frequencies of events associated with different combinations of presence and absence of the effect
and cause. Each of e and c can be either + or �, representing presence or absence, respectively.3

We can thus compute a posterior distribution over w0 and w1 given d by applying Bayes’ rule, with
3 Fol
and cau
absence
represe
from th
calculat
present
can be

4 For
models
pðw0;w1jdÞ / pðdjw0;w1Þpðw0;w1Þ ð4Þ
where pðw0;w1Þ represents the prior probability of a (w0;w1) pair. While the posterior probability rep-
resents a learner’s updated beliefs over the entire hypothesis space, we can find point estimates of the
posterior of w0 and w1 by computing the mean of the posterior distribution. For example, posterior
mean of w1 computed based on
�wi ¼
Z 1

0
wipðw0;w1jdÞdwi for i 2 0;1 ð5Þ
has been found to be able to approximate closely people’s judgments about the strength of causes (Lu
et al., 2008).

2.3. Priors on causal strength

Intuitively, a prior distribution on causal strengths encapsulates the learner’s expectations about
the strengths of causes, which corresponds to the probability with which they bring about (or prevent)
the effect. In an elemental causal induction model, there are two relevant causes—the background
cause B and the candidate cause C—and therefore their joint prior probability is the key to understand-
ing human causal induction. Griffiths and Tenenbaum (2005) assumed uniform priors—the simplest
non-informative prior—on both variables in their structure-learning model. Under this parameteriza-
tion, equal value is assigned to all possible values of w0 and w1, reflecting indifference about their val-
ues (Jaynes & Bretthorst, 2003). In spite of its simplicity and lack of free parameters, the uniform
model provided a good fit to human judgments about causal structure.4

Lu et al. (2008) applied this approach to model how people reason about strengths of causes and
argued that human causal induction is better explained using a model that incorporates generic pri-
ors—a theoretically driven set of prior distributions that are derived from assumptions about the
abstract properties of a system. They argued that people favor necessary and sufficient causes, and
therefore people consider causal models that have fewer causes (Chater & Vitányi, 2003) and have
no complex interactions (Novick & Cheng, 2004) to be more likely. As elemental causal induction
involves only one background cause and one candidate cause, this suggests that people prefer a causal
system in which only one of the two causes is necessary and sufficient to generate the effect. Based on
these arguments, Lu et al. (2008) specified the sparse and strong prior (SS prior) as
pðw0;w1Þ / e�aðw0þ1�w1Þ þ e�að1�w0þw1Þ ð6Þ
in the generative case and
pðw0;w1Þ / e�að1�w0þ1�w1Þ þ e�að1�w0þw1Þ ð7Þ
in the preventive case. a in the formulae is a free parameter that represents how strongly one believes
that causes are sparse and strong. If a is set to 0 then the SS priors are identical to a uniform distribu-
lowing Griffiths and Tenenbaum (2005), we use a notation that semantically encodes the presence or absence of the effect
se—e and c represent the effect (or outcome) and candidate cause, and the superscripts + and � represent their presence and
, respectively. For example, the number of instances in which the effect is present but the cause is absent would be

nted by Nðeþ ; c�Þ. In some cases, it is convenient to use the relative frequencies of the outcomes. These can be obtained
e Nðe; cÞ values. For example, the relative frequency of the effect given the presence of the cause is PðeþjcþÞ and can be
ed by Nðeþ ;cþÞ

NðcþÞ , where NðcþÞ denotes the number of cases in which the cause is present, regardless of whether the effect is
or not. Similarly, Nðc�Þ denotes the number of cases in which the cause is absent and the relative frequency Pðeþjc�Þ and

calculated by Nðeþ ;c�Þ
Nðc�Þ .

the ease of exposition, in the remainder of this paper, we will refer to Bayesian models that use different priors as different
, such as ‘‘the uniform model’’ instead of ‘‘the Bayesian model using a uniform prior’’.
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tion. Lu et al. (2008) fixed a at 5 in their analysis, based on an informal grid search using a prior data
set.

The SS priors are plotted as two-dimensional histograms in Fig. 2. Analogous to one-dimensional
histograms, these figures indicates the probability density at different values of the underlying vari-
ables (w0 and w1). From these figures we can observe the main features of the SS priors. In the gen-
erative case, the probability is high when one of the causes, either B or C, is very strong and the
other is very weak; in the preventive case, the probability is high when B is very strong and C is either
very strong or very weak.

The SS model provided a good fit to human causal strength judgments, and produced predictions
consistent with qualitative effects that a model with a uniform prior does not produce (Lu et al., 2008).
This finding suggests that exploring the space of possible prior distributions might be a valuable way
of gaining deeper insight into human causal induction, as well as better predictions of human behav-
ior. However, prior distributions on causal strength could take any form that corresponds to a prob-
ability distribution on two variables ranging from 0 to 1, and need not correspond to a distribution
from a simple parametric family. This means that the SS priors represent only one possibility out of
uncountably many. Evaluating all possible priors is thus infeasible. Ideally, the prior distribution
should be estimated without having to make a priori assumptions about its form. In the next section
we explore how the technique of iterated learning might be used to resolve this issue.
3. Iterated learning as a method for estimating priors

Iterated learning was originally proposed as a model of cultural transmission of languages (Kirby,
2001). It refers to a process in which a sequence of agents each learns from data generated by the pre-
vious agent. In the simplest such model we imagine a chain of agents, where each agent observes data
generated by the previous agent (such as a set of utterances), forms a hypothesis about the process
that generated those data (such as a language), and then generates new data to pass to the next agent.

Formally, the n-th agent in the chain observes data dðnÞ and forms a hypothesis hðnÞ about the pro-
cess that generated those data, then goes on to generate data dðnþ1Þ, which is given to the next agent,
and so on. This iterative procedure defines a Markov chain—a sequence of random variables in which
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Fig. 2. Sparse and strong (SS) priors (Eqs. (6) and (7)) proposed by Lu et al. (2008). Each panel shows the prior distribution for
either the generative or the preventive cause. The two horizontal axes correspond to the strength of the background cause (w0)
and the candidate cause (w1). The vertical axis indicates the relative probability density at each ðw0;w1Þ pair. Note that the
density was normalized before plotting (i.e., the volume under the surface is 1). Therefore the density values do not match those
given directly by the formulae.
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each variable’s transition depends only on the current state—on hypothesis-data pairs. That is, each
step of the Markov chain here consists of the hypothesis about the causal system and the data pro-
duced, and the hypothesis-data pair at each step depends only on its immediate previous iteration.

Furthermore, if the agents select a hypothesis by sampling from the posterior distribution
pðhjdÞ / pðdjhÞpðhÞ and then generate data by sampling from the corresponding likelihood function
pðdjhÞ, then this Markov chain forms a Gibbs sampler for the joint distribution pðd;hÞ ¼ pðdjhÞpðhÞ
(Griffiths & Kalish, 2007). A Gibbs sampler is a specific kind of Markov chain, commonly used by com-
puter scientists and statisticians to generate samples from a multivariate probability distribution that
normally might be difficult to sample from Gilks, Richardson, and Spiegelhalter (1996).

More formally, a Gibbs sampler provides a way to sample from the joint probability distribution for
a set of variables X ¼ ðx1; . . . ; xnÞ. This procedure involves an initial stage and a number of iterative
steps. We first start with some initial values for each of the variables, and then at each step, sample
the value of one of the variables in the target distribution by drawing a sample from the distribution
of this variable, conditioned on the current values of all other variables. That is, at each iteration, the
algorithm cycles through the variables and draws a new value for each variable xi from the conditional
distribution pðxijX�iÞ. This process constructs a Markov chain that, under mild assumptions, will ulti-
mately converge to its stationary distribution pðXÞ, at which point samples can be taken as an approx-
imation of the target distribution.

In an iterated learning experiment, the procedure of alternately sampling hypotheses and data
mimics the structure of the Gibbs sampler, allowing the same convergence results to be applied
(Griffiths & Kalish, 2007). In this case, samples of h after convergence can be taken as samples gener-
ated from the prior distribution pðhÞ. In other words, the probability that a participant selects a par-
ticular hypothesis will converge to her prior. Carrying out this process of iterated learning in
experiments thus enables us to empirically estimate people’s priors. This result holds true regardless
of what data are provided to the subjects in the first iteration.

The convergence of iterated learning to the prior suggests that it can be used as a method for
exploring people’s expectations about different hypotheses. Previous experiments using iterated
learning, with data being passed between people, support this idea: functions (Kalish, Griffiths, &
Lewandowsky, 2007), concepts (Griffiths et al., 2008), and color terms (Xu, Dowman, & Griffiths,
2013) transmitted through iterated learning quickly converge to forms that are consistent with priors
established in previous research. Moreover, there is no need for data to be transmitted between people
for this to occur—a feedback process that has the appropriate statistical structure can be established
for single individuals. In these within-subjects iterated learning experiments, participants form
hypotheses about data that are generated based on their own responses on previous trials. This exper-
imental design has previously been used to explore people’s inductive biases in concept learning and
memory, producing equivalent results to a between-subjects design (Griffiths et al., 2008; Xu &
Griffiths, 2010).

