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Abstract

Human and automated tutors attempt to choose pedagogical activities that will maximize stu-

dent learning, informed by their estimates of the student’s current knowledge. There has been sub-

stantial research on tracking and modeling student learning, but significantly less attention on how

to plan teaching actions and how the assumed student model impacts the resulting plans. We

frame the problem of optimally selecting teaching actions using a decision-theoretic approach and

show how to formulate teaching as a partially observable Markov decision process planning prob-

lem. This framework makes it possible to explore how different assumptions about student learn-

ing and behavior should affect the selection of teaching actions. We consider how to apply this

framework to concept learning problems, and we present approximate methods for finding optimal

teaching actions, given the large state and action spaces that arise in teaching. Through simula-

tions and behavioral experiments, we explore the consequences of choosing teacher actions under

different assumed student models. In two concept-learning tasks, we show that this technique can

accelerate learning relative to baseline performance.
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1. Introduction

To instruct a student, a teacher selects a series of activities. Ideally, the teacher should

customize her choices based on her knowledge of the domain as well as her beliefs about

the student’s understanding. When selecting an activity, both the immediate benefit to the

learner as well as the activity’s potential long-term benefits are relevant. For example,
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giving a student a quiz might not greatly improve the student’s understanding (although

this is complicated by the testing effect; for example, Carpenter, Pashler, Wixted, & Vul,

2008), but it could still be beneficial by providing data to inform later pedagogical

choices. Similarly, it would be beneficial for the teacher to track the student’s likely

knowledge over time, based on what activities she has already studied, and provide her

with information that supplements this understanding.

Automated tutors should be able to follow these same steps and perhaps even track

and respond to information from the learner’s behavior more closely than a human tea-

cher. While human teachers may only be guided by coarse information about their stu-

dents’ knowledge (see VanLehn, 2011, for literature review), finer grained information

could prove helpful to an automated tutor. The components of the tutor should be modu-

lar, such that we can consider different assumptions about learning without changing the

entire architecture of the tutor and that we can easily adapt the tutor to different domains.

Such a tutor could result in more scalable systems that can adapt to particular characteris-

tics of a domain without relying on heuristics or requiring experts to define pedagogical

strategies for individual domains.

Parts of this problem have been approached in previous work. For instance, there has

been substantial interest in the cognitive science, education, and intelligent tutoring sys-

tems communities in modeling and tracking student learning. A number of results have

demonstrated the benefit of taking a Bayesian probabilistic approach (see, e.g., Chang,

Beck, Mostow, & Corbett, 2006; Conati & Muldner, 2007; Corbett & Anderson, 1995;

Villano, 1992). There has also been some previous work, such as the KLI framework

(Koedinger, Corbett, & Perfetti, 2012), that has considered how to make pedagogical

choices based on the types of skills being targeted. KLI synthesizes a variety of work

finding that the effects of different teaching strategies on learning are heavily modulated

by the domain and task. However, there has in general been limited work on how to auto-

matically compute a teaching policy that leverages a probabilistic learner model in order

to achieve a long-term teaching objective.

In this paper, we propose using partially observable Markov decision processes

(POMDPs) for automatic tutoring, focusing on cases where the automated tutor teaches a

student individually. POMDPs allow one to compute a contingent policy for selecting

sequential actions in situations where important information may be unobserved (Sondik,

1971). By using this model, we take a decision-theoretic approach that allows us to cus-

tomize choices based on the learner’s observed behaviors as well as the previous peda-

gogical actions that have occurred and to consider both immediate and long-term gains.

The specification of the POMDP also makes it relatively easy to consider different

models of learning and different domain models, meeting our goal of modularity. Here

we assume that the model of learning is known and demonstrate how to select teaching

actions, given such a model. Within the POMDP model, the automated teacher’s beliefs

about the learner’s knowledge is represented as a distribution, preserving uncertainty

about the student’s actual knowledge. Given a pedagogical objective and a set of models

describing the learning process, POMDPs provide a framework for computing a teaching

policy that optimizes the objective. The objective function to be optimized can encompass
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multiple goals, such as attaining specific knowledge goals quickly and maintaining moti-

vation, but these functions can be challenging to optimize; we address simpler objectives

focused on the student’s knowledge state and do not consider motivation or other affec-

tive issues.

Though POMDPs are related to other decision-theoretic approaches used in previous

education research, they are more powerful in two key respects. First, POMDPs can use

sophisticated models of learning, rather than assuming learners’ understanding can be

directly observed or approximated by a large number of features (as in Barnes &

Stamper, 2008; Chi, Jordan, VanLehn, & Hall, 2008), and these models are likely to be

more interpretable than feature-based approximations. As opposed to Chi et al. (2008),

we focus our investigation on how POMDPs can be used to reason about the conse-

quences for teaching of particular cognitive models; in their work, they focused on empir-

ical investigation of using reinforcement learning to optimize a policy for a model based

on observed features. Both approaches make valuable contributions but differ somewhat

in their aims. The POMDP approach is likely to be helpful when considering many exist-

ing cognitive models from psychology, as these typically include information about the

learner’s mental state. Second, in contrast to approaches that only maximize the immedi-

ate benefit of the next action (Conati & Muldner, 2007; Kujala, Richardson, & Lyytinen,

2008; Murray, Vanlehn, & Mostow, 2004; Tang, Young, Myung, Pitt, & Opfer, 2010),

POMDPs reason about both immediate learning gain and long-term benefit of a particular

activity.1 Incorporation of information about the effect of particular actions on learning is

automatic in the POMDP framework, allowing one to avoid manually specifying heuris-

tics about which teaching actions will be most effective.

Partially observable Markov decision processes offer an appealing framework for

selecting teaching actions, but there are often significant obstacles to practical implemen-

tation. Specifically, planning teaching requires modeling learning, and richer, more realis-

tic models of learning lead to computational challenges for planning. We instead compute

approximate POMDP policies, which make it feasible to use these more complex, realis-

tic models of human learning. As a demonstration of the modular nature of POMDPs, we

examine three different models of concept learning and demonstrate how, given the same

pedagogical objective, these lead to qualitatively different teaching policies. The use of

several learner models allows us to examine whether effective policies can be computed

even when the assumed model and true human learning differ. We explore the impact of

these varying models in two simple concept-learning tasks, both through simulations and

by teaching human learners. We also compare the effectiveness of policies generated

using these models to other control policies, such as randomly selecting actions or choos-

ing the action that maximizes the expected information gain, and find that there exist sce-

narios where POMDP policies outperform these alternatives. While a few recent papers

explore the use of POMDPs to compute teaching policies (Brunskill & Russell, 2010;

Brunskill, Garg, Tseng, Pal, & Findlater, 2010; Folsom-Kovarik, Sukthankar, Schatz, &

Nicholson, 2010; Theocharous, Beckwith, Butko, & Philipose, 2009), to our knowledge,

ours is the first paper to demonstrate with human learners that POMDP planning results
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in more efficient learning than baseline performance and the first to explore the impact of

different models of learning on the computed policies.

The plan of the paper is as follows. We begin by giving an overview of POMDPs and

then show how teaching can be formulated as a POMDP. We next explain specifically

how to express concept-learning problems as a POMDP and describe three models of

concept learning. Given the now fully specified model, we provide an algorithm for com-

puting a policy for choosing pedagogical actions from the POMDP. We then empirically

evaluate the effectiveness of POMDP policies for increasing learning efficiency in an

alphabetic arithmetic task and in a more complex concept-learning task involving numeri-

cal concepts. We conclude by discussing the implications, limitations, and future direc-

tions of this work.

2. Partially observable Markov decision processes

Partially observable Markov decision processes planning is used to compute an optimal

conditional policy for selecting actions to achieve a goal, in absence of perfect informa-

tion about the state of the world (Kaelbling, Littman, & Cassandra, 1998; Monahan,

1982). For example, imagine a robot that needs to find a charging station and knows that

it is somewhere in a maze but does not know where. By exploring the environment and

making observations of the walls and intersections in the maze, the robot can better local-

ize its location to find the charging station more quickly. However, the robot should only

explore to the extent that this will help it achieve its goal: If it knows that it is in one of

two possible locations in the maze and that in both locations a charging station can be

reached by turning left and moving ten meters, it should simply proceed in that direction

without further diagnosing its location. POMDP planning provides a way to choose

actions that takes into account how uncovering unknown information (e.g., further diag-

nosing the robot’s location) is likely to impact the agent’s ability to achieve its goals.

This planning model has been used for a wide variety of control tasks, including robotics

(e.g., Kurniawati, Hsu, & Lee, 2008; Pineau, Montemerlo, Pollack, Roy, & Thrun, 2003),

healthcare (e.g., Hoey, Poupart, Boutilier, & Mihailidis, 2005; Hu, Lovejoy, & Shafer,

1996), and dialogue systems (e.g., Atrash & Pineau, 2006; Roy, Pineau, & Thrun, 2000;

Young et al., 2010). POMDP control policies indicate which actions to take, conditioned

on the actions taken so far and observations of the environment, such that the expected

cost is minimized (or the expected reward is maximized). These policies are thus updated

as an agent gains more information about the environment, allowing it to choose more

effective actions with less uncertainty about their effects.

Formally, a POMDP consists of a tuple hS;A;Z; pðs0js; aÞ; pðzjs; aÞ; rðs; aÞ; ci, where S
is a set of states s, A is a set of actions a, Z is a set of observations z (Sondik, 1971);

each component is described in more detail below. As shown in Fig. 1, an action a is

taken at each time step, which together with the current state s results in a transition to

the next state s0. These transitions are specified by the transition model pðs0js; aÞ. The
state s at any point is unobserved. Instead, information about the state is indirectly
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available via the observations. Given that action a is taken in state s, the observation

model p(z|s,a) indicates the probability of observing z. For example, in the case of the

robot moving from an unknown starting location, the state s is its true location in the

maze, and it chooses whether to move or to turn in a particular direction. The next state

s0 is the robot’s location after that action, which may still be unknown to the robot.

However, the robot does know something about its location based on the walls and inter-

sections it sees; this information is encoded by the observation model p(z|s,a). In this

paper, we assume that the observation and transition models are known.

Taking one action versus another in a particular state may be more or less costly.

Agents may experience either rewards or costs based on their actions; here, “costs” are

simply negative rewards. Because we will be mainly referring to costs in our experi-

ments, we describe the POMDP planning framework in terms of costs, but it is also pos-

sible to have environments that have both rewards and costs, or only rewards. The costs

experienced by an agent may vary based on its objectives and the environment. For

instance, in the case of the robot trying to find the charging station, it might wish to

accomplish its task in minimal time; the cost structure would then specify that actions

that are likely to take more time (e.g., moving longer distances) will incur higher costs.

