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Schlerf JE, Xu J, Klemfuss NM, Griffiths TL, Ivry RB. Individuals
with cerebellar degeneration show similar adaptation deficits with large
and small visuomotor errors. J Neurophysiol 109: 1164–1173, 2013. First
published November 28, 2012; doi:10.1152/jn.00654.2011.—The cere-
bellum has long been recognized to play an important role in motor
adaptation. Individuals with cerebellar ataxia exhibit impaired learn-
ing in visuomotor adaptation tasks such as prism adaptation and force
field learning. Both types of tasks involve the adjustment of an
internal model to compensate for an external perturbation. This up-
dating process is error driven, with the error signal based on the
difference between anticipated and actual sensory information. This
process may entail a credit assignment problem, with a distinction
made between error arising from faulty representation of the environ-
ment and error arising from noise in the controller. We hypothesized
that people with ataxia may perform poorly at visuomotor adaptation
because they attribute a greater proportion of their error to their motor
control difficulties. We tested this hypothesis using a computational
model based on a Kalman filter. We imposed a 20-deg visuomotor
rotation in either a single large step or in a series of smaller 5-deg
steps. The ataxic group exhibited a comparable deficit in both condi-
tions. The computational analyses indicate that the patients’ deficit
cannot be accounted for simply by their increased motor variability.
Rather, the patients’ deficit in learning may be related to difficulty in
estimating the instability in the environment or variability in their
motor system.

ataxia; learning; reaching

THE PRODUCTION OF SMOOTH, accurate movements in an unstable
world or with a novel tool is a challenging problem for the
brain. Accurate and fluid performance requires the develop-
ment, maintenance, and flexible adjustment of an appropriate
internal model, a process called motor adaptation. Insight into
motor adaptation has come from two major experimental tasks:
force field learning (Fine and Thoroughman 2006, 2007;
Lackner and Dizio 1994; Shadmehr and Mussa-Ivaldi 1994;
Taylor and Thoroughman 2007; Thoroughman and Shad-
mehr 2000) and visuomotor adaptation (Cheng and Sabes
2007; Fishbach and Mussa-Ivaldi 2008; Grafton et al. 2008;
Krakauer et al. 2000, 2004; Mazzoni and Krakauer 2006). In
both tasks, participants learn to make accurate movements
in a novel environment.

Evidence from computational models, neurophysiology, and
neuropsychological studies points to a critical role for the
cerebellum in motor adaptation. Participants with cerebellar
pathology have difficulty adjusting their behavior to respond to
novel force fields (Maschke et al. 2004; Smith et al. 2006) or

visuomotor perturbations (Martin et al. 1996a; Tseng et al.
2007; Werner et al. 2009), as well as exhibiting deficits in a
range of other motor learning tasks (Diedrichsen et al. 2005;
Morton and Bastian 2006).

Process models of sensorimotor adaptation have focused on
error-based learning (Bastian 2008; Mazzoni and Krakauer
2006; Tseng et al. 2007). The error signal in adaptation tasks
reflects the sum of multiple sources of information. These can
be broadly divided into those arising within the controller and
those arising from perturbations in the environment (or sensory
estimates of the environment). In the presence of uncertainty
about the source of the error, or equivalently about the value in
making an adjustment, an optimal system should estimate how
likely an error is to reflect a systematic change in the environ-
ment versus random, intractable events. If an error is more
likely to be arising from a stable source within the environ-
ment, then the correction should be large and, consequently,
learning should be faster. On the other hand, if the error is
attributed to incorrigible noise within the controller itself, one
would expect the system to adapt more slowly.

A similar credit assignment issue has been explored in a
study designed to dissociate “relevant” and “irrelevant” errors
(Wei and Körding 2009). The corrections observed following
large random errors were disproportionately small compared
with the corrections following small random errors. The au-
thors propose that the credit for large errors is assigned to
transient and therefore unstable perturbations of the environ-
ment. Given their random nature, the system discounts this
evidence since it is not likely to be relevant in predicting future
errors. Although this study provides an elegant task to address
the attribution problem, its relevance for motor adaptation is
not clear. In adaptation studies, the perturbations are not
random but correlated from one trial to the next. In such
situations, large errors are potentially more informative of a
change in the environment, particularly because they often
remain systematic from one trial to the next.

This notion is reflected in one of the key assumptions of the
Kalman filter (Kalman 1960). The Kalman gain (which con-
strains the learning rate) is defined as the ratio of the variability
in the system under observation relative to total variability. The
latter includes noise in the measurement process itself. In a
motor control context, this noise would be related to the
variance in the motor control system. With certain assump-
tions, the Kalman filter provides an efficient and neurally
plausible solution to a class of models based on linear dynam-
ical systems, which can successfully capture performance dur-
ing reach adaptation tasks (Cheng and Sabes 2006, 2007). A
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key feature of these models is that some portion of the error
observed on one trial will be corrected on the very next trial
(Thoroughman and Shadmehr 2000). Assuming that the input
and the controller are following linear dynamics with Gaussian
noise, the Kalman filter provides a linear update rule for
optimal estimation and prediction. Indeed, during adaptation
tasks performance conforms well to that predicted by a Kalman
filter (Burge et al. 2008; but see Zarahn et al. 2008). A
trial-by-trial analysis has been applied in previous adaptation
studies examining the performance impairments observed in
patients with cerebellar degeneration (Smith and Shadmehr
2005; Tseng et al. 2007). This work has revealed that patients
show reduced adaptation rates compared with control partici-
pants.

