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Generalization - deciding whether to extend a property from one stimulus to another stimulus - is a
fundamental problem faced by cognitive agents in many different settings. Shepard (1987) provided a
mathematical analysis of generalization in terms of Bayesian inference over the regions of psychological
space that might correspond to a given property. He proved that in the unidimensional case, where regions
are intervals of the real line, generalization will be a negatively accelerated function of the distance
between stimuli, such as an exponential function. These results have been extended to rectangular
consequential regions in multiple dimensions, but not for circular consequential regions, which play an
important role in explaining generalization for stimuli that are not represented in terms of separable
dimensions. We analyze Bayesian generalization with circular consequential regions, providing bounds

on the generalization function and proving that this function is negatively accelerated.

© 2012 Elsevier Inc. All rights reserved.

Generalizing a property from one stimulus to another is a
fundamental problem in cognitive science. The problem arises
in many forms across many different domains, from higher-level
cognition (e.g., concept learning, Tenenbaum (2000)) to linguistics
(e.g., word learning, Xu and Tenenbaum (2007)) to perception
(e.g., color categorization, Kay and McDaniel (1978)). The ability to
generalize effectively is a hallmark of cognitive agents and seems to
take a consistent form across domains and across species (Shepard,
1987). This consistency led Shepard (1987) to propose a “universal
law” of generalization, arguing that the probability of generalizing
a property decays exponentially as a function of the distance
between two stimuli in psychological space. This argument was
based on a mathematical analysis of generalization as Bayesian
inference.

Shepard’s (1987) analysis asserted that properties pick out
regions in psychological space (“consequential regions”). Upon
observing that a stimulus possesses a property, an agent makes
an inference as to which consequential regions could correspond
to that property. This is done by applying Bayes’ rule, yielding a
posterior distribution over regions. The probability of generalizing
to a new stimulus is computed by summing over all consequential
regions that contain both the old and the new stimulus, weighted
by their posterior probability. Shepard gave analytical results
for generalization along a single dimension, where consequential
regions correspond to intervals of the real line, proving that
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generalization should be a negatively accelerated function of
distance, such as an exponential. He also simulated results for
generalization in two dimensions, examining how the pattern
of generalization related to the choice of consequential regions.
The resulting model explains generalization behavior as optimal
statistical inference according to a probabilistic model - a rational
analysis of generalization (Anderson, 1990; Chater & Oaksford,
1999) - and is one of the most important precursors of the recent
surge of interest in Bayesian models of cognition, which include
extensions of the Bayesian generalization framework beyond
spatial representations (Navarro, Dry, & Lee, 2012; Tenenbaum &
Griffiths, 2001).

One of the valuable insights yielded by Shepard’s (1987)
analysis was that different patterns of generalization could be
captured by making different assumptions about consequential
regions. People use two different kinds of metrics when form-
ing generalizations about multi-dimensional stimuli: separable di-
mensions are associated with exponential decay in “city-block”
distance or the L; metric, while integral dimensions are associ-
ated with exponential decay in Euclidean distance or the L, metric
(Garner, 1974). These different metrics also have consequences be-
yond generalization behavior, influencing how people categorize
objects varying along different dimensions (Handel & Imai, 1972)
and whether people can selectively attend to each dimension
(Garner & Felfoldy, 1970). Additionally, there is evidence that peo-
ple canlearn which metric they should use for generalization based
on concept learning (Austerweil & Griffiths, 2010).

In the Bayesian generalization model, the difference between
separable and integral dimensions emerges as the result of
probabilistic inference with different kinds of consequential
regions (Davidenko & Tenenbaum, 2001; Shepard, 1987, 1991).
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When consequential regions are aligned with the axes of the
space, such as rectangles or ellipses that have their major
axes parallel to the dimensions in which stimuli are expressed,
a pattern of generalization similar to that seen for separable
dimensions emerges. When consequential regions are indifferent
to the axes of the space, such as circles or randomly-oriented
rectangles or ellipses, a pattern of generalization similar to that
seen with integral dimensions appears. Shepard (1987) noted:
“For stimuli, like colors, that differ along dimensions that do
not correspond to uniquely defined independent variables in the
world, moreover, psychological space should have no preferred
axes. The consequential region is then most reasonably assumed to
be circular or, whatever other shapes may be assumed, to have all
possible orientations in the space with equal probability” (p. 1322).

