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Most psychological theories treat the features of objects as being
fixed and immediately available to observers. However, novel
objects have an infinite array of properties that could potentially
be encoded as features, raising the question of how people learn
which features to use in representing those objects. We focus on
the effects of distributional information on feature learning, con-
sidering how a rational agent should use statistical information
about the properties of objects in identifying features. Inspired
by previous behavioral results on human feature learning, we pres-
ent an ideal observer model based on nonparametric Bayesian sta-
tistics. This model balances the idea that objects have potentially
infinitely many features with the goal of using a relatively small
number of features to represent any finite set of objects. We then
explore the predictions of this ideal observer model. In particular,
we investigate whether people are sensitive to how parts co-vary
over objects they observe. In a series of four behavioral experi-
ments (three using visual stimuli, one using conceptual stimuli),
we demonstrate that people infer different features to represent
the same four objects depending on the distribution of parts over
the objects they observe. Additionally in all four experiments, the
features people infer have consequences for how they generalize
properties to novel objects. We also show that simple models that
use the raw sensory data as inputs and standard dimensionality
reduction techniques (principal component analysis and indepen-
dent component analysis) are insufficient to explain our results.
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1. Introduction

Does the stimulus have no intrinsic structure of its own, or does it simply exist to provide structure
for the sets in which it exists? The answer to this question is that the properties of the single stim-
ulus cannot be specified except in relation to the properties of the set within which it exists.
(Garner, 1974, p. 9).

A fundamental problem faced by any learner is the formation of the basic units used to represent
observed stimuli and support generalizations. Although psychologists typically choose a single repre-
sentation for each observed stimulus, Garner (1974) identified the basic issue with this approach: The
representation of a stimulus is not fixed or unchanging regardless of context, but rather, it is defined
with respect to the context in which it appears. This idea coincides with the classic Gestalt analysis of
visual perception, which argued through introspection that the interpretation of a whole set of stimuli
is different than the sum of its parts (Wertheimer, 1938). Although the investigation of Gestaltist prin-
ciples has led to a fruitful body of research on how context affects the perception of single objects (e.g.,
Palmer, 2003), there currently does not exist a computational account of how the set of objects people
observe influences how they represent those objects without assuming the number of features is
known ahead of time. In this paper, we present a computational model of how feature representations
should be inferred from a set of observed objects without assuming the number of features is known
ahead of time, and compare the predictions of this model against human behavior.

In discussing feature learning, it is valuable to distinguish between two ways in which an object
can be described: as an observable stimulus, and as an internal representation. We will try to maintain
this distinction by talking about the ‘‘properties’’ or ‘‘parts’’ of a stimulus, reserving ‘‘features’’ for the
components of its internal representation. The key problem of feature learning is thus explaining how
people come to establish a relationship between observable properties and internally represented fea-
tures, deciding which combinations of properties constitute features. There are many factors that
influence the features people infer to represent objects, such as the changes in concavity of its contour
(Hoffman & Richards, 1985), the usefulness of the potential feature for explaining categorization of ob-
jects (Pevtzow & Goldstone, 1994; Schyns & Murphy, 1994), background knowledge of the function of
objects (Lin & Murphy, 1997), and prior knowledge of what types of features have been useful in the
past (e.g., Gestalt principles; Palmer, 1977). However, we will focus on one particular factor: the dis-
tribution of properties over a set of objects.

Distributional information is one example of how context can affect the features formed to repre-
sent a set of objects. The same objects in two different contexts (presented with two different sets of
other objects) can have different feature representations depending on how properties are distributed
across the other objects. For example, imagine a set of objects that are each composed of several parts.
If the parts co-vary perfectly in each of the objects, then there is no distributional information to sug-
gest that these parts are separable, and they should be combined into a single feature. Conversely, if
the parts occur independently over all of the observed objects, then each of the parts can be identified
based on this statistical information, and those parts could be used as features for representing the
objects. This captures the intuition that a feature representation is useful if knowing an unknown ob-
ject has a feature gives you information as to which object it is. In the first case (co-varying parts),
individuating each part does not provide useful information as to object membership; however, in
the second case, individuating the parts helps differentiate the objects.

A large body of previous research has demonstrated that people are sensitive to distributional
information. Expectations about the distributions of different quantities in our environment influence
how people perceive the world (Ernst & Banks, 2002; Koerding & Wolpert, 2004; Weiss, Simoncelli, &
Adelson, 2002). Studies of human language acquisition show that infants can exploit statistical pat-
terns in sequences of speech sounds to segment a continuous speech stream into words (Aslin, Saffran,
& Newport, 1998; Saffran, Aslin, & Newport, 1996). A similar capacity seems to exist in the visual sys-
tem, with people being able to pick out visual stimuli that often appear in sequence (Kirkham,
Slemmer, & Johnson, 2002), or appear together in a two-dimensional array (Fiser & Aslin, 2001). We
complement these previous results by performing a rational analysis of the role of distributional infor-
mation in feature learning. In the spirit of Anderson (1990) and Marr (1982), this analysis considers
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the nature of the underlying computational problem and how that problem might be solved by a ra-
tional agent. In particular, we analyze the effect that distributional information should have on the
representations people form, and demonstrate that people use these statistical cues when they infer
feature representations for novel objects.