However, these studies have not considered the problem of
error attribution, and in particular how an increase in motor
noise might affect adaptation. Patients with ataxia, the hall-
mark of cerebellar pathology, exhibit poor control of voluntary
movements, even in well-learned, stable environments (Hol-
mes 1917, 1939; Trouillas et al. 1997). In this report we
develop a formal framework to examine the relationship be-
tween motor learning and motor control in patients with ataxia.
To address this question, we reexamined the performance
deficits observed on visuomotor adaptation tasks in patients
with ataxia using a set of tasks that would allow us to evaluate
error attribution during visuomotor adaptation. We obtained an
independent estimate of motor variability and used this infor-
mation in a Kalman filter model of performance during visuo-
motor adaptation. This approach allows us to gain insight into
how individuals with ataxia attribute the observed errors during
learning.

In the typical adaptation experiment, an external perturba-
tion is abruptly introduced following a series of initial move-
ments in a baseline condition. However, it is also possible to
introduce the perturbation in a gradual manner; for example, a
visuomotor rotation can be introduced in incremental steps.
Notably, evidence from studies with neurologically healthy
participants suggests that learning may be greater when a
90-deg rotation is introduced in gradual steps of 10 deg
compared to when the 90-deg rotation is applied in a single
abrupt step (Kagerer et al. 1997). Moreover, this manipulation
may influence the participants’ awareness of the environmental
perturbation. In the abrupt condition, participants are more
likely to be aware of the disturbance, even if they cannot
accurately describe the change; in the gradual condition, their
response to the perturbation is assumed to be implicit. Within
the Kalman filter framework, this difference may impact the
participants’ estimate of the stability of the environment and
thus lead to differences in learning rates.

The relevance of the issue of gradual vs. abrupt training
schedule in adaptation is underscored by a study on force field
adaptation involving individuals with cerebellar degeneration.
Criscimagna-Hemminger et al. (2010) showed that the impair-
ment was reduced when a force perturbation was administered
gradually compared to when it was introduced abruptly. In the
gradual condition, they learned to produce straight trajectories
and demonstrated a strong aftereffect. In contrast, the learning
impairment persisted throughout training when the force per-
turbation was administered abruptly. This dissociation suggests
that extracerebellar structures may be sufficient to support
learning in the gradual condition (see also Izawa et al. 2012).

In summary, the aim of the current study is twofold. First,
we developed a model-based approach to examine the effect of
increased motor noise on learning and performance, asking
whether the increased motor variability of the ataxic partici-
pants can account for the difference in learning between the
patients and matched control participants. Second, we extended
the work of Criscimagna-Hemminger et al. (2010) to see if the
distinction observed between gradual and abrupt force field
perturbations also applies to visuomotor rotations.

METHODS

Participants. Nine individuals with cerebellar ataxia were recruited
for the study. This pool involves a heterogeneous sample of individ-
uals, with a range of etiologies and degree of clinical impairment (see
Table 1). For comparison purposes, we recruited a control group (n �
10), age- and education-matched to the patients. All participants
provided informed consent and were compensated for their time in
accordance with this protocol, which was approved by the Institu-
tional Review Board at University of California, Berkeley.

Apparatus. Participants made reaching movements by sliding their
hand along the surface of a smooth table. Each participant wore a
cotton glove to reduce friction between the hand and surface. A
magnetic sensor (miniBIRD; http://www.ascension-tech.com) was
fixed to the glove near the nail of the index finger, allowing us to
record the position (X, Y, Z) of the hand at 138 Hz (resolution � 0.5
mm). An LCD monitor was horizontally positioned over the table,
�17 cm above the surface. In this manner, the participant’s view of
his or her hand was occluded (see Fig. 1A). The apparatus was
calibrated such that a cursor was displayed on the monitor to indicate
the two-dimensional position of the sensor on the hand. The magnetic
transmitter of the recording system was placed under the table. Pilot
testing verified that with this arrangement the monitor did not produce
interference or artifact in the recording system.

Task. To begin each trial, the participant moved his or her hand into
a starting position, indicated by a 1-cm circle. When the hand was
more than 1 cm away from the center of the start location, a ring was
presented, with the diameter equal to the distance from the center of
the start circle. Moving toward the center reduced the radius of this
circle. When the participant’s hand was within the starting circle, the
feedback was changed to a cursor dot, allowing the participant to
precisely sense the position of the hand. This procedure allowed us to
guide the participant to the start location while minimizing feedback
that might provide information regarding the visuomotor transforma-
tion (similar to the procedure adopted in Cheng and Sabes 2007).

After the person maintained hand position within the starting circle
for 500 ms, a white ring with a 10-cm radius was presented. This
circle was intersected by a 1-cm radial line, defining the target

Table 1. Age, level of symptoms, and etiology of disease for the
individuals with cerebellar degeneration

Participant Age, yr ICARS Diagnosis

1 45 36.5 Possible SCA 2
2 58 29 Unknown
3 72 17.75 MSA-C
4 55 47 SCA 3
5 62 8 SCA 6
6 61 23 SCA 6
7 50 51 SCA 6
8 76 65.5 Unknown
9 55 50 SCA 3

The International Cooperative Ataxia Rating Scale (ICARS) score ranges
from 0 to 100, with scores above 20 generally taken to indicate a moderate
level of ataxia. SCA, spinocerebellar ataxia; MSA-C, cerebellar multiple-
system atrophy.
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location for that trial. The target was, on average, 15 deg to the right
of straight ahead. To avoid using a fixed target location, we random-
ized the position with a range of �15 deg. Participants were instructed
to make a single outward reaching movement, involving rotation
about the shoulder and elbow, attempting to slice through the ring at
the target position. To orient the participants to the experimental
apparatus, online feedback of the cursor was present in an initial set
of trials. During the rest of the experiment, feedback was presented in
the form of knowledge of results: a red line appeared at the moment
the participant’s outbound trajectory crossed the target ring (see Fig.
1B). We emphasized that the participants should use a slicing move-
ment. This was done to minimize the demands on endpoint control
and also to encourage the patients to move at speeds comparable to
that of the control participants (Tseng et al. 2007). The feedback
remained visible for 1,000 ms, after which participants were in-
structed to return to the starting circle.