Alternatively, the robot might simply wish to find a charging station before it runs out of

energy. In that case, all actions might have cost zero, but entering a state where the robot

has no energy would incur a very large cost. The cost model r(s,a) encodes the cost

structure; for every state s and action a, this model specifies a real-valued cost. POMDP

planning seeks to choose actions that minimize the expected sum of discounted future

costs. If the state were known at each time step, this quantity could be calculated as

R1
t¼0c

trðst; atÞ, where c is the discount factor. This factor represents the relative harm of

immediate versus delayed costs. If c is close to one, then costs incurred in the future have

almost as much harm as costs incurred now, since ct will remain close to one. As c gets

closer to zero, ct will be close to zero for even small t; this means that immediate costs

will dominate. The discount factor is set by the planner.2

Given a POMDP, we want to compute a policy for how to select an action at each

time step. An optimal policy should map the prior history of actions and received obser-

vations to the action that will minimize the expected sum of discounted future costs.

Since the prior history grows at each step, this may be difficult to compute directly. A

a1

s1 ...

a2

s2

z1

s3

z2

Fig. 1. Graphical model representation of a POMDP. At each time step t, there is an unobserved state st and
the planner chooses an action at. Based on the current state and chosen action, the planner observes zt, and
the state transitions to stþ 1.
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common alternative is to maintain a sufficient statistic, known as a belief state b, that rep-
resents the planner’s distribution over potential states given the past actions and observa-

tions (�Astr€om, 1965). In the case of the robot, this would be a distribution over where it

currently is in the maze; some locations might have been ruled out by the observations,

while other locations might be equally probable given the observations and actions that

have occurred so far. Bayesian updating can be used to compute a new belief baz after

taking action a and receiving observation z from belief b:

bazðs0Þ ¼ pðzjs0; aÞ Rs pðs0js; aÞbðsÞdsR
s0 pðzjs0; aÞ

R
s pðs0js; aÞbðsÞdsds0

: ð1Þ

Intuitively, this update corresponds to taking the expectation over the next state given the

distribution over states at the current time step, adjusted by the probability of receiving

the actual observation in that next state. Thus, at each time step, the planner chooses an

action to minimize future cost, where information about the past is encoded by the

current belief state. This process is equivalent to planning based on maintaining the entire

history of actions and observations.

3. Modeling teaching as a POMDP

We now seek to formalize the problem of selecting individual teaching actions within

the POMDP framework. Using POMDPs for education was first mentioned by Cassandra

(1998), as part of a proposal for diverse applications for POMDPs. POMDP planning has

been considered as a way of sequencing units of instruction (Brunskill & Russell, 2010;

Brunskill et al., 2010), and simulation-based work has considered how to approximate the

student state to use POMDP planning for domains where a “soft” prerequisite model is

known (Folsom-Kovarik et al., 2010). Finally, Theocharous et al. (2009) considered the

problem of constructing the component models of a POMDP to teach a specific concept.

In our work, we consider the problem of selecting individual pedagogical actions using a

POMDP policy, where we do not have explicit information about which actions should

precede others and where the student’s knowledge state does not necessarily decompose

into independent components. While many common models of student learning assume

this decomposition (e.g., ACT-R, Anderson, 1993), other psychological models of learn-

ing are not presented in this form (e.g., Tenenbaum, 1999), and the POMDP framework

can be applied to either type of model. In this section, we demonstrate how teaching can

be modeled within the POMDP framework by mapping each part of the model to a par-

ticular part of the teaching process.

Fig. 2a shows our general formulation of the teaching process. The automated teacher

must make a sequence of pedagogical choices. These pedagogical choices map to the

actions taken at each time step in the POMDP (see Fig. 2b). For example, the automated

teacher might first have a student complete a short quiz (a pre-test), and then have the
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student complete a chemistry lab that has concepts that it believes the student has not yet

mastered. The learner’s state at any given time step t is unobserved and corresponds to

the state st of the POMDP at time t. We consider the state to be a knowledge state, corre-

sponding to what a learner currently understands about what she is being taught. How-

ever, the state could in general be richer and include other information about the learner,

such as her current level of motivation or her current affect. The learner’s state may

change based on the activity that the teacher chooses to give her (i.e., at); as shown in

the graphical model in Fig. 2b, the next knowledge state is dependent only on the current

knowledge state and the pedagogical activity. Intuitively, changes in the learner’s state

correspond to learning. Such changes may reflect mastery of a new skill, forgetting of a

previously learned skill, or some other change in understanding, such as making a new

generalization that brings the student closer to correct understanding.

3.1. Specifying learner models

Modeling learner knowledge within the POMDP framework requires specifying the

space S of possible knowledge states and a transition model pðs0ja; sÞ for how knowledge

changes. Different learner models may make different assumptions about how knowledge

is encoded. At the simplest level, the state might only represent whether a particular skill,

such as addition, has been mastered. Alternatively, states might represent different

possible understandings a student might have about addition, one normative and others

Initial student 
knowledge 

(st=0)

 Student 
knowledge after 
activity (st=1)

Computer chooses activity 
for student (at=0), based on 

objective and belief state 

Observed 
student response 
to activity (zt=0)

...

Computer chooses the activity it believes will be 
most helpful for the long-term learning objective, 

using the estimate of the student knowledge.

Student's knowledge may change 
based on completing the activity.

Computer updates estimate based on likely 
change to student knowledge based on the 

activity and the student's observed behavior.
Unobserved 

student 
knowledge

(a) (b)

Complete Acid-Base Lab
Complete Equilibrium Lab

Complete Quiz

Read Acid-Base Chapter

!"

!#$"

!#%"

!#&"

!#'"

("

pH scale 
linear

pH scale 
logarithmic

!"

!#$"

!#%"

!#&"

!#'"

("

pH scale 
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pH scale 
logarithmic

Initial estimate Estimate after activity

Fig. 2. Mapping the POMDP model to teaching. (a) The teaching process consists of the computer choosing

actions, which may be dependent upon its knowledge of the student. The student knowledge evolves based

on the activities that she completes. By observing the student’s behavior, such as how the student completes

a lab, the computer can gain information about what the student understands and what misunderstandings she

may have. (b) A graphical model representation showing how teaching corresponds to the components of the

POMDP. Actions are pedagogical choices, states correspond to student knowledge, and observations are made

of student behavior. The computer teacher can make pedagogical choices to achieve some long-term objec-

tive, such as minimizing the time for the student to reach mastery.
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representing incomplete or non-normative understandings. While a particular representa-

tion must be specified to compute a policy, one of the advantages of the POMDP frame-

work is that it can work with a variety of possible representations, allowing one to

determine what effects different assumptions would have on the optimal policy and how

quickly one would expect a particular type of learner to master a skill.

A second part of the learner model, the observation model, maps to modeling the lear-

ner’s behavior given her knowledge. Intuitively, this model provides noisy information

about the learner’s understanding by specifying the probability p(z|s,a) that a learner will

give a particular response z to an item given her current knowledge state s. For example,

imagine the student has been asked for the answer to 3 + 8 and responds 10. This

response is less likely than 11 if the learner has a correct understanding, but it could have

occurred due to misreading or a “slip”: It is not definitive proof that the student has not

mastered addition.

Given that the automated teacher has a learner model, it can update its beliefs about

the learner’s current knowledge state based on new observations. The teacher begins with

a belief state equal to the prior distribution p(s) over possible knowledge states; this dis-

tribution might be used to encode known biases in student knowledge for a particular

task. After each action, the belief state is updated using the observation model to incorpo-

rate the learner’s responses and the transition model to incorporate the effects of learning

(as in Eq. 1).

3.2. Pedagogical objectives

The final portion of the POMDP framework that must be adapted to the teaching

domain is the cost model. The content of this model is dependent on the teacher’s objec-

tives. Since POMDP planning is used to find a policy that minimizes expected costs (or

maximizes rewards), the cost model should specify the teacher’s desired outcome as well

as incentives for individual actions or states. For example, one simple learning objective

would be to have the learner reach the knowledge state s that reflects mastery in as little

time as possible. This could be encoded by having actions in state s cost zero, and other

actions cost the expected time for the student to complete them. Then, for instance, if

there are only two actions and the student will almost certainly enter state s after com-

pleting either action, the planning framework will favor the action with shorter expected

time.

While we will use this simple time cost model, many other possible objectives could

be encoded in a cost model. For instance, rather than seeking complete mastery of all

material, the objective could be for a student to learn as much material as possible in a

particular domain. This objective might more naturally be represented using rewards

(rather than costs, which are negative), with larger rewards for states where more of the

material has been learned. The resulting policies would still attempt to teach all material,

but if only a fixed time was available, these policies would focus on some material rather

than trying to teach all material with little probability of success. We discuss other objec-

tives in the Discussion.
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Formulating teaching as a POMDP has several advantages. It provides a way of deriv-

ing an optimal policy for any teaching task and any learner model. This allows one to

explicitly determine the expected consequences of making different assumptions about

the learner or changing the learning objective. This can be helpful for evaluating the lear-

ner model and for determining whether a particular distinction actually has implications

for teaching. The general framework is naturally modular, separating the parts of the

teaching task and the assumptions made in each part of the model. This may be helpful

for comparing or making improvements to automatic tutoring systems. Specifying a gen-

eral framework also allows one to consider how particular methods for problem selection

may be approximations to the optimal policy. By defining a problem selection method

with respect to how it approximates the POMDP policy, one can make use of the existing

POMDP literature and evaluate in what circumstances such an approximation is likely to

perform well.

In the remainder of the paper, we consider how this framework can be applied in con-

cept-learning tasks. In such tasks, we use the time-based cost model described above, such

that the computed policies select actions to minimize the expected time for the learner to

understand the concept. The space of tutorial actions may vary widely based on the

domain being taught. We follow the tradition of concept learning via examples that have

been explored in psychology (e.g., Feldman, 1997; Nosofsky, 1998). Within this type of

concept learning, it is natural to consider three types of actions: examples, quizzes, and
questions with feedback. Examples give the student information about the concept, but

they do not result in any observed behavior from the learner. Quizzes ask the student a

specific question about the concept, but they do not directly give the student new informa-

tion about the concept. Questions with feedback combine these two action types by first

asking a question and then responding by telling the student the correct answer. Example
and question with feedback actions are equivalent to the tell and elicit pedagogical actions
that have been used previously in optimizations of intelligent tutoring systems (Chi et al.,

2008). The POMDP can be used to find the optimal policy for teaching the learner the

concept, taking into account the learner’s responses to questions and balancing actions

aimed primarily at diagnosis with those that provide information to the learner.