In this paper we use the iterated learning approach in experiments to directly estimate the prior
distributions of the strength parameters (w0 and w1) in people’s subjective beliefs concerning causal
systems. This method could inform recent discussion about appropriate prior distributions to use in
Bayesian models of causal learning, and result in more accurate predictions of human judgments. In
particular, iterated learning allows us to identify people’s expectations about the strength of causal
relationships without needing to make any assumptions about the form of the corresponding prior
distributions. We will first demonstrate how this approach can be used to identify participants’ prior
beliefs in a simple biological scenario.
4. Experiment 1: Using iterated learning to estimate human priors on causal strength

The objective of Experiment 1 is to estimate people’s priors in elemental causal induction using the
technique of iterated learning. The priors obtained, representing the experiment participants’ expec-
tations about the strengths of the causes, can be used to evaluate previous claims about human prior
beliefs.
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4.1. Methods

4.1.1. Participants
A total of 432 participants were recruited from the University of California, Berkeley subject pool

and Amazon Mechanical Turk (MTurk). Collecting data from MTurk in addition to a more traditional
university subject pool allowed us to obtain data that are more representative of the entire population
than just the university sample, and to run a larger scale experiment. We recruited only MTurk work-
ers from within the United States. Recent studies have shown MTurk to be a reliable source of exper-
imental data (Buhrmester, Kwang, & Gosling, 2011; Sprouse, 2011) and many classical experiments
were successfully replicated using this service (Crump, McDonnell, & Gureckis, 2013). Participants
from the university subject pool received course credit, while MTurk participants received a payment
of US$1.5 Only data from participants who completed at least 95% of the trials were included in the anal-
ysis. In each of the generative or preventive condition, there were 36 participants from the university
subject pool and 180 from MTurk.

In the university subject pool, 55% of participants were female and the mean age was 20.1. In the
MTurk subject pool, 49% were female. With MTurk participants, we requested age information in
brackets. The biggest age group was 23–35, with 50% of our participants, and 78% had at least some
college education. The demographics of the MTurk subject pool were thus similar to our university
subject pool, other than their slightly higher age, and are also commensurate with other published
reports on the demographics of MTurk workers (Ross, Irani, Silberman, Zaldivar, & Tomlinson, 2010).

4.1.2. Stimuli and procedure
The experiment was run in a web browser. We used a biological cover story that most closely

resembled one that was used in Lu et al. (2008), but cover stories of similar themes have been used
in many previous studies of causal induction (e.g., Buehner, Cheng, & Clifford, 2003; Griffiths &
Tenenbaum, 2005; Novick & Cheng, 2004). We chose to use a similar cover story for two reasons. First,
as we are using the novel experimental technique of iterated learning, having a well-tested cover story
and associated stimuli could spare us from having to evaluate multiple new experimental elements at
the same time. Second, reusing the same materials allows better comparison between different mod-
els, as most of these models were originally evaluated based on experiments using similar stimuli.

The experiment was presented in the context of a bio-technology company testing the influence of
various proteins on gene expression. In the generative condition, participants read:

In this experiment, please imagine that you are a researcher working for a bio-technology company
and you are studying the relationship between genes and proteins concerning gene expression.
Gene expression is a process that controls the structure and functions of cells or other genes. This
process may or may not be modulated by the presence of proteins. You are given a number of gene/
protein pairs and your job is to make predictions concerning the effect of these proteins on gene
expression.
There are a number of trials in this experiment and each trial involves a different gene and a dif-
ferent protein. In each trial, you will be given information about some past results involving this
gene/protein pair and you will be asked to make some predictions based on these information.
The past results consist of two samples: 1) a sample of DNA fragments that had not been exposed
to the protein, and 2) a sample of DNA fragments that had been exposed to the protein. The number
of DNA fragments that resulted in gene expression in each of these samples will be shown to you.
Because there are many causes of gene expression, other factors besides the presence or absence of
the protein might play a role in whether the gene is expressed or not.

Participants then received instructions familiarizing them with the controls that they would use in
the experiment. Only one practice trial was used in order to minimize effect of practice on partici-
pants’ expectations, as each practice trial involves a certain set of contingency that could impart influ-
ence on participants’ beliefs about the novel causal system. Each trial was presented on a separate
5 The amounts of payment for experiments in this paper were comparable to similar experiments on MTurk (Mason & Suri,
2012).



Fig. 3. Screenshot of the generative condition of the experiment. The participant is assessing the strength of the cause C;w1. In
this particular trial, Nðeþ ;c�Þ

Nðc�Þ ¼ 3
16 and Nðeþ ;cþÞ

NðcþÞ ¼ 7
16.
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screen. Fig. 3 shows a screenshot of the experiment. In each trial participants saw data in the form of
two samples, one that was not exposed to the protein (Nðe; c�Þ) and one that was (Nðe; cþÞ). The data
were presented graphically, displaying the total number of DNA fragments in each sample as well as
the number that expressed the gene, thus providing complete contingency data.

After observing these contingencies, participants were asked to make two judgments involving
hypothetical samples. The instructions for the two judgments were:

Suppose that there is a sample of 100 DNA fragments and these fragments were not exposed to the
protein, in how many of them would the gene be turned on?

Suppose that there is a sample of 100 DNA fragments and that the gene is currently off in all those
DNA fragments. If these 100 fragments were exposed to the protein, in how many of them would
the gene be turned on?

These questions were similar to those used in previous research on causal strength judgments for
eliciting judgments of w0 and w1, respectively (e.g., Lu et al., 2008). Participants responded using a sli-
der, the initial value of which was drawn from a uniform distribution between 0 and 100. Live feed-
back showing the proportion of expressed genes was shown as the slider was moved. Past studies have
shown that graphically presented information can better convey probabilistic data (Edwards, Elwyn, &
Mulley, 2002). Participants could adjust the slider until they were satisfied with their response, before
clicking the submit button to record their response and continue to the next trial. The instructions for
the preventive condition were similar, except that for the second judgment, the instructions were:

Suppose that there is a sample of 100 DNA fragments and that the gene is currently on in all those
DNA fragments. If these 100 fragments were exposed to the protein, in how many of them would
the gene be turned off?

A within-subjects iterated learning design was used. There were four chains each with 12 itera-
tions, for a total of 48 trials. The data for the first iteration of each chain were generated based on
the initial values of ðw0;w1Þ ¼ ð0:3;0:3Þ; ð0:3;0:7Þ; ð0:7;0:3Þ, and ð0:7;0:7Þ. These values were chosen
to be distinct so that the responses from different chains could be used to diagnose convergence.
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In each trial a set of contingency data consisting of 16 cases in which the cause was present and 16 in
which the cause was absent was shown. The number of times that the effect occurred was generated via
a binomial draw with parameter pðeþjc; w0;w1Þ, using the noisy-OR functional form (Eq. (1)) in the gen-
erative case and noisy-AND-NOT (Eq. (2)) in the preventive case. In all trials other than the first one in
each chain, data were generated based on the w0 and w1 values the participant produced in the previ-
ous trial in the same chain. These values were taken directly from the estimates that the participants
produced in response to the two questions about hypothetical samples. For example, if on iteration
n of a particular chain the participant’s responses were f 0 and f 1 (out of 100) for the two questions, then
the data presented at iteration nþ 1 of same chain would be drawn using w0 ¼ f 0=100 and
w1 ¼ f 1=100. Additionally, the order of the trials was randomized after stratification by iteration. For
example, the first four trials for each participant correspond to the first iteration of each of the four
chains, but the order among these four trials was randomized for each subject. Similarly, the fifth to
the eighth trials correspond to the second iteration for each of the four chains, and so on.

4.2. Results

We first compared the results between the university and MTurk subject pools. The numbers of
contingencies in the data were not fixed because of the stochasticity in the sampling of stimuli. There
were 181 and 165 contingencies in the generative and preventive conditions respectively, for which
there were data in both pools. We ran a Mann–Whitney U test on these contingencies and found that
there were significant differences (with p < :05) between the two subject pools in 10 and 5 contingen-
cies respectively. None of these differences were significant if Bonferroni correction is applied. There-
fore results from these two sources were combined.