Despite the importance of considering different kinds of
consequential regions in multidimensional spaces to Shepard’s
(1987) theory, the result that the generalization function should
be negatively accelerated was only proved in the unidimensional
case. Subsequent analyses have shown that negatively accelerated
functions can be obtained with rectangular consequential regions
(Myung & Shepard, 1996; Tenenbaum, 1999b,a) and generalized
the argument to discrete representations (Austerweil & Griffiths,
2010; Chater & Vitanyi, 2003; Russell, 1986; Tenenbaum &
Griffiths, 2001). However, the case of circular consequential
regions - which are particularly important for representing
integral dimensions, as noted above - has not been investigated in
detail. In this article, we derive bounds and prove that the function
produced by Bayesian generalization with multidimensional
circular consequential regions is negatively accelerated, extending
Shepard’s original result to this multidimensional case.

The strategy behind our analysis is as follows. We begin by
formulating the problem of generalization as Bayesian inference
for an unknown consequential region. Next, we reparameterize the
problem to allow us to simplify the probability of generalizing to a
new stimulus to the integral of a simple function. Unfortunately
the integral has no known closed form solution, leading us to
attack it in two ways. First, we derive bounds on the integral that
approximate the true solution. Second, we prove through analysis
of the derivatives of the integral that the solution to the integral
is convex and must be monotonically decaying in the Euclidean
distance between the two stimuli.

1. Problem formulation

Assume that an observation X is drawn from a circular conse-
quential region in R2. Then we have

] 2
—_— X—¢C <Ss
pxle,s) = {75 IX €l = (1)
0 otherwise

where ¢ is the center of the consequential region, with s the
square of its radius. We can then consider the set of all possible
consequential regions from which the observation might have
been drawn, which is here the set of all possible circles, and use
Bayes’ rule to calculate the probability of that consequential region
given the observation of x. Specifically, we have

(i — PP -
p(X)

where h is some hypothetical consequential region, here consisting

of a pair ¢, s. To evaluate the denominator, we simply compute

fheﬂp(x|h)p(h)dh, where # is the set of all hypotheses under

consideration, here being all pairs ¢, s. From this we can obtain

X @

Fig. 1. Parameterization used to compute P(y € C|x).

the probability that some other pointy is in the true consequential
region from which x was drawn

p(y € Clx) = / p(hix)dh
hay,he #

Jisy.nese PXIN)P(M)dh 3)
Jrese PXIMP()dh
where C is the true consequential region. We focus on the
numerator for now (the denominator will follow as a special case).
We can think about this problem in terms of the graphical rep-
resentation shown in Fig. 1. Taking x as the origin, we can ex-
press the location of ¢ in polar coordinates (r, 8), where 0 is such
that y is located at (t, 0). Let r be the distance between x and c,
Ix — c|| in Eq. (1), and t be the distance between x and y. This is a
nice parameterization for the problem, because it allows us to in-
tegrate over all circles containing both x and y (beginning with the
smallest circle containing both of them). We can divide the plane
into four quadrants, with one axis passing through x and y, and
a perpendicular axis that crosses halfway between x and y. Due
to the resulting symmetries between the circles containing both x
and y in these four quadrants, we need only consider one of the
quadrants. In Fig. 1, c¢ is located above the midpoint of t/2, y will
always be in h if X is in h. Thus we need only consider those circles
for which s > r?, where s is the variable of integration and rep-
resents the area of the circular consequential region. The resulting
generalization gradients will be only a function of t, the distance
between x and y, and the denominator of Eq. (3) follows from the
case where t = 0, as with generalization in one dimension.
For reasons that will become clear in a moment, we useu = r
instead of r directly. This choice of parameterization allows us to
write

/ p(x|hp(h)dh
hay,he

/2 oo o0
(o' f / / p(x|0, u, s)p(@, u, s) ds du do (4)
0 up u

where ug is the minimum value of u to place ¢ in the desired
quadrant, which will be a function of 6. The first two integrals
are over the possible centers of circles (that place ¢ in the
desired quadrant) and the third integral is over the possible circle
sizes (ranging from the smallest circle including both x and y).
This is equivalent to integrating over the entire domain because
p(x|0, u, s) = 0for the circles that do not contain x and the integral
is constrained to include y.

2
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The expression in the above equation requires us to specify a
likelihood, p(x|h) = p(X|@, u, s) and a prior distribution, p(h) =
p(@,r,s). The likelihood is uniform over all points in the circle
specified by h, which is defined by Eq. (1). By taking s to be the
squared radius, we have

1

p(x[h) = p(x|0,u,s) = { 75
0 otherwise.