4. Learner models for concept learning

We consider three learner models, inspired by the cognitive science literature, that cor-

respond to restrictions of Bayesian learning. Each learner model describes the state space

of the POMDP as well as the transition and observation models. While the models we

describe are only rough approximations of human concept learning, we will show that

they are still sufficient to enable us to compute better teaching policies and that they can

be applied to several different concept learning tasks. The three models we consider vary

in complexity as well as in how closely they approximate human learning; this allows us

to examine how well the POMDP approach can scale to more complex models. By using

several different models, some of which we know are better approximations of human

A. N. Rafferty et al. / Cognitive Science (2015) 9



learning than others, we can also examine how closely the learner model must match

human learning in order to lead to effective policies.

All of the models we consider share several assumptions about the concept-learning

task. They each assume a discrete hypothesis space C of possible concepts. Such an

assumption is reasonable in many contexts. For instance, the hypothesis space corre-

sponding to possible meanings of a word might include binary vectors assigning each

potential object as part of the concept or not. The models we consider assume that the

size of the hypothesis space is finite, although it may be large. Since our models corre-

spond to restrictions of Bayesian learning, they also assume that there is a prior distribu-

tion over the hypothesis space of concepts. This distribution intuitively represents

learners’ biases before they are exposed to any data about the concept. Finally, we

assume that the domain is such that for any question the tutor might ask, each concept

implies a single possible right answer. This assumption simplifies the problem somewhat,

but it could easily be modified to assume that concepts specify a probability distribution

over possible answers to a question.

4.1. Memoryless model

We first consider a model in which the learner’s knowledge state is the single concept

she currently believes is correct, similar to a classic model of concept learning proposed

by Restle (1962). In this model, the learner does not explicitly store any information pre-

viously seen. If an action is a quiz action, or if the provided evidence in an example or

question with feedback action is consistent with the learner’s current concept, then her

state stays the same. If the action contradicts the current concept, the learner transitions

to a state consistent with that action, with probability proportional to the prior probability

of that concept:

pðstþ1 ¼ cijst ¼ cj; atÞ / p0ðciÞ if ci is consistent with at
0 otherwise

�
ð2Þ

where p0ðciÞ represents the prior distribution on concepts.

The observation model is deterministic: When asked to provide an answer to a ques-

tion, the learner provides the answer zn that is consistent with her current beliefs. While

some prior work suggests that human performance in concept learning tasks like ours

appears memoryless (Bower & Trabasso, 1964; Restle, 1962), it is possible that the

model underestimates human learning capabilities. It thus provides a useful measure of

whether POMDP planning can still accelerate learning when a pessimistic learner model

is used. This model is also attractive because it is less computationally complex than the

other models we consider: The size of the state space is equal to the number of possible

concepts |C|. Given this state space, the automated teacher’s belief state b over the hidden

learner state is a probability distribution over the |C|. Belief updating is performed using

Eq. 1, which will be an order jCj2 operation.
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4.2. Discrete model with memory

The key limitation of our first model is its lack of memory of past evidence. In gen-

eral, this assumption is not accurate for human learning, although it is sometimes applica-

ble to children (Levine, 1970). A more psychologically plausible state space is one in

which learners maintain a finite memory of the past M actions in addition to their current

guess of the true concept. This results in factored states that consist of the hidden guess

at the true concept (sc) and the fully observed history of the past M actions (sh). Like the

memoryless model, this model assumes that the learner stores her current guess at the

true concept, and this guess is updated only when information is shown that contradicts

the guess. In this case, the learner shifts to a concept that is consistent with the current

evidence and all evidence in the M-step history. The transition probability is again pro-

portional to the initial concept probability. The transition model for sh, representing the

history, is deterministic. The observation model is also the same as in the memoryless

case: The learner responds deterministically based on her current guess. Belief updating

for the automated teacher can be updated in the same manner as for the previous model,

with the size of the state space now equal to the number of possible concepts multiplied

by the number of possible memory states.

4.3. Continuous model

A more complex, but natural, view of learning is that the learner maintains a probabil-

ity distribution over multiple concepts (Tenenbaum, 2000; Tenenbaum & Griffiths, 2001).

Such an account allows one to model cases where a learner is unsure exactly which con-

cept is correct but has ruled out some of the possibilities. Those concepts that she has not

ruled out would all have non-zero probability. The state is then a |C|-dimensional, contin-

uous-valued vector that sums to 1, where C is the set of possible concepts. The ith posi-

tion corresponds to the probability mass that the learner places on the ith concept. The

state space S is an infinite set of all such vectors, the simplex DjCj.
The transition function assumes that for quiz actions, each state transitions determinis-

tically to itself, as in the previous two models. For example and question with feedback

actions, state dimensions for concepts that are inconsistent with the provided information

are set to zero. Letting pðsðt þ 1ÞiÞ be the ith entry in the distribution at time t + 1, corre-

sponding to the probability of the ith concept, then:

pðsðt þ 1Þijst; atÞ / pðstiÞ if ci is consistent with at
0 otherwise

�
ð3Þ

The full joint transition probability is then re-normalized. This corresponds to a Bayesian

generalization model with weak sampling (Tenenbaum & Griffiths, 2001). The observa-

tion model assumes the learner gives answer zn to a question with probability equal to

the amount of probability she places on concepts that have zn as the correct answer for
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this question. For this model, the automated teacher must maintain a belief state over the

infinite number of possible knowledge states. This requires approximating the belief state;

we discuss the details of our approach to this issue in the next section on selecting teach-

ing actions using POMDP planning.

4.4. Capturing deviations from the model

To improve the robustness of our policies to the coarse learner models we employ, all

models include two extra parameters, a transition noise parameter �t and a production

noise parameter �p. The transition noise parameter �t is the probability that the learner

ignores a given teaching action and thus this action does not change the state. The pro-

duction noise parameter �p is the probability that the learner produces an answer inconsis-

tent with her current guess; this parameter is similar to the guess and slip parameters

common in some models of student knowledge (Corbett & Anderson, 1995).

5. Selecting teaching actions using POMDP planning

Our goal is to compute a policy that selects the best action, given a distribution over

the learner’s current knowledge state, the belief state. Offline POMDP planners compute

such policies in advance. This approach requires pre-computing policies over the continu-

ous space of possible belief states.3 The space of possible belief states is a simplex as

each belief is a probability distribution over the possible knowledge states. As the number

of knowledge states grows, the dimensionality of this simplex is increased. Thus, as the

size of the state space increases, offline approaches become infeasible. Since many teach-

ing domains are likely to have large state spaces, we instead turn to online POMDP for-

ward search techniques, which have proven promising in other large domains (see Ross,

Pineau, Paquet, & Chaib-draa, 2008, for a survey).

We compute the future expected cost associated with taking different actions from the

current belief state by constructing a forward search tree of potential future outcomes

(see Fig. 3). This tree is constructed by interleaving branching on actions and observa-

tions. To compute the values of actions next to the root belief state, the values of the leaf

nodes are estimated using the evaluation function, and then their values are propagated

up the tree, taking the maximum over actions and the expectation over observations.

After the tree is used to estimate the value of each action for the current belief, the best

pedagogical action is chosen. The learner then responds to the action, and this response,

plus the action chosen, is used to update the belief representing the new distribution over

the learner’s knowledge state. We then construct a new forward search tree to select a

new action for the updated belief.

While forward search solves some of the computational issues in finding a policy, the

cost of searching the full tree is OððjAjjZjÞHÞ, where H is the task horizon (i.e., the num-

ber of sequential actions considered), and requires an OðjSj2Þ operation at each node. This

is particularly problematic as the size of the state space may scale with complexity of the
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learner model: The memoryless model has a state space of size |C|, while the discrete

model with memory has state space of size jCjjAjM and the continuous model has an infi-

nite state space. To reduce the number of nodes we must search through, we take a simi-

lar approach to Ross, Chaib-draa, and Pineau (2008) and restrict the tree by sampling

only a few actions. Additionally, we limit H to control the depth of the tree and use an

evaluation function at the leaves. This evaluation function is based on the estimated prob-

ability that the student knows the correct concept.

Since the belief state in the continuous model is a distribution over an infinite set of

states, we approximate the belief state for this model to make inference tractable. We

represent the belief state as a weighted set of probabilistic particles and update these par-

ticles based on the transition and observation models (see Supplementary Materials for

details). Particles inconsistent with the observations are eliminated. If no particles are

consistent with the current observation, we reinitialize the belief state with two particles:

one with a distribution induced by rationally updating the prior using all previous evi-

dence and one with a uniform distribution. Depending on the number of particles used,

this technique may be less computationally complex than the calculations for the other

two models.

6. Empirical evaluation of optimal policies

In the remainder of this paper, we explore the effectiveness of the POMDP framework

for teaching two concept-learning tasks, alphabet arithmetic and learning numerical con-

cepts, in order to assess whether it is feasible to use in real time and if its actions are

effective for teaching human learners. In alphabet arithmetic, learners infer a mapping

from letters to numbers based on exposure to equations like A + B = 1 that impose con-

straints on the possible mappings. While this task is artificial, it provides a preliminary

evaluation of POMDP planning for problem selection and shares several important char-

acteristics with real teaching domains: It is rich enough that learners may have misunder-

standings, such as erroneous beliefs about which letter maps to which number, and that

Current 
belief state

Sample an item from the domain 
and consider all action types 

(example, feedback, and quiz) 

Sample more actions for 
each belief state at the 

second level
Calculate the 

evaluation function 
for each leaf

Fig. 3. An example forward search tree for a two step horizon. The search considers the effect of each type

of action applied with several different items from the domain; for example, to teach the learner the concept

“odd numbers,” the search would consider several different numbers that could be used for examples,

quizzes, or questions with feedback. The number of actions sampled at each time step in the figure is only an

example; in our actual experiments we sampled varying numbers of actions.
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we expect some teaching policies to be more effective than others. We begin with teach-

ing simulated learners alphabet arithmetic and then turn to teaching human learners. After

showing that POMDP planning can be effective for teaching alphabet arithmetic, we turn

to the more complex domain of numerical concepts. Concepts like “prime numbers” are

taught by showing learners examples of numbers that are and are not a part of the con-

cept. For this task, the space of possible concepts as well as the number of available

teaching actions is much larger, providing a test of how well the framework can scale to

the larger space. While these tasks differ from traditional learning tasks covered in tutor-

ing systems used in the classroom and have some similarities with problem solving tasks,

they are similar to other concept learning tasks in psychology (e.g., Bruner, Goodnow, &

Austin, 1956; Shepard, Hovland, & Jenkins, 1961; Tenenbaum, 2000) and unlike tradi-

tional problem solving tasks, information is conveyed to learners over a period of time.

Thus, the tasks require sequencing information and incorporating the learners’ behavior

to determine what information is most appropriate, matching the structure of many more

typical learning tasks in education.