Trials were grouped into four phases, with a short rest between
each phase. After becoming oriented to the system with a series of
reaches under continuous feedback, participants completed two base-
line phases. The first was a feedback phase, during which they
produced 100 reaches and the location of the red feedback line was
veridical, indicating directional error. Next, participants performed a
no-feedback phase, during which they produced 100 reaches without
any feedback about their final position. Performance in these baseline
phases was used to estimate participants’ intrinsic sensorimotor noise.

Participants then completed two phases in which visuomotor ad-
aptation was assessed (Fig. 2A). Testing was first conducted with a
multistep rotation. This phase involved a series of miniblocks in
which the rotation was introduced in a gradual manner and then
washed out in a symmetrical, gradual manner. The first 32 trials
involved reaches with veridical feedback. This was followed by
epochs of 16 reaches in which the rotation was adjusted in 5-deg steps.
There were 4 incremental steps with successive rotations of 5, 10, 15,
and 20 deg. The 20-deg rotation was then repeated and followed by
5-deg decrements involving rotations of 15, 10, and 5 deg. The phase
terminated with 32 more trials of veridical feedback (0-deg rotation).

We then tested the participants on a single-step rotation. This phase
involved alternating between miniblocks of 32 trials with no rotation
and miniblocks of 48 trials with an imposed 20-deg rotation. The
rotation was introduced twice, with each miniblock sandwiched by
no-rotation miniblocks. Note that participants actually completed 64
“washout” trials (and a short break) between the end of the last (5 deg)
rotation miniblock in the multistep condition and the onset of the first
(20 deg) rotation miniblock in the single-step condition.

We used a fixed order for all participants. By using an increment-
decrement procedure in the multistep phase, we were able to minimize
awareness of the applied perturbation as well as obtain a data set that

Fig. 2. Task design and performance during adaptation. A: the solid function
depicts the structure of the experimental session. The first 200 trials consisted
of reaching with veridical feedback, either with or without knowledge of
results (KR). This was followed by 2 adaptation phases in which a visuomotor
rotation was introduced gradually (multistep) or abruptly (single step). The
rotations are depicted in terms of the required reach angle to maintain accurate
performance. There were 2 probes of the single-step perturbation. Jagged lines
show the raw data for 2 representative participants. B: group-averaged perfor-
mance, along with the average model fit, in the multistep condition. C: group-
averaged performance, along with the average model fit, in the single-step condi-
tion. In A–C, dark gray color corresponds to data from the control group (or
participant) and light gray to data from the ataxic group (or participant).

Fig. 1. Experimental task and apparatus. A: participants were seated at a
portable table. An LCD monitor was placed horizontally such that the partic-
ipant was unable to directly observe his or her hand. The participant wore a
magnetic position-sensing device (miniBird transmitter) such that real-time
feedback of hand position could be presented on the LCD monitor. B: par-
ticipants produced slicing movements from the start position, attempting to
pass through a white line that appeared on a ring with a 10-cm radius. During
the main experiment, feedback (in the form of a red line) was limited to the
position at which the finger intersected the circle. At left, a sample trajectory
is depicted where cursor position corresponded to hand position (no rotation).
At right, a sample trial is depicted in which a 20-deg counterclockwise rotation
was imposed on the cursor.
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is more optimal for our modeling approach (see below). A limitation
with this procedure is that it does not allow us to measure an
aftereffect, traditionally viewed as the strongest measure of overall
learning (Bastian 2008). However, if we had abruptly turned off the
rotation after the gradual increment phase, the participants would have
experienced an abrupt rotation (to measure the aftereffect). We were
concerned that this might influence performance in the single-step
condition. For similar reasons, we opted to use the fixed order since
initial training with the single-step condition might contaminate per-
formance with the gradual perturbation by making subjects more
aware of the possibility that the environment could become unstable.

Data analysis. All data analysis and modeling were performed
using MATLAB. To assess basic features of the movement, we
computed two kinematic measurements for each block. Movement
time was defined as the time from when the hand first left the start
region until the participant moved beyond the target ring. Reach
amplitude was defined as the Euclidean distance between the reversal
position (which was beyond the target ring) and the initial hand
position. Angular error on each trial was calculated as the angle
between the start location, target, and visual endpoint feedback. To
assess the amount of learning, we used asymptotic error, computed for
each participant as the average angular error in the final 16 trials of the
20-deg rotation miniblocks. Two measures of residual error were
obtained in the single-step condition, one from each miniblock. To
facilitate our statistical modeling (see below), we assessed implemen-
tation variance by calculating heading variability, defined as the
variance in angular error. This measure was limited to the two
baseline phases.

We assessed participants’ estimate of the external perturbation (the
rotation) using a probabilistic model based on a Markov-chain process
with constant injected noise (see Fig. 4A). The goal of the participant
is to estimate the rotation on trial n, dn, using an error signal based on
the difference between the target location and feedback indicating
hand position. Assuming that the rotation follows linear dynamics
with Gaussian noise, we obtained a linear update rule for estimating
the rotation based on a Kalman filter. The key assumptions are that
dn�1 is Gaussian given dn, with

dn�1 � dn � �n, (1)

where �n � N(0, �e
2), implying that dn�1|dn � N(Adn, �e

2), where A is
a parameter indicating the “memory” of the system and �e corre-
sponds to the participant’s estimate of environmental instability, and
that xn, the perceived distance between the hand location and the
feedback indicating hand position on trial n, is Gaussian given dn,
with

xn � dn � �n, (2)

where � � N(0, �x
2), implying that xn|dn � N(dn, �x

2), where �x is the
motor variability inherent in the participant (which we call the
implementation variance). On each trial, the estimate of the rotation

d̂n�1|n was updated following the Kalman filter update equations:

d̂n�n � d̂n�n�1 � Knun

d̂n�1�n � Ad̂n�n,
(3)

where the term un refers to the angular error, the perceived distance
between the target location and the feedback of hand location (Cheng
and Sabes 2007), and the Kalman gain (Kn) is based on the uncertainty
at each step:

un � xn � d̂n�n�1 (4)

Kn �
�n�n�1

2

�n�n�1
2 � �x

2 . (5)

The uncertainty parameter �n|n�1 depends on the environmental
instability parameter, �e:

�n�1�n
2 � A2�n�n

2 � �e
2

�n�n
2 � �n�n�1

2 � Kn�n�n�1
2 .