Xeh (5)

This implements the “size principle” that plays an important
role in Bayesian generalization (Tenenbaum, 1999a; Tenenbaum &
Griffiths, 2001).

For the prior, we assume a uniform distribution over the
location of the center of the circles and an Erlang distribution
(with parameters k = 2 and A = ) over their area.! This is similar
to the maximum entropy “expected-size” prior that captured
human judgments well for multidimensional axis aligned concepts
(Tenenbaum, 1999b) and takes the same form as the prior that
yielded an exponential generalization function in Shepard (1987).
Hence we have

1
p(0) = o (6)
p(u) x 1 (7)
pslk=2,A=m) = n’se™™ (8)
p(h) =p®,u,s) « wse ™ (9)

which is an improper prior—the integral over all # diverges when
H includes all circles in the plane. The use of this improper
prior motivates the choice of u = r? rather than r in the above
parameterization.

Another justification for the prior is provided by thinking in
terms of a generative process that creates circles by generating
a circle location and size independently. To do this, we want a
uniform distribution over the locations of the circles. In polar
coordinates, this means that we are going to be doing the
equivalent of choosing points from a very large circle. For a circle
of radius R, a point in that circle is chosen with probability p(s) =
%. Transforming to polar coordinates, p(s) = p(6,r)rdodr =

p(@)p(r)rdddr = ﬁ ;—5 dé dr. If we now transform to coordinates
(6, u), where u = r2, we have du = 2r dr, so dr = 2. This means

2r*
that p(6) = 5= = 6 ~ U(0,27),and p(u) = Z % = % = u ~
U(0, R?). We are thus choosing points from a simple uniform
distribution for both parameters, which allows us to define the
improper prior given above and use it in exactly the same way as
the unidimensional proof by Shepard (1987).

Our desired integral now becomes

/2 00 |
f p(xihyp(hydh o / / / L s ds du d6
hay,hest 0 u Ju TS

/2
o / e "dg., (10)
0

We can then solve for ug, the minimum squared distance from x
required to place c in the quadrant where it is guaranteed to be
closer toy than to x. This means that for a given value of 6, we have
to find the length of the squared hypotenuse u in a right triangle
with t/2 as the side adjacent to 6. By the definition of the cosine of

1 The Erlang distribution is a special case of the Gamma distribution, where the
scale parameter is constrained to be integer valued.

an angle as the ratio of the adjacent side to the hypotenuse, this is
2

just ;. Making the substitution v = ﬁ we obtain
1 cosé

df = ——— cos? 6dv (11)
2 sin6
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which evaluates to 7 fort = 0 (as ffo " d;_l = 1), giving us the

denominator of Eq. (3). This gives us the final expression

00 7vnt2/4

e

— dv,
1 vd/v—1

which unfortunately does not have an elementary solution.

1
pyeClx) = — (13)
T

2. Approximations to the generalization function

Since the generalization function is not analytically tractable,
we attempt to get a clearer picture of its properties by obtaining
bounds on the function. We do this in two ways—defining simple
fixed bounds, and deriving parameterized variational bounds.

2.1. Simple bounds

We can obtain simple upper and lower bounds by bounding the
integrand in Eq. (13). As an upper bound, we can bound the integral
by noting that the domain of integration restricts v > 1 (and thus,
removing v from the exponent can only increase the result of the
integral) in the following manner:

1 [ e—unr2/4 1 [ efrrt2/4
— ——dv < — —dv
T J1 vdv—1 T J1 vidv—1
— le—ﬂtz/él /oo dv
b4 1 ovv—1
= e /4, (14)
This gives an upper bound on the generalization function p(y €

2 . 71;71{2/4
Clx) < ze ™"/% As a lower bound, we can integrate “—,—,

which gives a lower bound on the generalization function p(y €
Clx) > %e*’”z/“ — t(1 — erf(t\/m/2)), where erf is the error
function. These bounds are plotted with dotted lines in Fig. 2
and are similar in their tightness to those found by Tenenbaum
(1999a) for Bayesian generalization with axis-aligned rectangular
consequential regions.