7. Simulation 1: Teaching simulated learners alphabet arithmetic

We first explore the performance of POMDP planning for teaching simulated learners

alphabet arithmetic. These simulations address two questions: (a) How effective

is POMDP planning when the assumed learner and the actual learner match, and (b) Is

POMDP planning still effective when the actual learner differs from that assumed by the

POMDP? As described above, alphabet arithmetic involves learning a mapping between

letters and numbers; in this case, we teach a mapping from the letters A � F to the digits

0–6. We assume learners have a uniform prior over mappings. For example actions,

learners are shown an equation where two distinct letters sum to a numerical answer. For

instance, A could be mapped to 0 and B to 1, and one might show the learner the equa-

tion A + B = 1. Quiz actions leave out the numerical answer and ask the learner to give

the correct sum, providing the system with information about the learner’s knowledge.

Questions with feedback combine these two actions. The planning goal for alphabet arith-

metic is to minimize the amount of time for learners to correctly identify the mapping.

Given this space of actions, we expect that modeling and tracking the learner’s state may

speed learning since teaching actions can explicitly address or diagnose the learner’s

misunderstandings.

7.1. Methods

We conducted four simulations for each type of learner (memoryless, discrete with

memory, and continuous). One simulation used a random policy, and the other three sim-

ulations used a POMDP policy driven by each of the learner models. This allowed us to

determine how quickly, for instance, a memoryless learner could be taught using a
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memoryless policy versus a continuous policy.4 Fifty simulations were run for each of

these twelve combinations of learner and policy.

To match the experiment presented in the next section, we alternated between teaching
phases, in which we selected pedagogical actions for the simulated learner, and assess-
ment phases, in which we checked whether the simulated learner had identified the map-

ping. Each teaching phase consisted of a sequence of three pedagogical actions. After the

teaching phase, there was an assessment phase that varied slightly based on the type of

simulated learner. For the memoryless learners and the discrete representation with mem-

ory learners, the current guess of the learner was compared to the true mapping. If they

were identical, then the learner had mastered the concept and teaching was terminated.

For the continuous learner, a mapping was sampled from the learner’s current distribution

over possible mappings, and if this mapping matched the true mapping, then teaching

was terminated. If a learner failed to achieve mastery after 40 teaching phases, then

teaching was also terminated; this was to match the experimental procedure in which

teaching of human learners would be terminated after 40 phases regardless of perfor-

mance.

Finding the POMDP policies requires setting the parameters of the cost function as

well as the parameters of each learner model. To make the simulations as realistic as pos-

sible, we set these parameters based on data from teaching 20 human participants using a

random policy; these were the participants in the control condition of Experiment 1,

described below. The cost of each action that was used by the POMDP planner was the

median time to complete each action type from the participants in the control condition:

Example actions took 7.0 s, quiz actions took 6.6 s, and question with feedback actions

took 12 s. When computing the action values within the forward search tree, we set the

cost for a leaf node to be the probability of not passing the assessment phase multiplied

by 10 �mina rðaÞ, a scaling of the minimum future cost.

We set �t, the probability of ignoring a teaching action, and �p, the probability of mak-

ing a production error when answering a question, by finding the values that maximized

the log likelihood under a given model of the data from the participants taught using a

random policy; details of this procedure and the resulting values can be found in the Sup-

plementary Materials.

For forward planning, we set the parameters of the algorithm to sample as many

actions as possible given the constraints of planning in real-time (see Supplementary

Materials for more details about the number of free parameters in the algorithm and how

these parameters were set). In particular, we limited all computations to 3 s. Given this

constraint, we set the lookahead horizon to two actions. Policies for the first nine actions

were precomputed with ten actions sampled at each level. Caching the first nine actions

allows us to consider more actions at each horizon, while still using a constrained number

of actions to speed computations.

Later actions were computed by sampling the following number of actions at each

level: seven and six actions for the memoryless model; eight and eight actions for the

discrete model with memory; and four and three actions for the continuous model. Sixteen
particles were used for the continuous model, and M = 2 for the discrete model with
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memory (both for the simulated learner and the POMDP policy). The effects of varying

these parameters are not extreme: Sampling more actions at each level results in less vari-

ance, but it does not tend to change the outcome across many simulations. The results are

also not very sensitive to changes in the number of particles, although using a very small

number of particles results in poor performance. The simulations for the discrete learner

with memory are sensitive to changes in the assumed memory capacity of the learner; for

instance, if memory capacity is set to zero, this learner is identical to the memoryless

learner.

7.2. Results and discussion

For each type of simulated learner, we examined how the expected time to mastery

varied based on the teaching policy. Expected time to mastery was computed by assum-

ing that each action took the amount of time assumed by the POMDP planner. For

instance, if a simulated learner identified the mapping after three actions, two of which

were example actions and one of which was a quiz action, the expected time to mastery

would be 2�7.0 + 1�6.6 = 20.6 s.5 Initial inspection showed that the distribution of learn-

ing times exhibited a long right tail, so we analyzed results using medians, which are

more robust than means to outliers and non-symmetric distributions.

Fig. 4 includes results for this simulation and Simulation 2, which includes several

stronger baselines policies for comparison. These results demonstrate that teaching using

a POMDP policy can decrease the expected time to mastery relative to the random pol-

icy, even if the learner does not match the learner model in the POMDP. For all three

learner types, there was a significant main effect of teaching policy on the expected time

to mastery (Kruskal–Wallis: memoryless learner, v2ð3Þ ¼ 21:4, p < .001; discrete repre-

sentation with memory, v2ð3Þ ¼ 26:7, p < .001; continuous learner, v2ð3Þ ¼ 46:5,
p < .001). We performed planned, pairwise comparisons between the POMDP policies

and the random policy. For all three simulated learners, the POMDP policies significantly

improved learning efficiency (see Table 1).

We also examined the simulations to see what types of policies emerged from different

assumed learner models. Fig. 5 shows part of the discrete model with memory policy.

Here, the model shows an example, and then follows this with a quiz question. The ques-

tion allows the model to check whether the learner has mastered part of the concept, and

it is less costly than showing another example, since quiz actions are generally completed

more quickly than example actions. After the example, the next action is dependent on

the response that is given by the student, as the POMDP updates its belief state using the

observation model. Some responses may lead to the next action being an example while

others may result in more quiz questions, either because the student responded correctly

or because the model is attempting further diagnosis. The pattern of differential action

types based on whether the quiz was answered correctly was typical of the planner’s

strategies, although the exact strategy was dependent on previous actions and observa-

tions as well as the planner’s confidence in the learner’s knowledge state. Questions with
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feedback were rarely used by any of the POMDP policies because of their high cost rela-

tive to their effectiveness.

There were some differences based on which learner model was assumed, and which

type of learner was being taught. Overall, the policies based on the discrete model with
memory and the continuous model used an average of at least 90% example actions, with

the remaining actions being almost exclusively quiz questions. One exception was the

case of the discrete memory model for teaching and a continuous learner, where one

simulation never reached mastery and the policy devolved into asking primarily quiz

questions. Given a longer period to teach, this policy would presumably diagnose the
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Fig. 4. Results for Simulations 1 and 2: Median time for simulated learners to reach mastery, by policy

type. Error bars correspond to bootstrapped 68% confidence intervals (equivalent to one standard error).

Bolded conditions are POMDP policies.

Table 1

Simulation results

Simulated Learner Comparison v2ð1Þ p

Memoryless memoryless versus random 18.8 <.001
Memoryless discrete model with memory versus random 11.7 <.001
Memoryless continuous versus random 7.1 <.01
Discrete with memory memoryless versus random 17.4 <.001
Discrete with memory discrete model with memory versus random 15.2 <.001
Discrete with memory continuous versus random 18.1 <.001
Continuous memoryless versus random 31.9 <.001
Continuous discrete model with memory versus random 18.5 <.001
Continuous continuous versus random 35.2 <.001

Note: Planned pairwise comparisons using Kruskal–Wallis tests were conducted to assess differences in

expected time to mastery based on the teaching policy used. For all three learners, all POMDP policies were

significantly more effective than the random policy.
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learner’s incorrect belief, and then use an example to correct that belief. The proportion

of quiz versus example actions was more variable for the memoryless policy, probably

because the memoryless model assumes a much more stochastic learner than the other

two policies. This means that the model has less certainty about the learner’s knowledge

state, and thus less guidance for choosing what questions to ask the learner.

In summary, POMDP policies were in general effective at improving learning effi-

ciency even when the assumed policy was incorrect. While different types of simulated

learners varied dramatically in the time required to master a concept, these differences

were generally not greatly mediated by which type of learner was assumed by the

POMDP planner. Based on the type of learner assumed by the POMDP planner, however,

the policies do have qualitatively different characteristics.

8. Experiment 1: Teaching human learners alphabet arithmetic

We next turn to a behavioral experiment to explore whether the findings from the sim-

ulations also hold when teaching human learners. Such an investigation is necessary since

human learners may vary more dramatically and in different ways than the simulated

learners.

8.1. Methods

8.1.1. Participants
A total of 40 participants were recruited online and received a small amount of mone-

tary compensation for their participation.

8.1.2. Stimuli
All participants were randomly assigned three mappings between the letters A�F and

the numbers 0–5. These mappings were learned in succession.

Example:
B+A=1

Quiz:
C+D = ?

(true answer = 5)

Example:
C+A=2

1

5

9

Quiz:
B+D=?

Quiz:
B+C=?

Fig. 5. Part of a policy from the discrete model with memory. Possible student answers to the quiz are indi-

cated on the arrows; some are omitted. Based on the student’s response, the action after the quiz may correct

a misunderstanding, try to better diagnose the cause of an incorrect answer, or continue quizzing to try to

detect a misunderstanding. Actions after the quiz are contingent upon the student’s response, reflecting the

fact that action choices are based on the computer’s beliefs about the student’s knowledge, which are updated

given the student’s behavior.
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8.1.3. Procedure
Participants were assigned to either the control condition, in which teaching actions

were chosen based on the random policy, or to the experimental condition. Assignment

to condition was based on the time of participation, with all participants in the control

condition assigned prior to participants in the experimental condition. This allowed us to

use the results from the control condition to set the parameters of the POMDP models, as

described above. We have no reason to believe this biased the results. Each participant in

the experimental condition experienced all three of the teaching policies in random order,

one for each mapping learned. The experiment consisted of a sequence of teaching and

assessment phases. In each teaching phase, a series of three teaching actions was chosen

based on condition. After each teaching phase, participants completed an assessment

phase in which they were asked to give the number to which each letter corresponded.

Answers in the assessment phase were not used to update the beliefs of the POMDP

models to allow for fair comparisons across conditions. Teaching of a given mapping ter-

minated when the participant completed two consecutive assessment phases correctly or

when 40 teaching phases had been completed. Within all phases, the equations the partic-

ipant had seen were displayed on-screen, and participants could optionally record their

current guesses about which letter corresponded to which number.