4.2.1. Analysis of convergence
Before we compute the prior distributions using the empirical data, we tested whether the data

indeed have reached convergence. Because of the divergent initial values of the four chains, we
expected the human judgments for both w0 and w1 to be significantly different across chains of differ-
ent initial values in the first few iterations. As the iterated learning experiment progresses, the
hypotheses-data pair should eventually converge to the prior distribution and will no longer be signif-
icantly different across chains. We will compare the human judgments between initial value condi-
tions to diagnose whether the chains have converged. This convergence diagnosis method is similar
to those used in Markov chain Monte Carlo methods in statistics (Gilks et al., 1996).

In the first iteration the judgments for both w0 and w1 were significantly different, indicating that, as
we had expected, the chains have not converged. The result was quite different for the final (12th) iter-
ation. In the generative condition, there were no significant differences between chains with different
initial w1 values (Fð1;860Þ ¼ 0:47;MSE ¼ 519:6; p ¼ 0:49). However, the w0 judgments from chains of
higher initial w0 values remained higher than those from chains of lower initial w0 values
(Fð1;860Þ ¼ 58:31;MSE ¼ 79;945; p < 0:001). The results were similar in the preventive condition.
The w1 judgments from chains with different initial values were not significantly different (Fð1;860Þ
¼ 0:06;MSE ¼ 65:0; p ¼ 0:81), while the w0 judgments were (Fð1;859Þ ¼ 61:00;MSE
¼ 83;128; p < 0:001). The means and standard deviations of the chains at the final iteration are shown
in Table 1.

The significant effect of initial values for w0 but not w1 in both conditions indicates that the w1

chains had converged while the w0 chains still retained some influence from the initial values. How-
ever, we believe that samples from the final (12th) iteration give a fairly good approximation of the
prior distributions for two reasons. First, while the w0 chains did not converge, they did move in
the expected directions towards converging. It is likely that they would converge given an experiment
with more iterations.6 Second, as the focus of this experiment is on human judgments of the strength of
6 While it is possible to collect human data for more iterations until w0 converges, a mathematical analysis suggests that this
might not be practical. We conducted a simulation using the uniform prior to estimate how long it would take to converge, using
the same initial w0 and w1 values as the experiment. Using the same criteria for convergence as in the experiment, we found that
on average, it took about 30 iterations for w0 to converge. With four chains (to account for low and high initial values of w0 and
w1), it would take a total of 120 trials, which might be too many that boredom and fatigue could become a factor.
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the candidate cause, which is most strongly influenced by the prior distribution of w1, the non-complete
convergence of w0 presents a more minor issue than if w1 did not converge. In fact, the w1 chains in both
causal directions converged by the third iteration, suggesting that humans have fairly strong priors about
the strength of the candidate cause.
4.2.2. Estimation of the empirical priors and discussion
To construct the empirical priors, we treated judgments of w0 and w1 in the final iteration as sam-

ples from participants’ prior distributions. Because there were four chains per participant, each partic-
ipant contributed four data points, each in the form of a (w0;w1) vector. We aggregated the (w0;w1)
vectors from all participants and performed a two-dimensional density estimation. The top row of
Fig. 4 shows a smoothed estimate of the density of the empirical priors over w0 and w1. The smoothing
was performed via kernel density estimation with a bivariate normal kernel (Venables & Ripley, 2002).

The resulting empirical prior distributions, shown in Fig. 4, have complex forms that do not corre-
spond to parametric probability distributions. Moreover, their forms are quite different from previous
proposals about people’s prior distributions, such as the SS priors. Some major differences between
the empirical and the SS priors can be observed based on visual inspection. First, the SS theory sug-
gests that people expect either the candidate cause or the background cause to be strong. In contrary
to this assumption, in the empirical priors, the density is much higher at regions where w1 is high, in
both causal directions. In other words, participants have a strong prior for a strong candidate cause,
regardless of whether the background cause is strong or not.

Second, the SS priors are relatively straightforward probability distributions. Here probability is the
highest at the two peaks (which have the same density), and from there the probability goes down
strictly. Moreover, in both the generative and preventive cases, the two non-peak corners have the
lowest prior probability of the entire distribution. For example, in the generative case, the peaks are
at ðw0 ¼ 0;w1 ¼ 1Þ and ð1;0Þ while the other two corners of ð0;0Þ and ð1;1Þ have the lowest prior
probability of the entire space, and similarly in the preventive case. In contrast, the empirical priors
have multiple local maxima and non-monotonicities. Additionally, all four corners in the empirical
priors have higher probabilities than their neighborhood areas, in both the generative and preventive
cases. The four corners in the probability space are associated with deterministic causal systems—if w0

and w1 are either 0 or 1, then the outcome is controlled deterministically based on the values of w0;w1,
and c. This pattern found in the empirical priors is consistent with findings from previous research on
human causal induction that people have a tendency to assume causal relationships to be determin-
istic (Frosch & Johnson-Laird, 2011; Griffiths & Tenenbaum, 2009; Schulz & Sommerville, 2006). Over-
all, the results based on the empirical priors seem to be in variance with the assumption that people
have a sparse and strong prior.

Having empirically identified the priors on causal strength, we can now use them to predict how
people reason about causes. If the empirical priors are indeed better characterizations of a popula-
tion’s expectations about causal systems, then a model using these priors should perform better than
other models in capturing their judgments about causal strength. However, we will first turn to a dis-
cussion about how models should be evaluated. Most previous comparisons of computational models
have focused on specific sets of contingencies that are designed to contrast the predictions made by
different models. For example, Lober and Shanks (2000) compared the performance of the DP model
and the causal power model by selecting sets of contingencies in which one model would predict the
same value for all trials in a set while the other model would predict different values. The pattern of
Table 1
Mean and standard deviation (in parentheses) of the human judgments in the final iteration, separated by initial parameterization.

Chain Causal direction Small initial condition Large initial condition

w0 Gen. 39.95 (37.05) 59.19 (36.94)
w0 Prev. 37.08 (36.71) 56.71 (37.06)

w1 Gen. 80.81 (32.73) 79.26 (33.80)
w1 Prev. 79.56 (33.48) 80.11 (33.03)
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Fig. 4. Smoothed empirical estimates of human priors on causal strength produced by iterated learning in the top row. The SS
priors, shown previously in Fig. 2, are reproduced here in the bottom row for easier comparison.
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human judgments, especially whether they are similar or different across these trials, can then be used
to lend support to either of the models under investigation. A similar approach has been used in many
other studies (e.g., Allan & Jenkins, 1983; Shanks, Lopez, Darby, & Dickinson, 1996).

While using contingencies that highlight the differences between predictions by different models is
a good way to understand the kinds of effects these models can accommodate, this approach creates
the side effect of focusing on certain contingencies while overlooking others. This problem not only
affects individual experiments and the papers based on these experiments, but also presents a chal-
lenge for meta-analyses of causal learning, as they use these papers as raw data. The coverage of con-
tingencies in the meta-analysis conducted by Perales and Shanks (2007) provides a nice illustration of
this unbalanced sampling. Their analysis included data from nine published papers, covering 19
experiments and 114 contingencies. However, as different papers had different research objectives
and therefore used different contingencies to answer the respective research questions, simply aggre-
gating these studies does not necessarily result in a balanced coverage of all possible contingencies.
First, there were more contingencies for generative causes than preventive ones. If we consider both
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experimental instructions and ratio of contingency as cues to the causal direction, then there were
twice as many generative contingencies (60) as preventive ones (30) among the 114 data points (with
20 underspecified and 4 undeterminable). More importantly, contingencies with certain characteris-
tics were more frequently represented. In 45% of the contingencies either PðeþjcþÞ or Pðeþjc�Þ had the
value of 0 or 1 (that is, the effect was always or never observed when the cause was either present or
absent), in 33% of them either PðeþjcþÞ or Pðeþjc�Þwas equal to 0.5 (the effect was observed in half the
cases either when the cause was present or absent), and in 28% of them PðeþjcþÞ ¼ Pðeþjc�Þ (whether
the cause was present or not did not change the percentage of effect). While the 114 contingencies
overall did cover the entire contingency space reasonably well, the coverage was highly skewed
towards contingencies with these specific characteristics. Perales and Shanks (2007) themselves com-
mented on this issue, noting that ‘‘researchers tend to design and run new experiments to distinguish
between theories (often only between two theories), focusing on the parts of the experimental space
where their favored theory is a priori likely to be most successful’’ (Perales & Shanks, 2007, p. 577).

On the basis of these considerations, it seems that a broad set of stimuli that is agnostic to the
researchers’ hypotheses is needed in order to more comprehensively evaluate and compare the good-
ness of the predictions by various models. Therefore in Experiment 2 we carried out such an experi-
ment, collecting the largest and most systematic dataset on human causal induction to date. We then
used the results to compare the performance of the Bayesian models using different priors.
5. Experiment 2: A benchmark data set for causal strength judgments

Experiment 2 was designed to collect a benchmark data set for evaluating different models. To
avoid the sampling bias discussed above, we conducted a large-scale study in which we collected
human judgments of causal strength over the entire space of plausible contingencies, adopting an
expanded version of a design previously used by Buehner et al. (2003). We aimed to include a broad
representation of different contingencies by covering the entire range of values of PðeþjcþÞ and
Pðeþjc�Þ uniformly.