(6)

Our focus here is on two sources of variability, implementation
variance (�x) and environmental instability (�e), that influence the
estimate of the rotation. We sought to evaluate how each of these is
influenced by cerebellar ataxia and how this will impact performance
in sensorimotor adaptation. Rather than treating �x as a free parameter
that we estimate from the data obtained during the rotation phases, we
used the no-feedback baseline phase to provide an independent
estimate of implementation variance. This was determined uniquely
for each participant.

To facilitate data fitting, we made two simplifying assumptions.
First, we assumed that the system has settled into a steady state after
the baseline phase. APPENDIX A provides a derivation of the steady-
state solution and a discussion of this assumption.

Second, we assumed that both A and �e are constant parameters for
a given group. We recognize that this is an oversimplification since
the patients (and controls) exhibit considerable within-group variabil-
ity. However, individual estimates with the current modeling ap-
proach require large data sets, and this would prove unreasonably
taxing for our patients and elderly controls (as well as introducing
substantial noise due to fatigue). Thus we opted to estimate A and �e

at the group level to improve the power for parameter estimation
(Cheng and Sabes 2006). Despite this limitation, the current approach
allows us to address the error attribution issue for understanding group
differences between ataxics and controls on visuomotor adaptation.

Using maximum likelihood procedures, we found the best-fitting
values of A and �e (treated as group parameters), which (along with
subject-specific estimates of �x) predict each participant’s perfor-
mance. We evaluated the fits using a likelihood procedure adopted
from Shumway and Stoffer (2006). This procedure allows the com-
parison of nested models (differing by the insertion of parameters; for
example, differentiating by group or test condition, as shown in Fig.
4B) using a likelihood ratio test. More details of this procedure are
presented in APPENDIX B.

RESULTS

We first considered basic kinematic features during task per-
formance, asking how these differ between the ataxics and con-
trols (Fig. 3). As instructed, the ataxic patients moved relatively
quickly (Fig. 3A). Nonetheless, they were not able to achieve the
same movement speed as the control participants. On average, the
controls covered the 10-cm radial distance in 156 ms (SD � 50
ms), whereas the ataxics covered the distance in 309 ms (SD �
136 ms). This difference was reliable [F(1,16) � 4.62, P � 0.05]
as assessed in a repeated-measures ANOVA involving one be-
tween-subject factor, group (ataxic or control) and one within-
subject factor, condition (baseline, single step, or multistep). The
main effects of condition and the interaction approached signifi-
cance [F(2,32) � 2.97, P � 0.07 and F(2,32) � 2.69, P � 0.08,
respectively]. Reach amplitude (Fig. 3B) was also shorter for the
controls compared with the ataxic group [F(1,16) � 7.90, P �
0.02], but there was no effect of condition [F(2,32) � 0.33, P �
0.7] and no interaction [F(2,32) � 0.72, P � 0.4]. Consistent with
the “slicing” instructions, participants tended to terminate their
movements 20–40% beyond the target circle.

To estimate implementation variance, we restricted our anal-
ysis of heading variability to the two baseline phases since this
measure will be sensitive to learning during the rotation phases
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(Fig. 3C). Moreover, since endpoint error might alter perfor-
mance, even in the absence of an external perturbation, we
focused on the baseline phase in which visual feedback was
withheld to obtain a “pure” estimate of heading variability. The
heading variability data were analyzed with a 2 � 2 repeated-
measures ANOVA with a between-subjects factor, group, and
a within-subject factor, feedback (present or not). As expected,
the ataxics were more variable than the controls [F(1,16) �
6.13, P � 0.05]. The mean variability for the ataxics was 29.2
deg2 (SD � 19.3 deg2), whereas the comparable value for the
controls was 10.5 deg2 (SD � 7.5 deg2). Feedback did not
significantly affect heading variability [F(1,16) � 0.26, P �
0.6], and the interaction term did not reach significance
[F(1,16) � 2.56, P � 0.13].

Figure 2A depicts the reach angle of two representative
participants, one control and one ataxic, over the full experi-
ment. The group values for the multistep and single-step
conditions are presented in Fig. 2, B and C, respectively. To
assess overall performance on our visuomotor adaptation tasks
(without utilization of a model-based analysis), we measured
asymptotic error, defined as the mean cursor error during the
final 16 trials at the full 20-deg rotation (Fig. 3D). Both groups
showed considerable adaptation during this epoch. In the
multistep condition, the mean asymptotic error values for the
controls and ataxics were 1.9 deg (SD � 0.6 deg) and 6.5 deg
(SD � 3.8 deg), respectively. In the first probe of the single-
step condition, the values were 1.8 deg (SD � 1.2 deg) for the
controls and 6.8 deg (SD � 5.0 deg) for the ataxics. These
values were only slightly reduced during the second probe of
the single-step condition (controls: 1.6 deg, SD � 1.6 deg;
ataxics: 6.5 deg, SD � 4.2 deg), suggesting minimal savings in
total learning.