8.1.4. Computing policies
The cost for each action type and the setting of the e parameters was the same as that

in the simulations above. In all conditions, we also inserted a 3 s delay between actions

in order to allow time for planning.

8.2. Results and discussion

We compared the amount of time participants took to learn each mapping and, as in

the simulations, analyzed results using medians. There was no significant within-subjects

difference in the amount of time or number of phases to learn the first, second, or third

mapping (Kruskal–Wallis p > .8).6

Overall, participants taught by POMDP planning took significantly less time to learn

each mapping (232 s vs. 321 s; Kruskal–Wallis: v2ð3Þ ¼ 16:5, p < .001); see Fig. 6.

Planned pairwise comparisons show that all POMDP policies but the memoryless policy

resulted in significantly faster learning (Kruskal–Wallis: memoryless versus random,
v2ð1Þ ¼ 2:9, n.s., p = .087; discrete model with memory versus random, v2ð1Þ ¼ 7:4,
p < .01; continuous versus random, v2ð1Þ ¼ 12:5, p < .001).

As in the simulations, differences in policies occurred based on the learner model used.

Policies for both the discrete model with memory and the continuous model began with

six independent equations that fully specify the mapping. This is the policy one might

have hand-crafted to teach this task, demonstrating that despite approximations in plan-

ning, the POMDP planner finds reasonable teaching policies. Each of the policies for

these two models gives examples until there is a high probability the learner is in the
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correct state, and then asks quiz questions, which are less costly than examples, to detect

errors in the learned mapping.

The memoryless policy repeats specific example actions more often than the other poli-

cies since it assumes that the learner does not store previous actions in memory. This is

clearly a pessimistic assumption, especially given that previously seen equations were dis-

played on-screen during the experiment. The fact that this model did not significantly

decrease time to learn suggests such an unrealistic assumption may be detrimental for

problem selection. However, the actions that are chosen do seem to be those that most

limit the number of consistent hypotheses given both the structure of the mapping and

the immediate preceding action, suggesting that we are finding a relatively good policy

given the constraints of this learner model.

In the simulations, the types of actions chosen varied based on the assumed learner

model. These variations persisted in the experiment. Fig. 7 shows number of actions of

each type at each point in time in the experiment where at least three participants

remained. Overall, the continuous policy asked the fewest quiz questions, while the mem-
oryless policy asked the most (39% of actions). The memoryless policy tended to ask quiz

questions later than the continuous policy, though, resulting in fewer participants receiv-

ing any quiz questions. The memoryless policy likely asked questions more frequently

than the other policies because the state of a memoryless learner after an example is

known with less certainty than in the other two models: In those models, the new state is

constrained to be consistent with multiple pieces of past evidence, whereas the memory-

less learner’s state is constrained only to be consistent with the current example. None of
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Fig. 6. Median time to learn each mapping in Experiment 1, by policy type (POMDP policies are bolded);

error bars correspond to bootstrapped 68% confidence intervals (equivalent to one standard error). The contin-
uous and discrete model with memory policies result in significantly shorter time to mastery than the random
policy.

20 A. N. Rafferty et al. / Cognitive Science (2015)



the policies used many feedback actions due to the fact that these actions are consider-

ably more expensive than other actions.

While the actions did vary between the policies, one might wonder why these different

policies had little variance in their teaching efficacy. Specifically, while the two more

complex learner models significantly reduced the time to learn, they did not result in sig-

nificantly different outcomes from one another or from the memoryless policy. However,

the simulation predicts this result if our learners are similar to the discrete learner with

memory or the continuous learner. In both of these cases, all of the teaching policies

were equivalent to one another. These two learners are quite powerful, and they are able

to master the concept within only a few trials; thus, we might expect that there are multi-

ple optimal or near-optimal policies, such that using a policy from one model is still rela-

tively effective for a different model. Since we perform only approximate POMDP

planning, we expect that the computed policies are only near-optimal even with respect

to the given learner model. Additionally, the lack of difference in outcomes from using

different teaching policies may be due to the fact that learning takes place in a small

number of actions and we assess knowledge only every three actions; this means we can-

not detect small changes in the number of actions required for mastery.

To summarize, the POMDP policies were effective for teaching human learners an

alphabet arithmetic mapping, with policies based on the two more complex learner
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Fig. 7. Action types at each time in the experiment, by condition. Each graph shows the number of partici-

pants for whom the nth action was an example, question with feedback, or quiz. Data are shown only for

time points where at least three participants had not mastered the concept.
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models significantly decreasing time on task as compared to a random control policy.

These gains are similar to what we predicted based on the simulation results. This sug-

gests that while the human learners may not exactly match any of our learner models, the

differences are not so large as to prevent these models from being effective guides for

pedagogical decisions.

9. Stronger baseline policies for alphabet arithmetic

Experiment 1 showed that the POMDP planning framework could decrease the time to

learn a mapping relative to a random policy. We now consider two alternative compar-

ison policies: a random policy with only quizzes and examples (quiz-example only), and
a policy that chooses the example that would result in the maximum information gain for

the learner (maximum information). If the POMDP policies are leading to faster learning

only due to avoiding costly actions, rather than by choosing effective sequences of

actions based on the learner’s likely understanding, then we would expect the quiz-
example only policy to perform as well as the POMDP policies. Comparison to the

maximum information policy, which does not consider the consequences of its actions

beyond their immediate effects, can help to evaluate how important planning is in this

task, especially given that planning requires us to consider only a randomly sampled

subset of possible actions at each step. We first briefly describe the two new policies and

their effectiveness in simulation, and then turn to a second behavioral experiment.

9.1. New baseline policies

The quiz-example only policy was included since the results of Experiment 1 indicated

that questions with feedback took longer than the other actions for learners to complete.

Since these actions will make up roughly one third of all actions in the random policy,

we thought this might lead to slower learning with the random policy based on the mix

of actions rather than the intelligent sequencing of actions. While part of the power of

the POMDP policies is to decide what mix of actions is appropriate, we believe that the

quiz-example only policy provides a comparison that might add value over a random
policy while not including a model of the learner.

The maximum information policy is similar to the POMDP policies in that it includes

a model of the learner, but it does not plan over multiple time steps and is not as flexible

in the types of learner models that it can be paired with. The maximum information pol-

icy calculates which action will produce the maximum information gain for the learner,

where information gain is defined as the difference between the Shannon entropy of the

learner’s state before the action and the entropy of the new state after the action has been

taken. The entropy of the state is calculated as �Rn
i¼1pðciÞ logðpðciÞÞ, where ci is the ith

concept (Shannon & Weaver, 1948); when much of the probability is on only a few con-

cepts, the entropy of the state will be low, while a uniform distribution corresponds to

the highest possible entropy. This quantity has been used in other work for selecting data

22 A. N. Rafferty et al. / Cognitive Science (2015)



for human and computer learners (e.g., MacKay, 1992; Tang et al., 2010). This policy

only considers examples, since quizzes are assumed to not change the learner’s state and

as mentioned above, questions with feedback are more time consuming for learners with-

out increasing the information gain. Because entropy will always be zero when the lear-

ner only has a single hypothesis, this maximum information policy requires a learner

model where the hypothesis can be represented as a distribution over multiple concepts;

this policy thus assumes the continuous learner model. In general, we would expect this

model to perform relatively well, although it could perform poorly in cases where learn-

ers drastically diverge from the model’s assumptions or where planning over multiple

time steps leads to better policies.

9.2. Simulation 2: Performance of additional controls for alphabet arithmetic

We simulated the two new control policies and compared the results to those described

in the initial simulations. As shown in Fig. 4, the quiz-example only policy generally per-

forms similarly to the random policy. Both result in slower learning than the POMDP

policies. In contrast, the simulated learners learn quite quickly from the maximum infor-
mation policy. None of the POMDP policies are significantly faster than this policy. The

maximum information policy is effective because this domain allows information to be

progressively incorporated, such that the amount of information gained from a single

action is a good heuristic for the overall progress in learning the concept. However, it is

promising for the POMDP model that it does not in most cases fare worse than the

maximum information policy, despite the approximations necessary to carry out planning.

The POMDP model still maintains the advantage of being able to work with a broader

array of learner models and to consider the benefits of diagnosing the learner’s knowl-

edge in addition to the benefits of trying to change that knowledge. Overall, these results

suggest that while POMDP planning is not the only way to effectively select pedagogical

actions, this method generally performs as well or better than the comparison methods

for alphabet arithmetic.

10. Experiment 2: Effectiveness of new control policies for alphabet arithmetic

We conducted a second behavioral experiment to replicate the effective performance

of the three POMDP policies and to examine the performance of the two new policies.

10.1. Methods

10.1.1. Participants
A total of 100 participants were recruited online and received a small amount of mone-

tary compensation for their participation.
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10.1.2. Stimuli
All participants were randomly assigned three mappings between the letters A�F and

the numbers 0–5. These mappings were learned in succession.

10.1.3. Procedure
Participants were assigned to be taught by one of the five policies. Unlike in Experi-

ment 1, participants taught by a POMDP policy were taught by the same type of policy

for all three mappings, rather than one mapping being taught by each of the policies.

Thus, each policy was used to teach twenty participants. The remainder of the experimen-

tal procedure was the same as in Experiment 1.

10.2. Results

As shown in Fig. 8, the POMDP policies were more effective than the quiz-example
only policy and about as effective as the maximum information policy, mirroring the sim-

ulation results. As in Experiment 1, there was a significant effect of policy on the time to

learn each mapping (Kruskal–Wallis: v2ð4Þ ¼ 55:6, p < .0001). Planned-pairwise com-

parisons showed that the POMDP policies and the maximum information policy were all

significantly more effective than the quiz-example only policy (Table 2). With correction

for multiple comparisons, the maximum information policy and the POMDP policies were

not significantly different from one another (Table 2).

In Experiment 2, participants taught by the POMDP policies tended to learn the map-

pings more quickly than when taught by the POMDP policies in Experiment 1, and all

three POMDP policies had very similar median times to mastery. One reason for this
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Fig. 8. Median time to learn each mapping in Experiment 2, by policy type; error bars correspond to boot-

strapped 68% confidence intervals (equivalent to one standard error). The POMDP policies (bolded) tended

to result in faster learning than the two random policies.
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discrepancy may be because participants in Experiment 2 were always taught by the same

policy. This may result in more familiarity with how a concept is taught, resulting in fas-

ter learning. This is reflected in the data: Unlike in Experiment 1, there was a significant

effect on the time to mastery based on whether the mapping was the first, second, or third

mapping learned (Kruskal–Wallis: v2ð2Þ ¼ 59:6, p < .0001). A follow-up multiple com-

parison test showed that the second two mappings were learned significantly more

quickly than the first mapping.