Another objective of Experiment 2 was to verify whether the empirical priors can be applied to con-
tingencies of different sample sizes from those used in deriving the priors. For the empirical priors to
be useful, they need to capture abstract expectations about causal relationships so that they can be
applied outside of the specific setting in which they were derived. In Experiment 1, both NðcþÞ and
Nðc�Þ were fixed at 16. Thus in Experiment 2, we used NðcþÞ and Nðc�Þ of values 8, 16, and 32, and
systematically crossed them to produce more varied contingencies.

5.1. Methods

5.1.1. Participants
Similar to Experiment 1, participants were recruited from both the University of California, Berke-

ley subject pool, and from Amazon Mechanical Turk. Participants from the subject pool received
course credit and MTurk participants received a payment of US$1. Only data from participants who
completed at least 95% of the trials were included in the analysis. Subjects were randomly assigned
to either the generative or the preventive condition. In each of the generative or preventive condition,
there were 36 participants from the university subject pool and 180 from MTurk, for a total of 216 in
each condition (and a grand total of 432). The results from the two samples were similar to each other,
and were thus combined as in Experiment 1.

5.1.2. Stimuli
The stimuli used in Experiment 2 were similar to those in Experiment 1. Participants were given

two samples—indicating the values of Nðeþ; cþÞ and NðcþÞ in one, and Nðeþ; c�Þ and Nðc�Þ in the
other—and were asked to make predictions about another sample. In Experiment 1, sample sizes,
NðcþÞ and Nðc�Þ, were fixed to 16, whereas in Experiment 2, sample sizes of 8, 16, and 32 were crossed
with each other, forming 3� 3 ¼ 9 sample size conditions. We will denote these sample size conditions
by hNðcþÞ;Nðc�Þi. For example h8;16i represents a set of stimuli in which NðcþÞ ¼ 8 and Nðc�Þ ¼ 16.
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In each sample size condition, contingencies were parameterized so that they are uniformly dis-
tributed in the contingency space. More specifically, for both the cþ and c� samples, we systematically
varied the number of cases in which the effect is present (Nðeþ; cþÞ and Nðeþ; c�Þ). There were nine lev-
els of Nðeþ; cþÞ and Nðeþ; c�Þ in each sample size condition, with NðeþÞ going from 0% to 100% of the
sample size in increments of 12.5%. For a sample size of 8, the nine levels included every integer from
0 to 8. For sample sizes of 16 and 32, the stimuli were in increments of 2 and 4 respectively. That is, for
sample size of 16, values of 0;2;4; . . . ;14;16 were used; for sample size of 32, values of
0;4;8; . . . ;28;32 were used. Note that the number of cases in which the effect is absent is just the
complement of the above, as Nðe�; cþÞ ¼ NðcþÞ � Nðeþ; cþÞ and Nðe�; c�Þ ¼ Nðc�Þ � Nðeþ; c�Þ.

Some contingencies are a priori unlikely to be observed. For example, in the generative case, a con-

tingency of fNðeþ ;cþÞ
NðcþÞ ;

Nðeþ ;c�Þ
Nðc�Þ g ¼ f 3

16 ;
10
16g is very unlikely to lead to an inference of C having any causal

influence because PðeþjcþÞ is much smaller than Pðeþjc�Þ. To address this, the generative condition

included only contingencies in which Nðeþ ;cþÞ
NðcþÞ P Nðeþ ;c�Þ

Nðc�Þ , i.e., PðeþjcþÞP Pðeþjc�Þ. Similarly, the preven-

tive condition included only contingencies in which Nðeþ ;c�Þ
Nðc�Þ P Nðeþ ;cþÞ

NðcþÞ , i.e., Pðeþjc�ÞP PðeþjcþÞ.
To give a concrete example, consider the sample size condition of h8;16i in the generative case. NðcþÞ

varied from 0;1;2; . . . ;8, while Nðc�Þ varied from 0;2;4; . . . ;16. As only contingencies in which
Nðeþ ;cþÞ

NðcþÞ P Nðeþ ;c�Þ
Nðc�Þ were included, the contingencies were f0
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0

16g; f1
8 ;

0
16g; f1

8 ;
2

16g; f2
8 ;

0
16g; f2

8 ;
2
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4
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. Because there were nine levels in both Nðeþ; cþÞ and Nðeþ; c�Þ, there were

1þ 2þ . . .þ 8þ 9 ¼ 45 possible contingencies in each sample size condition. Multiplying that with
the nine sample size conditions in each causal direction, the total number of contingencies was
45� 9 ¼ 405, in each of the generative and preventive direction.

Each participant was assigned to either the generative or preventive condition randomly. To pre-
vent fatigue or boredom on the part of the participants from affecting experimental results, and to
ensure that equal numbers of judgments were elicited from all possible contingencies, sets of 405 tri-
als was divided among a set of nine participants in which each participant was assigned 45 trials.
Within each set of nine participants, the contingencies were stratified so that each participant were
given the same number of stimuli from each sample size condition, i.e., five from each of
h8;8i; h8;16i; h8;32i; h16;8i, etc. Except for the stratification, stimulus assignment and order were ran-
domized. As mentioned, there were 216 participants in each causal direction, resulting in 216=9 ¼ 24
sets of participants, and therefore 24 data points at each contingency.
5.1.3. Procedure
The procedure was the same as that of Experiment 1 with the following exceptions. To focus on the

judgment of the strength of the candidate cause, we removed the question concerning the background
cause. This resulted in only one prediction task in each trial. Additionally, the default location of the
slider was set to 0 in the generative case and 100 in the preventive case (as opposed to having random
initial positions as in Experiment 1).
5.2. Results

This experiment was designed to collect 24 human judgments on each of the 405 different contin-
gencies from a total of 216 participants (36 from subject pool and 180 from MTurk), in each causal
direction. One human judgment was missing in the generative condition due to a computer error.
As a result, 9719 and 9720 human judgments were recorded in the generative and the preventive case
respectively.

We computed the predictions of the three Bayesian models for each set of contingencies, and then
compared them to people’s judgments. Model predictions were computed by approximating the pos-
terior distribution over a grid of uniformly spaced samples of w0 and w1. We first computed the prior
probability at each grid point, and then multiplied them using weights proportional to the likelihood.
Finally, we summed out w0 and took the posterior mean of w1 (Eq. (5)) as each model’s prediction of
human judgments (Lu et al., 2008). Except for the priors, the rest of the computations were the same



Fig. 5. Human judgments in the h8;8i sample size condition compared against model predictions using the SS and empirical
priors. The generative case is plotted in the upper left and the preventive case in the lower right. Human judgments are plotted
as a histogram in gray, broken into 10 bins; predictions based on the SS and empirical priors are plotted in dotted and solid lines
respectively. Contingencies that did not appear in the experiment (PðeþjcþÞ < Pðeþjc�Þ if generative and PðeþjcþÞ > Pðeþjc�Þ if
preventive) are not shown.

S. Yeung, T.L. Griffiths / Cognitive Psychology 76 (2015) 1–29 15
across the three Bayesian models. Details of how these quantities were computed are provided in
Appendix A.

We use one of the sample size conditions to illustrate a typical pattern of the results. Fig. 5 con-
trasted subjects’ judgments of the strength of C against predictions by the SS and empirical models
in both the generative and the preventive case at the h8;8i sample size condition. Two properties of
the Bayesian models are made apparent based on the visual inspection of this figure. First, both the
SS model and the empirical model make predictions that match well with the human responses. Sec-
ond, the predictions made by the two Bayesian models are not radically different, as can be seen by
comparing the density curves for the SS and empirical models. This is not surprising as these Bayesian
models differ only in their priors. In particular, at contingencies in which Nðeþ; cþÞ / NðcþÞ is close to 0/
8 or 8/8, human judgments are strongly guided by their observations and therefore the two models’
predictions were quite similar. However, the models do differ in the predictions they make for cases
with more mixed outcomes, in which the data did not provide strong evidence about the causal rela-
tionship. This can be seen in the middle rows (when Nðeþ; cþÞ / NðcþÞ is close to 4/8) where the model
predictions are more different from each other.7

We used four metrics to evaluate the fit between model predictions and human judgments. The
metrics were Pearson’s correlation coefficient (r), Spearman’s rank-order correlation coefficient (q),
root-mean-square deviations (RMSD), and a normalized version of RMSD (normalized RMSD). The cor-
relations r and q compare the mean human judgments with model predictions and indicate how well
they correlate with each other. These two metrics focus on the relative values of human judgments
and model predictions, and do not account for the absolute difference in values. RMSD takes into
account the absolute differences between judgments and predictions and is calculated as
7 We
found t
performed a post hoc analysis comparing the performance of the empirical prior for different sample size conditions, and
hat there is no significant difference.