To compare the two conditions, we limited our statistical
analysis to the data from the multistep condition and the first
probe of the single-step condition. The group effect was highly
reliable [F(1,17) � 11.4, P � 0.005], indicating the ataxics
exhibited poorer asymptotic performance than the controls.
There was no effect of condition [F(1,17) � 0.04, P � 0.8] and
no interaction [F(1,17) � 0.07, P � 0.7], suggesting that the
ataxics were equally impaired whether the rotation was intro-
duced gradually or abruptly.

We turn next to our model-based analysis. For model fitting,
the implementation variance, �x, for each individual was op-

erationally defined as the value of that participant’s heading
variability from the no-feedback phase. (We also fit the model
using the noise estimate from the feedback phase and observed
qualitatively similar results.) Four hierarchical models were
tested (Fig. 4B). The first model, the null model, treated all
participants as part of the same group and did not distinguish
between the multistep and single-step conditions. This model
was used to estimate a single value of A and �e, providing a
point of comparison for two alternatives. Each of these yielded
a pair of values for A and �e. In the group model, we fit
separate parameter estimates for the ataxics and controls. In the
condition model, we fit separate parameter estimates for the
multistep and single-step conditions. Finally, in the full model,
we allowed separate parameter estimates of A and �e for the
two groups in each of the two conditions. By comparing nested
models in this manner, we can ask if the fit is significantly
improved by considering the participants’ group affiliation, the
condition under which adaptation occurs, or the combination of
these factors.

Considering the first level of the hierarchy, the likelihood
ratio test indicated that the fit was significantly improved when
the data were separated by group [�2(2) � 838.4, P � 0.001]
or by condition [�2(2) � 268.2, P � 0.001]. Further improve-
ment in the fit was observed when either link to the next level
of the hierarchy was included [condition to full: �2(4) � 775.3,
P � 0.001; group to full: �2(4) � 205.1, P � 0.001]. Thus the
model-based approach in which we use the data from the entire
learning process confirms the group effect observed when we
focused on performance at asymptote. However, it also reveals
a significant effect of condition, with participants performing
differently when adapting to gradual or abrupt perturbations.

Given that the full model provided the best fit, we next
examined the parameter estimates and their implications on
behavior (Fig. 4C). Parameter A represents the state memory
across trials. Lower values of A will produce lower levels of
asymptotic value of performance. Consistent with the data
shown in Fig. 2, B and C, a lower estimate of A was obtained
for the ataxics compared with the controls in both conditions.
This indicates that the ataxics have greater difficulty maintain-
ing a new estimate of the state required by the visuomotor
perturbation, or equivalently, that the ataxics exhibited greater
attraction to their own baseline performance. In addition, for
both groups, the estimates of A were lower during the multistep

Fig. 3. Kinematic and performance measures. Movement time (A) and reach amplitude (B), averaged over all phases of the experiment, plotted for the controls
(dark gray) and ataxics (light gray). Ataxics moved slower and further than controls in both the single-step (solid bars) and multistep conditions (hatched bars).
C: heading variability, based on the point that the reaching movement intersected the target ring. These data are only from the baseline phases and do not reflect
variation resulting from the visuomotor rotation. D: asymptotic error, calculated over the final 16 trials with an imposed 20-deg rotation. The data for the
single-step condition are restricted to the first probe (trials 75–90 in Fig. 2C). The ataxic group reached a lower asymptotic level of performance than the controls
in both conditions.
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condition compared with the single-step condition. This would
be consistent with the hypothesis that with the introduction of
a large perturbation, the participants gauge the environment to
be less stable and thus place greater weight on recent obser-
vations relative to their past history.

Parameter �e represents the environmental instability asso-
ciated with the rate of learning. If the implementation variance
was fixed, increasing the value of �e would increase the
Kalman gain and thus produce faster learning. The estimated
value of �e for both groups is larger in the single-step condition
compared with the multistep condition, indicating more rapid
learning when the full perturbation is introduced all at once.
More interestingly, the estimate of this parameter for the
ataxics was, on average, higher than that for the controls.
Paradoxically, this would suggest that the ataxics learn at a
faster rate than controls.

To further explore this hypothesis, we also examined the Kal-
man gain. Note that we estimated �x from the no-feedback phase.
If the ataxics optimally estimate their own increased movement
variability, the Kalman gain should be lower for this group.
Surprisingly, the ataxics had a higher Kalman gain. The increase
in the estimate of �e for the ataxics overcompensates for their
larger values of �x. When this is combined with their decreased
state memory, the behavioral consequence is that the ataxics
exhibit an overall lower level of performance despite the higher
Kalman gain.

Our primary interest is to test whether the patients’ impairment
in performance in visuomotor adaptation can be entirely ac-
counted for by their increased motor variance. The initial analyses
described above led us to reject this hypothesis: we observed
group differences in the estimated parameters of state memory as
well as changes to the Kalman gain that were not compatible with

increased motor noise. Note that the interpretation of these pa-
rameters depends, to a large extent, on their independence. It is
possible that there is a trade-off between the estimated values of
�e and A. This concern is especially relevant here given that the
nested analysis relies on the assertion that these parameters have
independent effects on the likelihood measure. To explore
whether any possible dependence in these parameters might affect
our rejection of our hypothesis, we evaluated the log likelihoods
for the full parameter spaces of A and �e using a grid search.

Figure 5A shows heat maps for the log-likelihood surfaces
(scaled to the maximal log likelihood for each condition to facil-
itate comparisons). The contours represent proportions of the
maximal log likelihood. The noncircular contours indicate that
there is some correlation between the two parameters. Figure 5C
depicts �e as a function of A at the peak of the log-likelihood
surface. The solid and dashed red curves (ataxic single step vs.
multistep) are both below the blue curves (control single step vs.
multistep), indicating that the most likely values of �e for ataxics
are lower than those for controls, when A is assumed to be equal
across groups. This suggests lower attribution of the ataxics’ error
to the environment in both the single-step and multistep condi-
tions for all levels of A, although the group difference in the
gradual condition is smaller.