Overall, Experiment 2 replicates the main results of Experiment 1, demonstrating that

the POMDP policies are more effective than a simple control policy. The trend of

increasing complexity in the learner model leading to faster time to mastery was not

replicated in this experiment, suggesting that simple models can be effective even if they

are known to not match human learners exactly. This experiment was unable to determine

whether the POMDP policies are more effective than the maximum information policy,

which represents a relatively sophisticated way of automatically choosing pedagogical

actions.

11. Evaluating effectiveness in a larger state space: The number game

In our third experiment, we explore whether the POMDP framework can accelerate

learning in a larger and more complex concept space, the space of numerical concepts

used in the Number Game (Tenenbaum, 2000). In the Number Game a participant is

trying to infer a number concept, which consists of a subset of numbers between 1 and

100. For example, both “even numbers” and “numbers that end in three” are possible

concepts. We use a hypothesis space consisting of the 6,412 most psychologically salient

of the 2100 possible concepts, and a hierarchical prior p0 over these concepts that was

developed in prior work (Tenenbaum, 2000). In past Number Game research, information

about the concept is typically given as a static set of one or more examples of numbers

that are in the target concept, although other variations exist (Nelson & Movellan, 2001).

Table 2

Experiment results

Comparison v2ð1Þ p

memoryless versus quiz-example only 23.0 <.0001
discrete model with memory versus quiz-example only 26.2 <.0001
continuous versus quiz-example only 41.7 <.0001
maximum information versus quiz-example only 40.0 <.0001
memoryless versus maximum information 3.98 =.0461
discrete model with memory versus maximum information 1.11 >.2
continuous versus quiz-example only 1.29 >.2

Notes: Planned pairwise comparisons using the Kruskal–Wallis tests were conducted to assess differences

in expected time to mastery based on the teaching policy used. All other policies resulted in significantly less

time to learn than the quiz-example only policy, and after correcting for multiple comparisons, no significant

differences were found between any of the three POMDP policies and the maximum information policy.
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Good performance generally requires multiple examples, which suggests that a sequential

teaching strategy has the potential to accelerate this process. We modify the Number

Game so that learning occurs over a sequence of steps. Each step consists of one teacher

action; since there are 100 numbers, and three action types, the action space A consists of

300 potential actions.

12. Simulation 3: Teaching simulated learners the number game

We begin with simulations of the Number Game to understand how differences

between the simulated learner and the learner assumed by the POMDP policy affect the

speed with which concepts are learned in this domain.

12.1. Methods

The methods for this simulation closely mirror those in Simulations 1 and 2: Simula-

tions are conducted for each combination of learner (memoryless, discrete with memory,

and continuous) and teaching policy (random, quiz-example only, maximum information,
and the three POMDP policies). There are many different number concepts that could be

taught. We taught three concepts in both this simulation and Experiment 3: multiples of

seven; multiples of four minus one; and numbers between 64 and 83 (inclusive). Fifty

simulations were run for each combination of simulated learner, teaching policy, and tar-

get concept. To match the experiment described below, the random and quiz-example
only policies were modified to sample half of the numbers from within the concept and

half from outside the concept; further explanation for this change is provided in Experi-

ment 3.

As in Experiment 1, the simulations alternate between teaching and assessment phases.

In each teaching phase, a series of five teaching actions was chosen based on condition.

After each teaching phase, participants completed an assessment phase in which they

were shown a sequence of ten numbers, five randomly chosen from within the concept

and five from outside of the concept, and asked whether each number was in the concept.

As in the previous experiment, answers in this phase were not used to update the POMDP

models. Teaching was terminated when the simulated learner correctly responded to all

numbers within a single assessment phase, or when 40 teaching phases had been com-

pleted.

To set the parameters of the POMDP policies, we followed the same procedure in

Experiment 1, conducting the random condition prior to any other conditions and using

these data to set action costs and e parameters. The cost of each action type was the med-

ian time for participants in the random policy condition to complete these actions: 2.4 s

for example actions, 2.8 s for quiz actions, and 4.8 s for question with feedback actions.

The two additional parameters for each learner model, �p and �t, were again set to

maximize the log-likelihood of the data in the control condition (see Supplementary

Materials for details). Actions for the first four teaching phases (20 total actions) were
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precomputed. For later actions, we set the planning parameters such that all models

would take about 3 s to compute an action. As before, these parameters were not opti-

mized, and small changes in their values did not have large impacts on the approximate

policies. The lookahead horizon was set to three for the continuous model, and two for

the other models. At each level, the following number of actions were sampled: six and

eight actions for the memoryless model; six and six actions for the discrete model with
memory; and six, six, and eight actions for the continuous model. Sixteen particles were

used for the continuous model, and M = 2 for the discrete model with memory.

12.2. Results and discussion

For each type of simulated learner, we compared how the expected time to mastery

varied based on the teaching policy. Expected time to mastery was computed by assum-

ing that each action took the amount of time assumed by the POMDP planner, as in

Simulation 1. Following our analysis of alphabet arithmetic, we analyze results using

medians and use a bootstrapped Friedman’s test to determine significance.

As shown in Fig. 9, there is considerable variation in effectiveness for each policy

based on what type of learner is assumed as well as what type of concept is being taught.

For the simulated continuous learner, there was a significant effect of teaching condition

on time to mastery (Friedman: v2ð5Þ ¼ 111:5, p < .0001). Both the continuous POMDP

policy and the maximum information policy performed well, with neither outperforming

the other. Planned pairwise comparisons between the POMDP policies and the control

policies showed that the continuous policy outperformed the two random policies and

there were no significant differences found between this policy and the maximum infor-
mation policy; however, the memoryless and discrete model with memory policies were

outperformed by the maximum information policy (Table 3).

For the simulations with the memoryless and memory learners, the maximum informa-
tion policy tended to lead to slower learning than the discrete POMDP policies. While

for the memory learner, the maximum information policy performed as well as the

POMDP policies when aggregated across concepts, it performed relatively poorly for the

range concept. This poor performance also occurred with the memoryless simulated lear-

ner, where the maximum information policy was significantly worse than the memory and

memoryless POMDP policies (Friedman: memoryless versus maximum information,
v2ð1Þ ¼ 55:4, p < .0001; discrete model with memory versus maximum information,
v2ð1Þ ¼ 65:0, p < .0001). This discrepancy is due to the fact that the maximum
information policy assumes that the learner remembers information, and narrows too

quickly to only the endpoints of the range. We discuss this issue further in the results of

Experiment 3.

For both the simulated memory and memoryless learners, there was a significant effect

of teaching policy on time to mastery (Friedman: memoryless learner, v2ð5Þ ¼ 144:8,
p < .0001; memory learner, v2ð5Þ ¼ 296:9, p < .0001). For both of these learners, the

POMDP policies outperformed the two random control policies (Table 3). Overall, these

simulations show that there is considerable variability in the best way to teach a concept
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depending on the characteristics of both the learner and the particular concept being

taught. In this larger and more complex domain, mismatches between the computer

teacher’s assumptions and the learner can lead to suboptimal policies and slower learning.

13. Experiment 3: Teaching human learners the number game

We now turn to experimentally investigating how well the POMDP policies can teach

number concepts to human learners.

13.1. Methods

13.1.1. Participants
A total of 360 participants were recruited from the University of California, Berkeley,

and received course credit for their participation.
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Fig. 9. Median time for simulated learners to reach mastery, by policy type (POMDP policies are bolded);

error bars correspond to bootstrapped 68% confidence intervals (equivalent to one standard error). In some

cases, mismatches between the actual and assumed learner type led to increases in time to mastery.
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13.1.2. Stimuli
Each participant learned one randomly chosen number concept. The possible number

concepts were the same as in Simulation 3: multiples of seven; multiples of four minus

one; and numbers between 64 and 83 (inclusive).

13.1.3. Procedure
The procedure was similar to that in Experiments 1 and 2. Participants in Experiment

3 learned only a single concept, and they were assigned to be taught using actions chosen

based on one of the three POMDP policies or by one of the three control policies

(random, quiz-example only, or maximum information). Pilot testing demonstrated that

randomly chosen teaching actions were extremely frustrating for participants, making dis-

engagement likely, so we modified the random and quiz-example only policies to place

higher probability on numbers within the concept. These policies first sampled whether to

choose a number within the concept or a number outside of the concept, with equal prob-

ability on each of the two possibilities, and then sampled uniformly within the chosen

class of numbers.

As in Experiment 1, participants alternated between teaching and assessment phases;

these phases had the same structure as those used in Simulation 3. Within all phases, the

Table 3

Number Game simulation results

Simulated Learner Comparison v2ð1Þ p

Continuous memoryless versus random 46.0 <.0001
Continuous discrete model with memory versus random 25.3 <.01 (n.s.)
Continuous continuous versus random 75.7 <.0001
Continuous memoryless versus quiz-example only 33.0 <.0005
Continuous discrete model with memory versus quiz-example only 12.2 >.1 (n.s.)
Continuous continuous versus quiz-example only 62.6 <.0001
Continuous memoryless versus maximum information 35.6 <.005
Continuous discrete model with memory versus maximum information 56.4 <.0001
Continuous continuous versus maximum information 6.0 >.1 (n.s.)
Discrete with memory memoryless versus random 85.1 <.0001
Discrete with memory discrete model with memory versus random 88.2 <.0001
Discrete with memory continuous versus random 118.9 <.0001
Discrete with memory memoryless versus quiz-example only 85.2 <.0001
Discrete with memory discrete model with memory versus quiz-example only 88.3 <.0001
Discrete with memory continuous versus quiz-example only 118.1 <.0001
Memoryless memoryless versus random 81.9 <.0001
Memoryless discrete model with memory versus random 91.6 <.0001
Memoryless continuous versus random 47.6 <.0001
Memoryless memoryless versus quiz-example only 73.8 <.0001
Memoryless memory versus quiz-example only 83.5 <.0001
Memoryless emphcontinuous versus quiz-example only 39.6 <.0001

Note: Planned pairwise comparisons using Friedman tests. The POMDP policies generally outperformed

the random and quiz-example only policies, but they were outperformed by the maximum information policy

except in the case of the continuous policy.
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numbers that the participant had seen, as well as any category information that had been

shown, were displayed on-screen.

13.1.4. Computing policies
As described in Simulation 3, parameters to compute the POMDP policies were set

based on data from the random condition. Mirroring Experiment 1, a 3 s delay was

inserted between all actions in all conditions to allow time for planning; if a model did

not return an action within 3 s, the search was interrupted and the best action found so

far was returned.