2.2. Variational bounds

The simple bounds are unfortunately very poor, and give little
idea of the shape of the generalization function. We can obtain
better results with variational upper and lower bounds, based
upon a decomposition of the integral. For a lower bound, we can

2 2
. . e~ V0Tt /4 eVt /4
introduce a variable vg, and use the fact that ST ST

for v < vg. This means that the expression

1 vo e—vozt2/4 e} e—vnt2/4
- — dv+ | ——dv (15)
4 /1 va/v—1 ™ v3/2
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Fig. 2. The generalization function, shown on a linear scale on the left and a logarithmic scale on the right. Dotted lines show simple bounds, dashed lines show variational
bounds, and the solid line is an approximate generalization function computed via 10 million Monte Carlo samples from the prior.

will be a lower bound on Eq. (13) for vy > 1. This gives

2 1
p(y € C|x) > £ emvort?/4 (atan <\/vo — l) + —)
T /Yo

—t(1 — erf(t/mv0/2)). (16)

Taking the maximum at each point of the functions resulting from
varying the settings of the variational parameter v gives the lower
bound shown with a dashed line in Fig. 2. Applying a similar
procedure to the upper bound an initial portion of the function and
the tail separately, we can take

—ﬂt2/4 o] e—voﬂ[2/4
dv + —dv (17)
n/l U v UNVU— 1

to obtain the variational upper bound

p(y e Clx) < Ee*ﬂf2/4atan(\/voﬁ+l)
T

2
+e_”°’”2/4 (1 - ;atan (\/vo — 1)) (18)

with vy > 1.Taking the lowest value of this function across a range
of settings of vy gives the upper bound shown with a dashed line
in Fig. 2.

3. Monotonicity and concavity through derivatives

Finally, we can get an idea of the form of the function g(t) =
P(y € C|x) by computing its derivatives. We can exchange the
integral and derivative to give & [ f(v, )ydv = [~ Zf (v, H)dv
if af(v t) is continuous on [1, co) and f] f(v, t)dv has the
property of dominated convergence: there is some function ¢ (v)
such that forallv > 1, [f(v t)] < ¢(v) and ffo ¢(v)dv converges.

0 ¢ —vmt? /4

In the case of g(t) = — [, T dv, we have

91 efvnt2/4 t efvnt2/4

_ = —— (19)
ot mv/v—1 2Jv—-1

which is continuous on [1, 0c0) (over t, which is required to
interchange derivatives and integrals),? and the simple upper

2 0On the other hand, Eq. (19) is continuous in v on (1, co), but not [1, c0).
Regardless, it satisfies the necessary properties for interchanging derivatives and
integrals.

bound derived above uses a function ¢(v) that can be used to
establish dominated convergence.

Having shown that we can differentiate under the integral, we
now obtain

t o) e—vrrtz/4
gt)=—= ——dv (20)
2)i Jv=1
We can evaluate this integral by substituting w = v — 1,
¢ o (u+1)m2
"ty = —= dwi
g () 5 /0 NG
t ) 00 7%7”2
= Lo [ gy (21)
2 o Jw

This integral is the normalizing constant for a Gamma integral with
parameters 1/2 and t?/2,
—LrQ/2)e -t/
(wt2/2)12
ﬁ 77[t2/4

gt =

where we have used the identity that I"(1/2) = V2. Thus, the
derivative of g(t) is always nonpositive. It follows directly that

//(r) — ﬂf\f 771[2/4 (23)
so g(t) has 1nflect10n points at t =0 and t = oo but not at
intermediate values, as shown by Shepard (1987) for the gener-
alization function in one dimension. Additionally, g’(t) < 0, Vt €
(0, 0) and g"(t) > 0, Vt € (0, c0) implies that g(t) is strictly
convex on (0, co) (Berkovitz, 2002).

4. Conclusions

In this article, we analyzed the nature of the generalization
function of the Bayesian generalization model with a hypothesis
space of circular consequential regions. Though the generalization
function did not have an elementary solution, we reached a form
of the generalization function involving a single integral that
allowed us to bound the generalization function using simple and
variational upper and lower bounds. Finally, using derivatives we
found that the generalization function decays monotonically with
increasing distance between the stimuli and that it is convex.
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Consequently, generalization will be a negatively accelerated
function of distance in psychological space, extending Shepard’s
(1987) result for unidimensional consequential regions. Taken as
a whole, the series of results bolsters our understanding of a
fundamental problem in cognition, yields analytic approximations,
and provides a formal basis for cognitive models involving
generalization using integral stimuli.
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