When the data are viewed this way, we would infer a lower
Kalman gain for the ataxics. This stands in contrast to the
initial analysis, where we observed a higher Kalman gain when
A was treated as a free parameter. The contradiction in these
two ways of evaluating the modeling data, higher Kalman gain
for the ataxics when based on a single overall estimate vs.
lower Kalman gain when the full space is explored, arises
because of the nature of the linear dynamic systems model.
With finite data, a slower learning rate is the only way to achieve

Fig. 4. Statistical modeling of the adaptation data.
A: graphical representation of the Kalman filter used to
model the data. Participants estimate the environmental
displacement (d), and this is used to make a reaching
movement, producing a new observation of the rotation
(x). Based on the outcome observation, the state estimate
is updated. The hyperparameter �e represents constant
noise injected at every iteration, and the hyperparameter
�x represents the implementation variance (estimated
separately for each individual). B: a diagram of nested,
hierarchical models used to assess the effects of group
membership or perturbation condition. The null model
assumes no group or condition differences, and, as such,
requires only 2 free parameters, A and �e. At the next
level, two 4-parameter models are considered, splitting
the data by either group (ataxic or control) or condition
(multistep or single step). The model fits were sig-
nificantly improved with the addition of either set of
parameters. At the final level, the full model with 8
parameters (2 groups � 2 conditions � 2 free parame-
ters) led to a significant improvement in fit. C: parame-
ters estimated from the full model. Solid bars represent
parameter estimates during the single-step condition,
and hatched bars represent estimates during the multi-
step condition. Top row indicates estimated group values
for A and �e. Bottom row shows the computed values of
the Kalman gain (Eq. 2), as well as the values of �x

(independently measured in the no-feedback baseline
block; the same value was used for both single-step and
multistep conditions). On the basis of the best-fitting
parameters, the ataxics show a lower value of A but a
higher Kalman gain. Error bars for parameter estimates
are calculated from the Hessian matrix.
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a lower measure of residual error if the memory parameter (A) is
the same. Since we believe that group differences in A and �e
reflect meaningful differences between ataxics and controls, we
favor treating them as separate free parameters. Nevertheless, the
grid search analysis strongly indicates that the most likely values
of �e are not identical for the ataxics and controls, even without
assuming that A varies meaningfully. This result reinforces the
conclusion that performance differences between the two groups
cannot be fully explained by the patient’s increased motor vari-
ance.

Figure 5B depicts A as a function of �e. Here, for all values
of �e, the most likely values of A are lower for the ataxics,
indicating that they always demonstrate a reduced level of
asymptotic learning compared with controls.

DISCUSSION

A consistent observation in the motor learning literature is
that patients with cerebellar ataxia show attenuated motor
adaptation. Studies using several sensorimotor learning tasks
have supported the idea that the cerebellum is essential for
error-based learning, a process presumed to underlie the for-
mation and refinement of internal models of the environment.
In our study, we replicated the general deficit observed during
the standard visuomotor adaptation paradigm, with an abrupt
introduction of a visual rotation (the single-step condition). We
furthermore observed a deficit when the rotation was intro-
duced gradually (the multistep condition).

How are learning mechanisms affected by the presence of
ataxia? The primary goal of the current study was to explore
the impact of ataxia on learning. We considered the hypothesis
that the learning deficit may arise from an error attribution
problem. That is, people with ataxia may be as efficient in
learning as control participants but disproportionately attribute
the observed errors to inherent variability in their motor system
rather than to a disturbance of the external environment. This
misattribution could be considered appropriate, because the
most salient feature of their condition is the increase in motor
variability.

We used a modeling approach based on the Kalman filter to
test this hypothesis. According to the attribution hypothesis, we
would have expected that after group (and individual) differ-
ences in implementation noise were accounted for, estimates of
one or both learning-related parameters would have been
similar for the ataxics and controls. However, the present data
indicate that this hypothesis can be rejected. The best model
fits required separate learning-related parameter values to be
incorporated for the controls and ataxics in both the multistep
and single-step conditions.

Previous work on the credit assignment problem has looked
at the correction of random errors, with the emphasis on the
response to small and large errors (Wei and Körding 2009).
Although this work is illuminating in making salient the credit
assignment issue, it is not clear how it would extend to the
perturbations provided in the current study. As tested by Wei
and Körding (2009), the problem can be rephrased as a con-
trollability estimation problem. Under this framework, assign-
ing small errors to one’s own movement is equivalent to
estimating that these errors are caused by controllable pro-
cesses. In contrast, large transient errors are attributed to
factors that are not under the participant’s control. However,
with a fixed perturbation, error magnitude is less likely to
determine relevance. Were error size the sole determining
factor, then as adaptation progresses and errors become
smaller, the errors would become more “relevant” and trial-
by-trial corrections should increase. This result is at odds with
previous results suggesting that exponential models provide a
good fit to adaptation data (Körding et al. 2007; Thoroughman
and Shadmehr 2000; Thoroughman et al. 2007). Thus we
elected to use a Kalman filter model, which naturally addresses
error attribution through the interpretation of the Kalman gain.