13.2. Results and discussion

We analyzed the median time on task for participants to learn the number concept, fol-

lowing the same methods as in Simulation 3. As shown in Fig. 10, there was a main

effect of teaching condition: Participants taught using one of the POMDP teaching poli-

cies spent less time on task (Friedman: v2ð5Þ ¼ 65:8, p < .001). Pairwise tests between

each teaching policy and the random condition showed that each individual policy was

more effective than the random policy (Friedman: memoryless versus random,
v2ð1Þ ¼ 27:5, p < .001; discrete model with memory versus random, v2ð1Þ ¼ 18:7,
p < .001; continuous versus random, v2ð1Þ ¼ 23:5, p < .001). Unlike in Experiment 1,

the quiz-example only policy was generally more effective than the random policy, and it

performed as well as the POMDP policies in some cases. However, this policy performed

poorly compared to the POMDP policies for the range concept (numbers between 64 and

83), and aggregated across concepts, each POMDP policy in general performed better

than the quiz-example only policy.

While the teaching policies taught learners more quickly overall than the two random

policies, these POMDP policies were not significantly different from one another in terms

of effectiveness, and there was considerable variation in which policy was most effective
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Fig. 10. Median time for participants to learn the concept in the Number Game. Participants taught using

one of the POMDP policies (bolded) are significantly faster than participants taught using a random policy.

30 A. N. Rafferty et al. / Cognitive Science (2015)



for each concept, similar to the variation shown in Simulation 3. In Experiment 1, we

also saw that the different models did not result in significantly different outcomes from

one another. Experiment 3 introduces the additional difficulties of a more complex con-

cept space in which we might expect learners to differ more from one another and from

our assumed policies. For example, some learners might have little familiarity with modu-

lar arithmetic, and thus not consider concepts like “multiples of four minus one.” This

would make this concept more difficult to learn, and it would likely cause the learner to

exhibit different probabilities of particular knowledge state transitions than we assumed.

These differences in assumptions about what concepts are possible would also lead to dif-

ferent learning behavior for other concepts, since our learner models assume that the

space of possible concepts is known and fixed. Thus, the reason that a single policy is

not consistently more effective than others may be due to mismatches between the true

learner model and the model assumed by the policy.

This difference is likely also the reason that the maximum information policy per-

formed so poorly. The continuous model underlying this policy was likely overconfident

and estimated learners as learning more quickly than they actually did. While this may

have hurt performance of the continuous POMDP policy, it was even more detrimental

for the maximum information policy, an effect that also appeared when this policy was

teaching the memoryless and memory learners in Simulation 3. The continuous POMDP

policy rarely chose quiz actions, but these actions could never be chosen by the maximum
information policy. It thus could not revise its beliefs about the learner’s state. Addition-

ally, once the model estimated that the participant had learned the concept, it would

choose examples essentially at random, since no example was expected to change the

learner’s state, or focus on only a small subset of actions that were estimated as poten-

tially state changing given the transition e. Anecdotally, this was frustrating to partici-

pants, and it may have led to disengagement. This frustration was exacerbated in the

maximum information condition compared to the two random conditions since those

policies chose half of their numbers from within the concept and half from outside; the

maximum information policy was more likely to choose numbers outside of the concept

when sampling at random as fewer than half of the numbers were in the concept. For the

range concept of numbers between 64 and 83, the policy only showed examples near the

endpoints in later teaching phases (e.g., 63 and 64), since it estimated that learners would

have ruled out all non-range concepts based on the previous examples and there was still

a small amount of probability mass on range concepts near the true concept (e.g., num-

bers between 63 and 83). However, these examples were frequently repeated, again

leading to frustration and reflecting the overconfidence of the model.

Problems due to discrepancies between the assumed learner model and human learners

are likely to be exacerbated by the cost structure in this experiment. As in Experiment 1,

we set the costs of different action types based on the median time it took participants in

the control condition to complete each of the action types. In Experiment 1, this resulted

in quizzes being less costly than examples; conversely, in this experiment, examples were

the least costly action. This resulted in the POMDP policies having relatively few non-

example actions: As mentioned above, there were almost no quiz actions for participants
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taught using the continuous model, and the discrete model with memory had the most

quiz actions at 6.6%. This means that the continuous policy may have been overly confi-

dent in its estimate of the learner’s state, and that it did not gain information about when

that estimate was inaccurate. This issue occurs because the policy assumes that the lear-

ner model is accurate; incorporating more uncertainty into the learner models might help

to alleviate this problem. Additionally, one could modify the incentive structure to make

quiz actions less costly when significant time has elapsed between information-seeking

actions.

Examination of the teaching policies can shed light on how different learner models

lead to different characteristic actions. All participants began with the same precomputed

policy for the first four teaching phases (20 teaching actions). In cases where there was a

quiz question, contingent policies were precomputed. A quiz question occurred only for

the memoryless policy, as the fifteenth action for the concept “multiples of seven.” For

the multiples of seven concept, most of these beginning example actions showed exam-

ples of numbers in the concept (positive examples) for both the memoryless and the

discrete model with memory policies (see Fig. 11). The continuous policy showed half

positive examples and half negative examples, with the first negative example appearing

in the fourth teaching action. One reason for this may be that multiples of seven can be

uniquely defined in the concept space using only a few positive examples; thus, for the

continuous policy and the policy for the discrete model with memory, the learner is

expected to learn the concept relatively quickly unless she does not update her state.

The concept “multiples of four minus one” was harder for participants to learn than

the other concepts. The prior in our model, which was created in previous work
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Fig. 11. Number of participants where the action involved a number in or out of the concept at each time in

the experiment, by concept and condition. Time points where there are data for at least three participants are

shown. The graphs demonstrate that number choices differed both by what learner model was assumed and

the concept that was taught.
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(Tenenbaum, 2000), predicts this result: This concept has substantially lower prior proba-

bility than the other concepts we considered. This concept may also be harder to learn

due to the fact that it cannot be defined using only positive examples; all positive exam-

ples of this concept are also positive examples of “odd numbers.” For all models, the

examples shown are mainly odd numbers: In the first twenty examples, few even numbers

are shown by both policies for the continuous model and memoryless model (three and

four examples, respectively), and no even numbers are shown by the policy for the dis-
crete model with memory. All three policies also show relatively few negative examples

that are odd numbers: two for the memoryless model, one for the discrete model with
memory, and three for the continuous model. While either of the policies based on dis-

crete learners assumes that the learner could learn the correct concept without negative

examples of odd numbers, the continuous learner cannot converge on the correct concept

unless some negative examples of odd numbers are shown.

Finally, for the range concept, all three policies again concentrate their actions on posi-

tive examples, and qualitatively, all three models look relatively similar. The policies do

not seem to focus as much on the endpoints of the range as one might intuitively expect.

This may stem from the fact that the actions to choose from are sampled, so in most

cases, the tutor may not have the option to show one of the endpoints (or a point just out-

side the endpoints). This points to the potential advantage of using a smarter sampling

strategy for choosing which actions to consider, although the performance of the maximum
information policy shows the potential downside of this approach when the tutor is too

confident about the learner model.

Overall, the results from the Number Game demonstrate that POMDP policies can be

effective for teaching a variety of concepts using the same computational framework. The

policies that emerged for each model match what one might intuitively expect for teach-

ing these number concepts, and they also highlight how some characteristics of each

model manifest in what patterns of choices are optimal. These results demonstrate that

POMDPs can be more successful than even sophisticated strategies in the existing litera-

ture, such as policies using information gain.

14. General discussion

Teaching effectively is a complex task. It can be difficult to determine what choices

will result in learning and to consider the tradeoffs of different pedagogical decisions,

especially given that one cannot directly observe the learner’s knowledge. We have

approached teaching as a decision problem in which a sequence of individual but interde-

pendent pedagogical choices must be made. By framing teaching using the POMDP

framework, we take into account the immediate and long-term gains of each possible

choice. This framework highlights the modular nature of the different components of the

problem, such as the learner model and the pedagogical objective. The POMDP frame-

work allows one to determine an optimal teaching policy with respect to a specified

objective.
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We have fleshed out how to apply the POMDP framework to teaching concepts and

demonstrated the effectiveness of POMDP planning experimentally. This framework has

not previously been fully explored for the general problem of teaching at the level of

problem selection. We have developed this formulation such that it can be applied to a

variety of teaching tasks by specifying the appropriate parameters. Our experiments sug-

gest that POMDPs can sequence information effectively, leading to faster learning than

when the ordering of actions is chosen randomly. One of the potential advantages of this

framework is that the produced policies automatically consider the utility of selecting

instructional actions that aid learning versus diagnostic actions that result in a better esti-

mate of the learner’s state. Both of these types of actions occurred in the optimized poli-

cies, with their frequency varying based on the learner model and task. This suggests that

at least in some cases, it is beneficial to monitor a learner’s state and customize teaching

based on that state estimate. When monitoring the learner’s state, it is often useful to plan

several steps into the future; this planning is automatically incorporated with the POMDP

formulation. The results of our experiments using the Number Game suggest that plan-

ning is beneficial in more complex domains. In principle, monitoring of the state could

also be used to terminate teaching when the model has sufficient evidence that the student

knows the mapping, rather than using assessment phases. The information necessary to

decide whether to terminate can easily be retrieved from the belief state at any given

time. The experimental results showed that different learner models result in systemati-

cally different policies. This illustrates that optimal problem selection depends not only

on knowledge of the domain but also on one’s assumptions about the learner.

14.1. Incorporating existing models

One of the advantages of the POMDP framework is that it can be used to explore how

assumptions about learning affect optimal teaching policies. Many features of teaching,

such as the need to sequence actions and the problem of diagnosing a learner’s knowl-

edge, are naturally integrated into POMDP planning, and the modular nature of this

framework means that improvements in planning algorithms and improvements in learner

models can be developed independently. While feature-based models that assume the stu-

dent state is observable can also consider the implications of existing student models,

additional work may be required to decide what features to use and it may be less natural

to specify learner models without appealing to an unobserved student state. In future

work, it would be useful to test the POMDP framework within an existing intelligent

tutoring system and with student models that have been developed for particular educa-

tional domains.

There are many types of existing student models that one could use within the POMDP

framework (e.g., Corbett & Anderson, 1995; Corbett & Bhatnagar, 1997; Li, Cohen,

Koedinger, & Matsuda, 2011; Pardos, Heffernan, Anderson, & Heffernan, 2010). POMDP

planning is likely to work especially well with models that assume students may make

incorrect generalizations or that assume the effect of items on learning is contingent upon

current skill levels and with domains in which items may involve multiple skills. These
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types of models and domains predict that some sequences of actions may be more benefi-

cial than others, and that recognizing the students’ level of understanding, including par-

ticular misunderstandings, can lead to more effective pedagogical choices. For instance,

Contextual Factors Analysis (Pavlik, Yudelson, & Koedinger, 2011) learns how different

items contribute to particular skills, some of which may have transfer effects whereby

practice on one type of item is beneficial to performance on other types of items. One

could learn a student model using this method, and then optimize problem selection for

the learned model.