Table 2
Comparison of model performance based on Experiment 2.

Causal direction Metric Uniform SS Empirical

Generative r (Pearson) 0.88 0.67 0.90
Generative q (Spearman) 0.90 0.67 0.92
Generative RMSD 15.77 24.91 13.49
Generative Norm. RMSD 12.06 17.79 10.30

Preventive r (Pearson) 0.87 0.87 0.91
Preventive q (Spearman) 0.88 0.89 0.92
Preventive RMSD 17.62 18.34 13.49
Preventive Norm. RMSD 16.62 17.03 12.40

Combined RMSD 16.69 21.63 13.49
Combined Norm. RMSD 14.34 17.41 11.35

Note: Higher values for r and q, and lower values for RMSD and normalized RMSD indicate better performance. The empirical
model had the best performance based on all metrics.

8 In t
therefo
smalles

9 The
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prior.
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where subscript i indexes different contingencies, xi represents the means of the human responses, x̂i

the model predictions, and n the number of such trials in the experiment, which is 24 in all
contingencies.

While the standard RMSD weighs all trials equally, normalized RMSD adjusts for the variance of the
human responses—contingencies with less variability among the responses indicate higher agreement
and less uncertainty among the participants about their responses, and as a result, are weighted more
heavily. The normalized RMSD is calculated as
normalized RMSD ¼
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where s:e:i is the standard error of the responses at contingencies i.8

We analyzed the performance of the three Bayesian models using data from Experiment 2. The
results are shown in Table 2. Among the three Bayesian models, all four metrics mostly agreed with
each other. The correlations were the highest for the empirical model, in both the generative and pre-
ventive conditions. The results were similar for the RMSD-based metrics, with the empirical model
outperforming the other two. This suggests that the empirical model does a better job of capturing
the participants’ expectations about the strength of causal relationships than either the uniform or
SS models, in terms of both the relative and the absolute values of the judgments.9

To verify these results statistically, we performed an analysis using the Mann–Whitney U test to
verify whether predictions made by the empirical model are indeed closer to the human responses
than those made by the uniform and the SS models. We used the absolute distance between mean
human judgments and the predictions by each model at each contingency as a data point (810 for both
causal directions). As expected, the mean distance from the human responses for the empirical model
(M ¼ 10:10) was significantly lower than those of the uniform model (M ¼ 12:92;U
¼ 279;729; p < 0:001) and the SS model (M ¼ 15:89;U ¼ 263;436; p < 0:001). These results con-
firmed that the empirical model in fact made better predictions of the human responses than the
two other models.
hree of the contingencies (out of 810), all (24) participants responded with the same prediction (0 in all three cases), and
re resulted in a zero in one of the denominators in Eq. (9) (s:e:j). In these cases, we replaced the zeroes with the next
t possible standard error, using the standard error that would have been produced from 23 responses of 0 and one 1.
SS model incorporates a free parameter, a, that was fixed at 5 (Lu et al., 2008). We performed a grid search for the best-
ing a, and found that the SS model performed best at a ¼ 0:5, at which value the SS prior is very similar to the uniform
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5.3. Discussion

In Experiment 2, we collected a large data set of human judgments in elemental causal induction,
using stimuli that evenly cover all plausible contingencies. We then compared the performance of the
three Bayesian models. Results showed that the empirical model, based on the priors estimated in
Experiment 1 using the iterated learning technique, predicts human behavior better than other exist-
ing Bayesian models. This suggests that the empirical model represents the closest approximation of
people’s computations in causal induction. Furthermore, as Bayesian models rely on priors that accu-
rately represent the reasoners’ prior beliefs, the result suggests that the empirical priors best captures
participants’ expectations about the strength of causal relationships.

So far, both the estimation of the empirical prior and the evaluation of the resulting model used the
same simple biological cover story. Having shown that the empirically estimated prior gives good pre-
dictions of causal strength judgments, a natural question to ask is how general we should expect this
prior to be—whether it generalizes beyond the biological setting. We turn to this question in Experi-
ment 3.

6. Experiment 3: Expectations about different causal systems

The empirical prior from Experiment 1 was estimated using a biological cover story concerning
proteins and gene expression. As people’s prior beliefs are connected to their prior knowledge about
specific causal systems, it might be possible that the empirical prior estimated in Experiment 1 may
also be specific to this cover story and might not correspond to people’s prior beliefs about other cau-
sal systems. Therefore in Experiment 3, we varied the cover stories used in the priors estimation pro-
cedure in order to examine in what ways are people’s prior beliefs concerning different causal systems
similar or different.

6.1. Methods

6.1.1. Participants
Participants were 360 MTurk workers, with 90 participants in each condition. Participants received

a payment of US$1.

6.1.2. Procedure
The basic experimental design was based on that of Experiment 1, with the major difference being

the cover story. We used four cover stories that represent prior knowledge from four diverse domains:
physical sciences, medical reasoning, social behavior, and paranormal phenomenon. Instructions in the
physical condition were based on the ‘‘blicket detector’’ experiments that have been used to explore
causal learning in children (e.g., Gopnik, Sobel, Schulz, & Glymour, 2001; Schulz, Gopnik, & Glymour,
2007; Sobel, Yoachim, Gopnik, Meltzo, & Blumenthal, 2007). In particular, we used a ‘‘super lead detec-
tor’’ cover story that has been used to make this paradigm more natural for adult participants
(Griffiths, Sobel, Tenenbaum, & Gopnik, 2011). The instructions read:

In this experiment, please imagine that you are working for a pencil company and you are studying
the relationship between a material called ‘‘super lead’’ and machines called ‘‘super lead detectors’’.
Pencil lead is made of carbon. Your company recently discovered that a new production process
was resulting in a new carbon structure in their pencils—what they call ‘‘super lead’’. Since they
are not sure which pencils they previously manufactured contain super lead, they are building a
set of machines in order to detect it. These machines are programmed with different parameters
to detect different types of carbon structures. You will be testing machines that are set up with dif-
ferent parameters.
There are a number of trials in this experiment. Each trial involves a different type of super lead,
and a super lead detector programmed with a different parameter set. You will see some informa-
tion about how often the machine indicates the presence of super lead with a set of pencils that do
not contain super lead, and how often with a set of pencils that do contain a particular type of super
lead. You will be then asked to make some predictions based on these pieces of information.
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In the medical condition, the cover story concerned the strength of allergy medicines in causing dif-
ferent types of hormonal imbalance. In the social condition, different kinds of music were played to
different breeds of dogs, the inference concerned to what degree do these music cause the dogs to
wag their tails. In the paranormal condition, participants read that a number of psychics used their
power in trying to cause molecules to emit photons, and therefore the candidate cause and effect were
the psychics’ power and photon emission, respectively. Detailed instructions from the medical, social,
and paranormal conditions are presented in Appendix B.

These four conditions were intended to represent causal domains about which people have differ-
ent subjective beliefs. Interactions in the physical domain are often deterministic. For example, mov-
ing a magnet near objects made of iron will invariably cause an attraction force between them.
Everyday life social interactions, on the other hand, are more probabilistic, since we often cannot
be sure of the responses of others to our actions. The medical condition was designed to represent
a causal system with elements from both the physical and the social conditions, whereas the paranor-
mal condition was created to introduce a causal system in which participants had the least experience.
We expected people’s prior beliefs about these different causal systems to be reflected in the resulted
prior distributions, so that we would be able to evaluate the similarities and differences among par-
ticipants’ prior beliefs about various causal systems. While the forms of two-dimensional probability
distributions might be difficult to predict, we hypothesized that the participants hold the most deter-
ministic expectations about the causal systems in the physical condition, followed by the medical, the
social, and then the paranormal condition.

The rest of the experimental procedure was largely the same as Experiment 1. Like Experiment 1,
each trial had a w0 and a w1 task, with a total of 48 trials—4 chains of 12 within-subjects iterations for
each participant. Also similarly, the initial values of (w0;w1) in the four chains were
ð0:3;0:3Þ; ð0:3;0:7Þ; ð0:7;0:3Þ, and ð0:7; 0:7Þ. The iterated learning process was the same as in Experi-
ment 1.

Part of the instructions in Experiment 3 was changed compared to Experiment 1 in order to address
a potential issue. In order to elicit people’s prior beliefs about a certain causal system, it is important
that participants consider the entity in each trial as a different type under an umbrella category (same
causal system). If the participants regarded each entity as the same type, then it is possible that their
inference might rely on data from previous trials and as a result, the Markov assumption would be
violated. Here we used explicit instructions to eliminate this potential issue. The instructions here
emphasized that the causal relationship considered at each trial to be independent from other tri-
als—participants were reminded in the instructions three times that both the candidate cause and
effect in each trial represent different types (e.g., in each trial, a different breed of dogs listened to
a different kind of music). Thus participants are reminded that while the type is different at each trial,
the categories (e.g., dog in general, music in general) remain consistent. Therefore, at convergence, the
hypothesis-data pair should represent the participant’s prior beliefs about the causal relationship at
the category level.