Fig. 5. Exploration of the parameter space. A: heat map of log likelihood as a
function of A and �e (values scaled to the maximum log-likelihood value).
Warmer colors indicate greater log likelihood, and cooler colors indicate less
likely parameter combinations. The white cross indicates the best-fitting
parameter values, whereas the white contours represent equally likely combi-
nations in steps of 10% of the maximal value. The data are more likely
explained by parameter combinations that fall along a diagonal. B: for a search
over all values of �e, the most likely values of the memory term A are plotted.
Controls show no difference between single-step and multistep adaptation in
this analysis (curves overlap). Ataxics show a consistently lower value of A
than the controls, with a slight effect of condition. C: for a search over all
values of A, the most likely values of the stability parameter �e are plotted. For
the same value of A, ataxics generally show a lower value of �e than controls
(particularly for A close to 1), with a slight effect of condition. Controls show
a lower value of �e during multistep blocks than during single-step blocks,
which fits the hypothesis of lower estimates of environmental instability during
gradual adaptation.
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The modeling results provide new insight into the patients’
learning deficit. We expected to observe a lower Kalman gain
estimate for these individuals if they attributed a relatively
larger proportion of the observed error to their own control
deficit (�x, estimated independently of the learning phases).
Surprisingly, the estimate of the Kalman gain was higher for
the ataxics compared with the controls. However, we believe
the inference that the ataxics have a higher learning rate should
be treated cautiously. The higher Kalman gain here is offset by
a decrease in the memory term, suggesting that the rapid
adjustments are rapidly forgotten. We note that the factors that
affect the state memory term A are not understood. In the
physical systems for which state-space models were originally
created, A represents the equations of motion and, as such, is
subject to the laws of physics. When dealing with the estimate
of an internal state, however, the optimal specification is not
known. Lowering the state memory term may be optimal if
there is impairment in either control or learning, since this
decreased memory would effectively de-emphasize recent
experience.

We can think of two ways in which the counterintuitive
observation of a higher Kalman gain in ataxia may arise. First,
it is important to note that the brain’s internal representation of
�x is more accurately defined as the brain’s estimate of imple-
mentation noise. Although we assume that this estimate is
grounded in an individual’s experience over a lifetime of
movement, it is not certain that this is the case in individuals
with neurological disorders. Testing our hypothesis requires
making an explicit assumption that our measured value of �x
reflects a consistent relationship between an individual’s esti-
mates of their internal motor noise and their actual motor noise,
regardless of whether the individual has ataxia. It is possible
that the patients underestimate their own motor noise, and this
results in a higher Kalman gain. In other words, the patients
may attribute a lower proportion of the error to their own
actions (motor noise) than is optimal given their actual level of
variability. A consequence would be that they attempt to
correct for this intrinsic motor noise, even though this leads to
suboptimal adaptation.

Alternatively, it is possible that ataxics do have an accurate
estimate of their own motor variance, but the advantage in cor-
recting for large error is sufficiently high that the credit assign-
ment problem becomes irrelevant. By our model, this would
imply that the patients are hypersensitive to environmental per-
turbations. This process could be inefficient for adapting a simple
movement such as point-to-point reaching, given that the conse-
quence of reaching errors are relatively minor. However, it may be
beneficial for other types of movements. Standing and walking, as
examples, are two everyday behaviors in which errors (i.e., falls)
are extremely costly. Cerebellar ataxia has long been associated
with problems in balance and locomotion (Holmes 1917, 1939;
Trouillas et al. 1997). It may be that the increased incidence of
extremely costly errors experienced during standing and walking
pushes the motor system into a regime that, under linear Gaussian
assumptions, is not efficient. Morton and Bastian (2004) have
shown asymmetric generalization that is in accord with this hy-
pothesis. Healthy participants exhibit greater generalization from
a walking task to a reaching task compared with the reverse
situation.

Importantly, the data collected in the current experiment cannot
distinguish whether the patients with ataxia are hypersensitive to

environmental errors or underestimating their own variability.
Both scenarios make the same prediction with regard to error
attribution. Nonetheless, we can conclude that the patients behave
differently than controls even when accounting for their increased
motor noise. Moreover, this difference is similar regardless of
whether the visuomotor perturbation is introduced abruptly or
gradually.

We recognize that our model is not exhaustive. There are
surely other sources of noise that are not explicitly modeled,
for example, noise in processing the position of the feedback
signals (although this is likely to be very small; see Burge et al.
2008). These sources will affect our estimates of �e or �n
(through changes in A because of our steady state assumption).
Importantly, any group differences in these sources of variabil-
ity would only corroborate our principal finding that differ-
ences in motor variability alone are insufficient to account for
the learning deficit in ataxia.

Influence of error magnitude in force field learning and visuo-
motor adaptation. An important constraint on cerebellar learn-
ing was proposed by Criscimagna-Hemminger et al. (2010).
Consistent with previous studies (Maschke et al. 2004; Smith
and Shadmehr 2005), patients with severe ataxia were impaired
in adapting to a novel force field when the perturbation was
introduced abruptly. However, these patients showed minimal
impairment in adapting to the force field when the perturbation
was introduced gradually. Our experiment entails a similar
comparison in a visuomotor rotation task. Unlike the force field
study, the ataxic group showed a similar deficit in both the
single-step and multistep conditions, with their final level of
adaptation markedly below that obtained by control par-
ticipants.

There are a number of methodological differences between
the current study and that by Criscimagna-Hemminger et al.
(2010). First, we used a perturbation schedule in the multistep
condition, which did not allow us to measure aftereffects, the
“gold standard” for measuring adaptation across a variety of
tasks (Bastian 2008; Martin et al. 1996b). However, we believe
that our measure of asymptotic error is a sufficient proxy,
especially when complemented by the modeling work. A
qualitative agreement between asymptotic error and aftereffect
has been reported by other researchers in visuomotor adapta-
tion tasks (Taylor and Ivry 2011; Tseng et al. 2007). We opted
to have a gradual deadaptation phase rather than measure an
aftereffect to facilitate our modeling work. We assumed, a
priori, that the participants’ estimate of environmental insta-
bility would be affected once they experienced a large pertur-
bation (as would be required if we abruptly terminated the
rotation in the multistep condition). Second, we used a fixed
order, whereas Criscimagna-Hemminger et al. (2010) counter-
balanced the order of their tasks. Our design choice was
motivated by the desire to maximize the robustness of the data
for our modeling enterprise given our relatively smaller sam-
ple. We were concerned that the more easily detected pertur-
bations experienced during the single-step condition might
affect stability estimates during the multistep condition.