Additionally, using a formal framework like POMDPs can allow designers to deter-

mine the impact of changing the learner model on the optimal policy and on the expected

time to mastery. Such an examination could allow one to determine which assumptions

in the model are most crucial for effective instruction and which have few practical con-

sequences. Lee and Brunskill (2012) examine this question with respect to whether indi-

vidualized parameters in knowledge tracing would lead to substantially different numbers

of practice opportunities for mastery.

The POMDP framework can also be used as a way of comparing existing formulations

for selecting teaching actions. Some action selection methods, such as choosing the action

with the highest immediate expected utility, are approximations of the POMDP policy.

By considering how these methods approximate the POMDP, one can use existing work

to assess how close the approximation is to optimal (or whether it is optimal) and what

simplifying assumptions are being made. This theoretical framework can thus help to

unify existing methods, even in cases where using an optimal policy is impractical.

14.2. Improving learner models

Using POMDPs for teaching relies on having models of learning for a given domain.

These models are often hand-created and can be time consuming to construct, although

recent research has made progress on constructing learner models from data (Barnes,

2005; Cen, Koedinger, & Junker, 2006; Gonz�alez-Brenes & Mostow, 2012). Even models

learned from data, however, are often constrained to a structure that may not be appropri-

ate for all types of tasks. Instead, we need a general approach for constructing probabilistic

learner models that can be used within the POMDP framework and for improving these

models to reduce mismatches between the learner model and the actual learner.

The approach we have taken in this work is to build on work in cognitive science on

probabilistic models of cognition. These probabilistic models have been successful in a

variety of areas of cognition (Griffiths, Chater, Kemp, Perfors, & Tenenbaum, 2010;

Tenenbaum, Griffiths, & Kemp, 2006), including language (Chater & Manning, 2006;

Seidenberg & MacDonald, 1999) and reasoning tasks (Hahn & Oaksford, 2007; Oaksford

& Chater, 1994). We considered three learner models based on the literature, fit the

parameters of these models using human data, and then used these models within the

POMDP framework to derive optimal policies. While this generally resulted in successful

learning, the models could clearly still be improved. For example, the models’ estimates

of the learner’s state are currently not accurate enough to use to terminate teaching: the
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memoryless model tends to underestimate the probability of mastery, while the continu-

ous model tends to overestimate this probability. The extent to which learner models

must be consistent with human learning is thus partially a function of the models’

intended use. The models could be further refined by fitting additional parameters from

learner data, reducing the number of assumptions about how learning occurs. Many of

these probabilistic models have primarily been tested in laboratory settings, so further

investigation to improve their fit to human performance should also explore how well

these models generalize to more complex academic domains.

Models from the literature also suggest additional issues to consider. For example,

Walsh and Goschin (2012) provide a formal proof that a learning agent can learn more

from less information if it is aware that it is being taught, rather than simply receiving

information from the environment. Shafto, Goodman, and Griffiths (2014) found that

human learners are similarly sensitive to whether examples are provided by a teacher or

selected randomly. This has implications for what expectations to cultivate in the lear-

ner as well as for how to model the learner’s knowledge. Since Shafto et al. (2014)

present a probabilistic model of learning, the implications of this theory of teaching can

be directly determined by computing the optimal policy. Other research is likely to fur-

ther expand what factors we consider in the learner model and to propose new theories

about how people learn. By adopting a strategy in which the models in these theories

are starting points that can be parameterized and fit to data, the time to create learner

models can be reduced and we can benefit from increasing knowledge about how

people learn.

14.3. Model limitations

In our use of POMDPs, we have focused on learner models that represent only the stu-

dent’s knowledge, rather than considering all relevant factors, such as motivation and

affect. In principle, POMDPs can use student models that account for these factors, which

have received increasing attention in educational technologies (e.g., Conati & Maclaren,

2009; Robison, McQuiggan, & Lester, 2009). However, these factors are not automati-

cally incorporated into the POMDP framework, and they may necessitate a more complex

objective function and cost structure. For example, one might want to maximize an objec-

tive function that incorporates both motivation and knowledge, while minimizing time;

this is likely to make computation of the policy more difficult. One way to incorporate

the learners’ motivation and goals would be to assume that learners have their own

reward functions; for instance, some learners may be more inclined to experiment in a

learning environment, while others simply want to complete the activity in minimal time.

This would lead to different observation models, and it might lead to different policies

for achieving the objective. Inferring the learners’ reward functions could be incorporated

into the observation model (e.g., for experimental work using this method, Baker, Saxe,

& Tenenbaum, 2009; Rafferty, Zaharia, & Griffiths, 2012). Again, this technique would

increase the complexity of computing the POMDP policy.
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In this work, we have also primarily focused on short-term objectives, directed towards

mastery of a small set of relevant material. However, when expanding this framework to

larger tasks, teachers may be concerned with longer-term objectives, such as ensuring

retention or robust learning. These objectives include maximizing the probability that a

student will retain her knowledge over a period of time or that she will be able to transfer

her knowledge to new problems. Such objectives imply a learner model in which there

must be sets of states in which the learner will show similar responses to certain types of

items, such as items of the same type she has already been exposed to. However, when

asked about a transfer item, students whose state reflects deeper learning will give differ-

ent responses than if they had achieved more shallow learning. This could be represented

in the cost model by a cost for knowledge states other than those which reflect deep

learning. The cost of the shallow knowledge state might be less than that of an arbitrary

knowledge state but still non-zero. In this case, there must be some actions that are likely

to help the student learn the knowledge robustly, and ideally, there will be actions avail-

able to assess the student’s generalization abilities. One could further combine the robust

learning objective with costs for increased time to mastery, leading to policies that aim to

quickly achieve robust learning. In general, richer objectives and learner models can be

incorporated through changes to the state space and cost functions. These richer models

are likely to have important and interesting consequences for pedagogical action selection

and to provide opportunities to explore more complex planning algorithms within the

teaching domain.

14.4. Computational limitations

Computational challenges still exist for using POMDP planning: Despite sampling only

a fraction of possible actions and using very short horizons, planning took 2–3 s per

action. While some strategies could be used to make this delay less apparent to the lear-

ner, such as by beginning computations for the next action before the learner submits her

work, and the exact length of the delay is dependent on hardware and implementation

details, we suspect planning time will also pose a challenge in many other teaching tasks

as exact POMDP planning is computationally intractable. In the simulations for alpha-

betic arithmetic, we did not find a great deal of improvement when increasing the number

of actions sampled or the horizon beyond the limits we imposed in the experiments, but

the effect of the computational approximation is likely to vary considerably based on the

structure of the domain being taught. There are several possibilities for reducing the time

to compute the POMDP policy and improving its quality. Following ideas presented in

prior POMDP planning algorithms (Ross et al., 2008), we believe that sampling actions

based on the particular belief node in the tree would improve the search quality, as would

using a more sophisticated evaluation function at the leaves. In particular, the evaluation

function does not use the fact that failure on an assessment phase necessitates a complete

additional teaching phase; this is relevant whenever assessments occur at fixed intervals.

Finally, the relatively long horizons many teaching tasks suggest that these problems may

be better served by Monte Carlo Tree Search (MCTS) planning techniques, which have
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been very successful at producing good online policies for long horizon planning prob-

lems (Gelly & Silver, 2007). All of these approaches may benefit from parallelization.

There are also cases where the computational challenges may be less severe due to

the structure of the domain and the type of student model that is assumed. For example,

many student models involve sets of independent skills that have either been mastered

or not mastered (or more generally, where mastery is unidimensional; for example,

Corbett & Anderson, 1995). In any model with unidimensional mastery, the model can

be modified to have independent skills. If each problem requires only a limited number

of skills, then the change in student knowledge after each problem will be relatively

localized, reducing the complexity of updating the belief state. With some action and

observation structures, a greedy strategy is optimal, eliminating the need to plan ahead

(Karush & Dear, 1967). Yet, in many cases, there are a variety of actions with different

tradeoffs in terms of the diagnostic benefit of an action versus the students’ likely learn-

ing gain (and the type of learning gain; see Koedinger et al. [2012] for discussion of

the interaction between types of pedagogical strategies and learning outcomes); in these

cases, the myopic strategy of only looking one step ahead is generally suboptimal.

Structured models are likely to reduce the computational challenges of planning with

POMDPs, but for general teaching tasks, it is likely that computational limitations will

have a continuing impact on the quality of POMDP policies. Even in these cases, fram-

ing pedagogical action selection within the POMDP framework allows one to benefit

from continuing research on solving POMDPs as well as results concerning what

approximations result in the best policies. Such an approach may thus be more scalable

and easier to maintain than control policies that rely on heuristics or that are created by

experts.

14.5. Conclusion

Deciding what pedagogical decisions to make involves reasoning about a number of

different components and balancing conflicting priorities. In this paper, we addressed this

issue by developing a framework for applying POMDP planning to teaching. This pro-

vided a way of conceptualizing how pedagogical action selection should depend on one’s

model of learning, the structure of the domain, and one’s pedagogical objective. We have

shown that this framework can be used to select actions in real time in domains of mod-

erate size, and we have demonstrated how despite mismatches between the assumed lear-

ner model and actual human learners, POMDP policies can lead to accelerated learning

in concept learning tasks, outperforming promising alternatives such as maximum infor-

mation gain in some domains. While engineering challenges remain, these results suggest

that the formal specification of this framework can lead to both theoretical insights and

practical improvements in selecting pedagogical actions. Future work should further

explore how differences in student models are manifested in optimal teaching policies,

especially given our finding that very different assumptions about learning had similar

outcomes, as well as consider how to apply this approach within an existing tutoring

system.
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Notes

1. The objective can be framed as a function to be maximized that considers the

reward of various actions, or as a function to be minimized that considers the cost

of actions. Any objective in one form can be transformed into the other form by

negating all costs or rewards. In the remainder of this paper, we use the cost fram-

ing as this is most natural for our experiments.

2. See Supplementary Materials for a list of free parameters related to our use of

POMDP planning and information about how these parameters were set.

3. Most state-of-the-art offline algorithms try to compute a policy over a subset of the

reachable subspace, but this is still typically a very large region.

4. For simplicity, we distinguish the POMDP policies based on the learner model they

assume. For example, the memoryless policy is the POMDP policy that assumes a

memoryless learner model.

5. We also compared average phases to mastery based on the teaching policy. Results

were substantially similar to those based on time. Expected time results are

reported because the objective for the planner was based on expected time.

6. We checked whether such a difference existed because participants could poten-

tially use the assessment phases in later mappings to update their hypotheses, if

they learned from earlier mappings that teaching continued based on their perfor-

mance in consecutive assessment phases.
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