Beyond the cover stories and the reminders about the distinct types, there were a few differences
from Experiment 1. First, we were mainly interested in how the priors associated with each cover story
were similar or different with each other. Consequently the differences between the generative and
preventive versions were not the main focus of this experiment, and therefore only the generative ver-
sion was carried out. Second, in Experiment 3 we added three questions during the instruction phase to
test the understanding of the participants about the instructions of the experiment, as advocated by
Crump et al. (2013). These three questions were all multiple-choice questions and participants had
to answer correctly before continuing. If participants chose the wrong answer they would be told that
their answer was wrong and were allowed to try again until the right answer was selected.
6.2. Results

We estimated the prior distributions in the same manner as in Experiment 1, by pooling all partic-
ipants’ responses in the last iteration and then carrying out a kernel density estimation using a bivar-
iate normal kernel. Similar to Experiment 1, the w0 chains in the four conditions did not converge,
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whereas the w1 chains in all four conditions converged quickly (by the third iteration in all
conditions).

The estimated priors for the four conditions are shown in Fig. 6. Certain similarities and differences
can be observed based on visual inspection. Similar to the results from Experiment 1, prior probability
in all four conditions is quite high in regions associated with high w1. This pattern is particularly
extreme in the physical prior distribution. Therefore this pattern suggests that expectations of strong
candidate cause might be a widely-held belief, regardless of the specific causal domain.

The medical and social priors are visually similar to each other and to the biological prior estimated
in Experiment 1. This might indicate that the participants have somewhat similar prior beliefs about
the causal strengths in these conditions. However, as we will see later, statistical tests will show that
these two prior distributions to be distinct. While the paranormal prior is closer to the medical and the
social priors than to the physical prior, it has a more pronounced high-density area at the center. This
may reflect the fact that the participants were unsure about the causal relationships and responded
using the middle of the scale.
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Fig. 6. Smoothed empirical estimates of the human priors for the four conditions in Experiment 3.
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To formally compare the priors estimated in Experiment 3, we conducted pairwise comparisons
using the t-test and the Kolmogorov–Smirnov test. Both tests attempt to identify differences between
pairs of distributions, with the t-test focusing on the means and the Kolmogorov–Smirnov test focus-
ing on non-parametric distributional differences. As there were four chains per participant and 90 par-
ticipants per condition, there were 360 data points in each condition. The results are shown in Table 3,
separately for w0 and w1. None of the differences in the tests about w0—six t-tests and six Kolmogo-
rov–Smirnov tests—were statistically significant. This suggests that the participants’ expectations
about the background cause were not different across different conditions. In contrast, for w1, all tests
except one (pairwise t-test comparison between the medical and social condition) were statistically
significant, suggesting that participants’ expectations about the strength of causes in these different
scenarios were different.

We also compared these priors in terms of the degree of determinism, as we hypothesized that
people should expect outcomes from these causal systems to be deterministic to different degrees.
We expected the physical prior to represent the most deterministic beliefs, and visual inspection sup-
ports this expectation—the difference in prior probability density is most extreme in the physical
prior. We then tested this formally by operationalizing the degree of determinism as the Euclidean
distance between each of the responses in the last iteration and the closest corner. As the four cor-
ners—ð0;0Þ; ð0;1Þ; ð1;0Þ, and ð1;1Þ—represent deterministic relationships, a lower distance represents
more deterministic beliefs. The lowest possible value (and highest determinism) is therefore 0,
whereas the highest possible value is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
502 � 2

p
¼ 70:72.

The degree of determinism was indeed in the order expected—the condition with the lowest dis-
tance (thus highest deterministic beliefs) was the physical condition (16.98), followed by the medical
condition (19.27), then the social condition (22.23), with the paranormal condition being the highest
(23.64). The differences were significant between all but the neighbors in this rank ordering (Table 3).

In all four conditions, participants favor a strong candidate cause (w1), and this pattern is particu-
larly strong for the physical condition. This suggests that participants expected that if the super lead
Table 3
Comparison of priors estimated in Experiment 3 based on the t-test, the Kolmogorov–Smirnov test, and degree of determinism.

Medical Social Paranormal

t-test
w0

Physical 1.335 (0.18) 0.013 (0.99) 0.446 (0.66)
Medical 1.359 (0.18) 0.943 (0.35)
Social 0.445 (0.66)

w1

Physical 5.818 (< 0:01) 5.632 (< 0:01) 8.517 (< 0:01)
Medical 0.546 (0.59) 2.456 (0.01)
Social 3.117 (< 0:01)

Kolmogorov–Smirnov test
w0

Physical 0.075 (0.26) 0.058 (0.57) 0.089 (0.12)
Medical 0.083 (0.16) 0.089 (0.12)
Social 0.047 (0.82)

w1

Physical 0.158 (< 0:01) 0.258 (< 0:01) 0.297 (< 0:01)
Medical 0.111 (0.02) 0.164 (< 0:01)
Social 0.108 (0.03)

Degree of determinism
Physical 59992.0 (0.08) 54926.5 (< 0:01) 52686.5 (< 0:01)
Medical 59616.5 (0.06) 57403.5 (< 0:01)
Social 62569.5 (0.42)

Note: The figures indicate the respective statistics with p-values in parentheses.
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was present, it would almost always activate the super lead detector. At the same time, participants
did not expect the background cause to be strong, as can be seen by the less extreme differences in
density along the w0 axis. This result can be taken as an example of how people combined a determin-
istic causal relationship with a probabilistic one.

Despite the differences among them, the shapes of all four priors are at variance with the idea that
people have sparse and strong priors. More specifically, none of the prior distributions has peaks at both
ð0;1Þ and ð1;0Þ as predicted by the SS theory concerning a generative cause. Furthermore, the SS theory
predicts a low density area around ð1;1Þ—people do not expect that both the background and the can-
didate causes to be strong—but all four priors estimated in Experiment 3 have high density at ð1;1Þ.
Overall, the results do not corroborate the SS theory, similar to what we found in Experiment 1.

We next computed the predictions of the Bayesian models based on these priors and evaluated
their performance using the data set obtained in Experiment 2. The results are shown in Table 4.
Because the human responses from Experiment 2 were elicited using the same cover story as Exper-
iment 1, we expected the model based on the biological prior estimated in Experiment 1 to have the
best performance. In contrast to this expectation, the biological model did not yield the best perfor-
mance. However, as all empirical models outperformed both non-empirical models, it suggests that
the general shape shared by all empirical priors—belief in a strong candidate cause—might capture
an important characteristic of human causal reasoning.

To further investigate the differences in performance among the various models, we performed a
bootstrapping analysis using all seven Bayesian models—uniform, SS, biological (Experiment 1), phys-
ical, medical, social, and paranormal (Experiment 3). In each bootstrap run, we sampled with replace-
ment the participants in the Experiment 2 data set and calculated the normalized RMSD based on the
sample. This procedure was repeated 1000 times for each prior. The results are shown in Fig. 7. The
results support what we found previously—models using any of the five priors estimated via iterated
learning outperformed Bayesian models with non-empirical priors. This suggests that the general
shape of the prior distributions estimated in Experiments 1 and 3 (e.g., expectation of strong candidate
cause) might capture the most important features of people’s prior beliefs, with the variations across
cover stories playing a less important role. We then performed a pairwise t-test between these seven
models. All results were significant with p < 0:001. This is not surprising as there were 1000 simula-
tion runs for each model, and therefore even small differences were statistically significant.

6.3. Discussion

We estimated participants’ prior beliefs about different causal systems using a diverse set of cover
stories. We found that while these priors can be separated quantitatively, some major features are
shared between them. The most noteworthy of these features can be characterized as an expectation
that the candidate cause should be strong. In spite of the diversity of the cover stories and the corre-
sponding causal domains, none of the prior distributions estimated in Experiment 3 demonstrates fea-
tures predicted by the sparse and strong theory. We also found that participants expected physical
causal systems to be the most deterministic, followed by medical, social, and paranormal ones.

We compared these models in terms of how well they predict human judgments in the benchmark
data set obtained in Experiment 2. Although there were differences in performance among the empir-
ical models, they all outperformed other non-empirical Bayesian models, suggesting that the general
shape of the empirical priors might be the key to understanding human causal induction.
Table 4
Performance of models based on various empirical priors estimated in Experiments 1 and 3 with respect to human data collected in
Experiment 2.