There is, of course, the task difference between force field
adaptation and visuomotor adaptation. Assuming the differ-
ences are not due to the methodological issues discussed
above, it is unclear why individuals with cerebellar degenera-
tion are able to learn a novel force field under gradual condi-
tions, but not a visuomotor rotation. An important methodolog-
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ical issue concerns the presence of online feedback. We limited
feedback to information concerning heading direction, provid-
ing this only at the time that the finger crossed the target ring.
In contrast, online feedback is unavoidable in force field
adaptation, and as such, online error correction is possible.
Individuals with ataxia have been previously shown to have
similar deficits in visuomotor adaptation with or without online
corrections (Tseng et al. 2007). Nonetheless, learning differ-
ences have been observed in visuomotor adaptation between
conditions in which feedback is provided online and when it is
limited to knowledge of results (Shabbott and Sainburg 2010).

Anatomically, the critical locus within the cerebellum may
also differ for force field learning and visuomotor adaptation.
Interestingly, performance on these two tasks is not correlated
in individuals with cerebellar degeneration (Donchin et al.
2012; Rabe et al. 2009). In lesion-based analyses, deficits in
force field learning are correlated with the degree of pathology
in the anterior lobe, areas encompassing the primary motor
representation in the cerebellum (Rabe et al. 2009). This region
might be essential for representing the error signal or be
involved in using the error to modify an internal model to guide
future performance. In contrast, deficits in visuomotor adapta-
tion are associated with pathology in more posterior regions of
the cerebellum (Baizer et al. 1999; Martin et al. 1996a; Rabe
et al. 2009). These regions have reciprocal connections with
parietal and prefrontal cortex (Kelly and Strick 2003; Krienen
and Buckner 2009; Middleton and Strick 2001; Prevosto et al.
2010; Ramnani et al. 2006). Such connections may be more
important for certain forms of learning such as visuomotor
adaptation and/or sequence learning (Spencer and Ivry 2009).

Summary. In summary, we set out to test the explicit hy-
pothesis that people with cerebellar ataxia have difficulty in
sensorimotor adaptation because they attribute the experienced
errors to their own motor noise. Our model-based analysis fails
to support this hypothesis, suggesting that cerebellar degener-
ation produces a deeper problem with learning. The patients
appear to be impaired in their ability to generate an accurate
estimate of environmental instability, a prerequisite for learn-
ing. The results also indicate that, unlike force field learning,
the cerebellar contribution to visuomotor adaptation does not
appear to be sensitive to the manner in which the perturbation
is introduced. Although these two tasks are paradigmatic ex-
amples of error-based learning, we have highlighted some key
differences. The relevance of factors related to the magnitude/
awareness of errors, online feedback, proprioception, and anat-
omy remain a challenge for future study.

APPENDIX A: STEADY-STATE ASSUMPTION

Setting the model to a steady state is equivalent to suggesting that
the variance of state variables are constant after both the time update
and measurement update, or �2

n�1|n � �2
n|n�1 and �2

n|n � �2
n�1|n�1.

This removes the need to define a separate free parameter to represent
the initial state variance. This is ecologically valid since all partici-
pants are well-practiced in general at making reaching movements.
Given reasonable values of �e, A, and �x, any effect of any initial
value of the system variance becomes miniscule after 10 trials. Thus
we assume that the system will have achieved a stable state either
during the unmodeled baseline phase or before the experimental
initiation. Setting the system (Eq. 6) to steady state results in the
following formula for the variance of the time update:

�n�1�n
2 � A2��n�n�1

2 � Kn�n�n�1
2 � � �e

2. (A1)

Substituting for K gives

�n�1�n
2 � A2��n�n�1

2 �
�n�n�1

4

�n�n�1
2 � �x

2� � �e
2. (A2)

Solving for �2
n�1|n, finally, results in

�n�n�1
2 �

A2�x
2 � �e

2 � �x
2 � �(�x

2 � A2�x
2 � �e

2)2 � 4�x
2�e

2

2
.

(A3)

Similarly, solving for the measurement update gives

�n�n
2 �

A2�x
2 � �e

2 � �x
2 � ��e

4 � 2(1 � A2)�d
2�x

2 � (1 � A2)2�e
4

2A2 .

(A4)

APPENDIX B: MAXIMUM LIKELIHOOD ESTIMATION

The likelihood of receiving two particular observations on two trials is
the product of the likelihood of receiving each observation as individual
trials. Since the current experiment involved many trials, the likelihood of
any particular subject’s performance is vanishingly small. To facilitate
model comparison, the negative log likelihood was used. This is compu-
tationally convenient as the log likelihood of two trials is the sum of the
log likelihood of the individual trials. Minimizing the negative of the log
likelihood becomes equivalent to maximizing the likelihood.

Following the “innovation form” of Shumway and Stoffer (2006),
the negative log likelihood of a single subject’s performance is
defined as

�log	s �
1

2 �
n�1

N

log��n�n�1
2 � �x

2��
1

2 �
n�1

N (xn � dn)2

�n�n�1
2 � �x

2 . (A5)

The negative log likelihood of the group performance can then be
computed by summing over the individual subjects. To test a set of
two nested models, one can then use the likelihood ratio test. For
sufficiently large samples of data, the negative logarithm of the
likelihood ratio follows a �2 distribution, with degrees of freedom
equal to the number of additional parameters in the expanded model.
Thus the difference between the negative log likelihoods of our model
fits can be tested using the �2 probability density function.
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