Metric Biological (Expt. 1) Physical (Expt. 3) Medical (Expt. 3) Social (Expt. 3) Paranormal (Expt. 3)

r (Pearson) 0.90 0.91 0.89 0.93 0.93
q (Spearman) 0.92 0.91 0.91 0.94 0.95
RMSD 13.49 13.88 15.26 10.58 11.38
Norm. RMSD 10.30 9.91 11.63 8.50 9.14
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The family resemblance among these priors suggests that their common features might reflect a
general expectation about the nature of causal relationships—a general causal belief that people would
fall back to in the absence of strong a priori subjective beliefs concerning the specific causal system
being considered. More specifically, it suggests that, in many scenarios people might expect candidate
causes to be strong. Finally, these results suggest that beliefs about causal relationships might be
maintained at multiple levels of abstraction—domain-general theories that prescribe the rough shape
of the prior distribution and domain-specific hypotheses about particular causal systems that control
the finer details.
7. General discussion

In Experiment 1, we presented an experiment using the iterated learning technique to empirically
estimate people’s expectations about the causal relationships in an elemental causal induction task.
These expectations were operationalized as prior probability distributions over the strengths of
causes. We found the resulting empirical priors to be markedly different from what have previously
been proposed.

In Experiment 2, we obtained a large-scale data set that could be used as a benchmark for evalu-
ating the performance of different models. To address the issue of selective coverage of contingencies
seen in previous studies, we used a set of stimuli that uniformly covered the space of all plausible con-
tingencies. We compared various Bayesian models of causal learning against the human responses and
found that the best performance was produced by the Bayesian model using the empirical priors
found in Experiment 1. This suggests that the empirical priors best capture the participants’ expecta-
tions about causal relationships.

Experiment 3 used the iterated learning procedure to estimate participants’ expectations about the
causal relationships in a diverse set of domains. The results show that the prior distributions esti-
mated using different cover stories share some major features (e.g., expectation of strong candidate
cause) while having minor differences—suggesting that the participants have differentiated expecta-
tions while at the same time maintaining certain common theories about the nature of causal relation-
ships. Moreover, we found that Bayesian models with empirical priors, regardless of the cover stories
through which the priors were obtained, outperformed Bayesian models with non-empirical priors.
This suggests that the major features captured in the empirical priors are able to explain a significant
share of how people make causal induction.
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In the remainder of the paper we discuss some of the issues raised by the work presented here. We
will consider some of the limitations of our method, identify possible directions for future research,
and highlight some of the conclusions that can be drawn from our results.

7.1. Implications for models of causal induction

The implications of our results are most direct for Bayesian models of causal induction: our analysis
of models based on different prior distributions suggests that future work can be benefited from using
a prior distribution similar to the empirical distributions we estimated in these experiments. Our
results showed that good predictions could be obtained even using a prior distribution estimated from
a different domain, so we hope that these priors will have some generality even as researchers explore
different cover stories for experiments on causal induction.

This paper focuses on comparing Bayesian models with different prior distributions and has omit-
ted comparison with non-Bayesian models (e.g., DP, causal power, EI rule, etc.). These non-Bayesian
models do not have analogs of prior distributions, and our methodology was defined on the assump-
tion that it was reasonable to model people’s judgments in terms of Bayesian inference. However, the
finding that people tend to assume causes are strong may nonetheless be useful for these other mod-
els. For example, associative models of causal learning (e.g., Shanks, 1995) need to make assumptions
about the default or initial strengths of causes, and people’s expectations might be relevant to setting
these model parameters. Similarly, the findings here can also contribute to Bayesian models that do
not use the noisy-OR/noisy-AND-NOT functional forms (Anderson, 1990; Anderson, 1991), or models
that approximate Bayesian computations (Beam & Miyamoto, 2013).

The forms of the empirical priors were somewhat unexpected, as both the generative and preven-
tive cases were significantly different from those previously proposed (Griffiths & Tenenbaum, 2005;
Lu et al., 2008). However, they are consistent with previous work that suggested people have a pref-
erence for deterministic causal relationships (Frosch & Johnson-Laird, 2011; Lucas & Griffiths, 2010;
Schulz & Sommerville, 2006). This finding provides a new link between formal models of causal induc-
tion from contingency data and the broader literature on causal learning.

7.2. Limitations and future directions

Our results provide a clear characterization of our participants’ expectations about the strength of
causal relationships, and lead to more accurate predictions of human judgments of causal strength.
However, there remain a number of important issues that need to be explored in future work.

7.2.1. Origins of priors on causal strength
On identifying the structure of our participants’ expectations about causal relationships, a natural

question is how those expectations were formed. Following (Anderson, 1991), we might expect that
people’s priors reflect an adaptive response to their learning environment. In general, if people’s priors
capture the statistical regularities in their environment, such prior beliefs will allow them to quickly
learn about the relationships (Lu et al., 2008). This adaptive proposal, however, raises many ques-
tions—how people evaluate data in their environment, how people reason about such data in their
everyday lives, whether there are kinds of causal relationships that are considered more important,
etc.—that we have only just begun to explore. The first step in evaluating these questions is to develop
a more comprehensive picture of the contexts in which people acquire knowledge about causal rela-
tionships and their properties.

While the current paper does not attempt to answer what kind of mechanisms might have given
rise to such priors, researchers have explored this issue both theoretically and empirically. For exam-
ple, hierarchical Bayesian models have been suggested as a computational level explanation of how
people might acquire causal knowledge (Kemp, Perfors, & Tenenbaum, 2007; Lucas & Griffiths,
2010; Tenenbaum et al., 2006). Combining advanced modeling techniques and broad data sets, such
as those collected in the current paper, is likely to be the key to further developments in our under-
standing of the acquisition of this kind of knowledge.
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7.2.2. Individual and cultural differences
An assumption of the iterated learning technique is that people share the same prior beliefs with

respect to any particular causal system. While our results suggest that this is a reasonable approxima-
tion to the truth, insofar as we are able to obtain good predictions of aggregate behavior using the
prior estimated by our method, it is undoubtedly a false assumption. Although labels like ‘‘people’s
priors’’ are used in this paper, the priors obtained in the current research certainly do not represent
the expectations of every individual in the world. We expect that there will be differences between
individuals and between cultural groups in their expectations about causal relationships. The methods
that we have used here could be adapted to explore these patterns of variations.

While there has not been much cross-cultural research studying causal induction, numerous pre-
vious studies have demonstrated significant cultural differences in causal attribution (Choi, Nisbett, &
Norenzayan, 1999; Morris & Peng, 1994; Nisbett, Peng, Choi, & Norenzayan, 2001). Because causal
attribution is based upon causal knowledge gained previously from a lifetime of experience, it is pos-
sible that cultural differences in causal attribution might have originated from cultural differences in
causal learning. Having established iterated learning to be a useful tool for investigating subjective
beliefs on causal strength, we anticipate that this approach can be used to explore whether and
how priors in causal learning vary across cultures.

7.2.3. Domain specificity of people’s expectations
Many previous research studies on causal induction have used stimuli in the biological domain,

because it provides plausible causal relationships between variables, and the functional form of these
relationships is simple. Indeed, findings based on particular sets of stimuli have often been generalized
broadly. However, as we demonstrated in Experiment 3, people’s expectations about different causal
systems can be fairly different. It is therefore prudent to reevaluate the conclusions drawn from pre-
vious findings and carefully consider the extent to which they can be generalized.

Moreover, a few points can be made with respect to interpreting the current results and integrating
them with previous findings. First, the prevalence of studies with similar cover stories and formal
structure means that the findings in this paper will be relevant to the ongoing research in causal
induction. Second, as we have argued, the estimated prior distributions based on the several different
cover stories in Experiment 3 shared a number of common features. Therefore our results and analyses
provide a case study that we expect to have broad applicability. Finally, since we have developed the
tools to estimate people’s prior beliefs with respect to any causal systems, a similar approach can be
applied in other domains to obtain a clear picture of how people make causal inferences in these sit-
uations. Indeed, the variation in the nature of the prior knowledge that informs causal induction in
different domains is one of the many attractive attributes that make it a rich setting in which to
explore the nature of human inductive inference (Griffiths & Tenenbaum, 2009).

7.2.4. Complexity of causal systems
An additional limitation of the current research is that, by focusing on the simplest possible causal

structure, our experiments did not address how people reason about causal systems in which more
than one candidate cause is present. Some recent studies have examined how people estimate the
strength of multiple causes (e.g., Novick & Cheng, 2004). Adapting the iterated learning procedure
to these studies might provide a way to investigate people’s prior beliefs about complex causal rela-
tionships and how people reason about them.

One particularly promising application of this approach is to understand people’s expectations
about the functional form of causal relationships. Lucas and Griffiths (2010) recently showed that peo-
ple can learn different schemes for combining the strength of causes through a relatively small
amount of experience with a novel causal system. This analysis assumed a particular prior distribution
on functional forms—that people favor disjunctive over conjunctive causes—and iterated learning
could be used to evaluate this assumption.

7.2.5. Evaluating models of causal induction
Our results also raise questions concerning how performance of causal induction models should be

measured and compared. Most previous work on computational models of causal induction compared
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model predictions with human responses at specific sets of contingencies. These sets of contingencies
were usually chosen by researchers to highlight the different predictions made by the models being
compared. We have discussed the issue concerning the distribution of contingencies used in previous
studies and the need for an unbiased data set to objectively compare these models. In Experiment 2,
we obtained human judgments for a wide range of stimuli that uniformly cover the space of all plau-
sible contingencies. We see our results as providing a new benchmark against which models of causal
induction can be compared. However, it could be argued that the best way to evaluate models of cau-
sal induction is to compare them based on stimuli that accurately capture the frequencies of instances
of causal induction that people face in their everyday life. Developing a way to assess the natural sta-
tistics of causal relationships will an interesting direction for future research.

7.3. Conclusion

Expectations about causal strength play a key role in causal induction: they tell us what magnitude
of causal influence people are looking for when they are trying to identify causal relationships. Accu-
rately characterizing these expectations is a key problem for Bayesian models of causal induction. Since
these models typically share the same assumptions about the hypotheses that people are evaluating
(which are encapsulated in the causal graphical models with particular parameterizations), prior dis-
tributions are the only differentiating factor. Using iterated learning to estimate prior distributions over
causal strength reveals that both the default assumption of uniform priors and the claim that people
expect causes to be ‘‘sparse and strong’’ might be incorrect. Our results provide an unusually clear pic-
ture of people’s intuitions about causal relationships, and reveal that people expect causes to have a
high probability of producing an effect, regardless of the rate at which that effect tends to occur.

In addition to providing this picture of people’s expectations, we have collected the largest and
most comprehensive dataset of human judgments of causal strength based on contingency data. This
dataset provides an important resource for future work on causal induction, providing a means of
evaluating models of causal induction without concerns about biased sampling in the space of contin-
gencies. Using this dataset, we have shown that the priors estimated through our experiments result
in parameter-free Bayesian models of causal induction that outperform previous models in accounting
for people’s judgments.

Beyond causal induction, we see these results as illustrating how two of the key challenges of cog-
nitive psychology can be addressed through innovative methodologies. First, the psychological con-
struct of interest in an area of research, such as the prior distribution on causal strengths studied in
this paper, might not be quantities amenable to direct measurements. Traditionally, psychological the-
ories and related computational models are often justified based on how well human behavior can be
predicted by model output. We have presented an alternative to this approach: directly estimating the
psychological construct of interest using the technique of iterated learning. Second, researchers often
tend to focus on thin slices of experimental data as support for different computational models. These
data might have been chosen because they demonstrate interesting phenomena, or because they
allow for easier comparison between models. However, the coverage of stimuli in these studies is
often quite limited. In the present paper we tackled this issue by using the larger number of partici-
pants available online to test a broad range of stimuli, in a way that is agnostic to specific hypotheses.
We see this combination of new methods for measuring psychological constructs and new ways of
experimental design as opening a new pathway towards resolving some of the fundamental questions
of cognitive psychology.
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Appendix A. Computing causal strength estimates

We computed the predictions made by different Bayesian models used in this paper based on the
procedures used by Griffiths and Tenenbaum (2005) and Lu et al. (2008). The predicted causal strength
is calculated as the mean of the posterior, which is in turn based on the prior distribution of pðw0;w1Þ
and the likelihood pðdjw0;w1Þ. We will cover the computation of the likelihood and prior terms in
order.

The likelihood term is shared among all Bayesian models and is based on the noisy-OR or noisy-
AND-NOT parameterizations (Pearl, 2009). Given a generative cause, and w0 and w1, the probability
of observing effect e in one case is given by the noisy-OR version:
pðeþjb; c; w0;w1Þ ¼ 1� ð1�w0Þbð1�w1Þc ð10Þ
in which b and c are Boolean variables representing the presence or absence of the background and the
candidate cause respectively. Note that in the current model the background cause is always present.
Therefore the probability of observing e with c present is w0 þw1 �w0w1, whereas the probability of
observing e with c absent is w0.

For the preventive case, the probability is given by the noisy-AND-NOT version:
pðeþjb; c; w0;w1Þ ¼ wb
0ð1�w1Þc: ð11Þ
On observing contingency data d, which consists of the values of Nðe; cÞ, the full likelihood in the
generative case is
pðdjw0;w1Þ ¼
Nðc�Þ

Nðeþ; c�Þ

 !
NðcþÞ

Nðeþ; cþÞ

 !
ð12Þ

�wNðeþ ;c�Þ
0 ð1�w0ÞNðe

� ;c�Þ

� ðw0 þw1 �w0w1ÞNðe
þ ;cþÞð1� ðw0 þw1 �w0w1ÞÞNðe

� ;cþÞ
while the full likelihood in the preventive case can be found by replacing the individual likelihood
terms with ones from Eq. (11).

The prior term is formulated using the joint probability of w0 and w1, and is the sole difference
between various Bayesian models. In the uniform model, pðw0;w1Þ ¼ 1, representing the same prior
probability no matter what values w0 and w1 take. In the SS model, the unnormalized prior probability
is computed using Eqs. (6) and (7). In the empirical model, the prior probability is based on the results
of Experiment 1. We took the final iteration of the human judgments and smoothed these values via
kernel density estimation with a bivariate normal kernel (Venables & Ripley, 2002). The results are
plotted in Fig. 4. An alternative way to compute the model predictions would be to use the human
responses directly as samples from the prior, obtaining a Monte Carlo approximation to the posterior
via importance sampling (e.g., Neal, 1993).

The posterior is found by multiplying the prior and the likelihood:
pðw0;w1jdÞ / pðw0;w1Þpðdjw0;w1Þ: ð13Þ
Posterior for either of the causal strength parameters can be found by integrating it over the value of
the other. To convert this posterior into a point value, we first normalize the posterior and then take
the expected value by integrating it over the desired wi. For example, for w1, the model prediction is:
�w1 ¼
Z 1

0
w1pðw1jdÞdw1: ð14Þ
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In this paper the mean posteriors for all three Bayesian models were computed numerically. We
first set up a grid of 51� 51 points in the w0 �w1 space and computed the prior density for each grid
point. We then multiplied the prior with the likelihood at each grid point and normalized it to obtain
the posterior. The values along the w0 axis on this 2-dimensional grid were summed out to find the
posterior for w1. Finally the mean of the posterior w1 was taken to be the model prediction.
Appendix B. Experiment 3 instructions

The instructions for the medical, social, and paranormal conditions were as follows:
B.1. Medical

In this experiment, please imagine that you are a researcher working for a medical company and
you are studying the relationship between some allergy medicines and hormonal imbalance as a side
effect of these medicines.

Your company recently discovered that a new production process was resulting in changes in the
molecular structures in the allergy medicines, and these new medicines cause abnormal levels of hor-
mones in people. Since they are not sure which medicines they previously manufactured might cause
anomalies in which type of hormone, you are tasked with investigating this.

There are a number of trials in this experiment and each trial involves a different type of medicine
and a different hormone. You will see some information about how often people who don’t take the
medicine have a particular kind of hormonal imbalance, and how often people who take that medicine
have the same kind of hormonal imbalance. You will be then asked to make some predictions based on
these pieces of information.
B.2. Social

In this experiment, please imagine that you are an animal researcher and you are studying the rela-
tionship between music and the tail-wagging behavior of different dog breeds.

You have found that some dogs would wag their tails after listening to some kinds of music. Since
you are not sure what kind of music might cause which breed of dog to wag their tails, you have
decided to investigate this.

There are a number of trials in this experiment and each trial involves a different kind of music and
a different breed of dogs. For each kind of music, you will see some information about how often dogs
who were not played the music wagged their tails, and how often dogs who were played the music
wagged their tails. You will be then asked to make some predictions based on these pieces of
information.
B.3. Paranormal

In this study, please imagine that you are a physics researcher and you are studying the relation-
ship between psychic power and the behavior of molecules.

All molecules that you are currently investigating share a characteristic in that they all emit pho-
tons at random intervals, but at different rates. A number of psychics have claimed that they can make
these molecules emit photons within a minute of when they use their power. You are tasked with
investigating this.

There are a number of trials in this study and each trial involves a different psychic and a different
type of molecule. For each psychic, you will see some information about how many molecules have
emitted photons when a particular psychic was simply standing next to the molecules, and how many
of them have emitted photons following when psychic used his/her power. You will be then asked to
make some predictions based on these pieces of information.
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