Our rational model uses an approach from nonparametric Bayesian statistics, which allows ob-
jects to be represented using potentially infinitely many features. This infinite capacity is consistent
with the idea that potentially any combination of properties might be considered a feature. The mod-
el creates features to reproduce the objects it observes, but is penalized for each feature it produces.
This results in a ‘‘simplicity bias,’’ similar to that seen in other domains (Chater, 1999; Chater & Vita-
nyi, 2003; Lombrozo, 2007). Thus, the model seeks to infer the number of features necessary to rep-
resent the objects it observes. To the best of our knowledge, it is the only model of feature inference
that infers the number of features and their identity directly from the observable properties of
objects.

Our rational analysis predicts that distributional information should affect the features people
learn, which we show is consistent with previous behavioral results, and go on to confirm in a series
of new experiments. We focus on how distributional information is used in either uniting a set of parts
into a single feature, or differentiating those parts into different features. If the parts that compose ob-
jects co-vary over objects, an observer should infer the objects themselves as features. On the other
hand, if the parts that compose objects vary independently over objects, then an observer should infer
the parts as features. We demonstrate that this effect appears with more than one type of visual ob-
jects and potentially extends to conceptual domains as well.

The plan of the paper is as follows. First, we present a computational level framework for inferring
feature representations from the raw sensory impressions of observed objects. Next, we explore some
properties of the framework and relate them to previous behavioral results on human feature learning.
Our computational framework predicts that how parts co-vary over objects should affect how an ob-
server infers features to represent the objects. In a series of experiments, we confirm this prediction
and demonstrate that the pattern of results cannot be explained by classic exemplar and prototype
models or more traditional dimensionality reduction techniques in machine learning (principal com-
ponent analysis and independent component analysis). Finally, we conclude with a discussion of the
generality of the framework, the limitations of our account, and future directions.
2. A rational analysis of feature learning

Rational analysis is a technique for understanding a cognitive process by comparing it to the opti-
mal solution to an underlying computational problem, with the goal of understanding how this solu-
tion relates to human behavior (Anderson, 1990; Oaksford & Chater, 1998). Using the distinction
introduced by Marr (1982), this analysis focuses on the abstract ‘‘computational’’ level of formulating
the problem and its ideal solution, rather than the ‘‘algorithmic’’ level of the cognitive processes that
might execute this solution. By formally analyzing the problem of inferring feature representations
from the properties of a set of objects, we can determine how distributional information should influ-
ence the features used to represent those objects, giving us a set of predictions against which we can
compare human judgments.
2.1. Identifying the computational problem

Part of what makes determining the features of a novel object challenging is that these features are
not intrinsic to the object, but depend on context. One of the major criticisms of accounts of similarity
that are based on features (such as Tversky, 1977) is that it is possible to identify infinitely many pos-
sible features for any particular object (Goldmeier, 1936/1972; Goodman, 1972; Medin, Goldstone, &
Gentner, 1993; Murphy & Medin, 1985). For example, a mug has a handle and is roughly cylindrical,
but it is also heavier than a piece of paper, larger than an ant, smaller than a breadbox, and so forth.
Which of these features are relevant will depend on the context. This flexibility led Murphy and Medin
(1985) to conclude that feature-based accounts of similarity provide a poor explanation of many
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Fig. 1. Feature representation formulation. (a) Each object x is represented by a binary feature ownership vector z encoding
which features x contains and the feature images y1, . . ., y6. The object is recreated by superimposing the feature images that it
contains (given by z). (b) The problem of learning the features of a set of objects reduces to one of factorizing the matrix X,
whose rows are the objects x, into the product of a matrix Z whose rows are the corresponding feature ownership vectors, and a
matrix Y containing the feature images.
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aspects of cognition, since ‘‘the explanatory work is on the level of determining which attributes will
be selected’’ (p. 296).

The computational problem that we want to solve is thus not one of determining the intrinsic fea-
tures of an object, but picking out which of the infinite array of features of that object should be used
to represent it in a given context. We will focus on a special case of this problem, where the context is
provided by the other objects that appear in a set, and where the features are binary (ie. each object
either possesses or does not possess that feature). These features need to be inferred from the obser-
vable properties of the set of objects. Features will be context-dependent to the extent that different
sets of objects result in different representations.

Formally, we describe the observable properties of the set of objects with a matrix X, where the
rows of the matrix correspond to objects and the columns to properties.1 Each object x is a row of
the matrix X. In this article, the observable properties of an object x are an array of pixels representing
the intensity of light over the retina. The two-dimensional array is converted into a one-dimensional vec-
tor. Thus the matrix X has N rows, one for each object, and D columns, one for each pixel in the image of
an object. The properties of objects can be expressed either as binary or continuous values describing
how the objects vary along a specific observable dimension.

The computational problem is to find a feature representation for X of size K. Each row x will cor-
respond to a vector z of size K, whose elements indicate which features are possessed by that object
(with 1 indicating the object has the feature, and 0 that it does not). We also need to identify how
these features are expressed in the original D dimensions used to encode x, so each of the K features
will be associated with an ‘‘image’’ indicating which properties correspond to that feature. Fig. 1a illus-
trates how a stimulus x might be encoded in terms of a feature ownership vector z and a set of images
associated with those features. x is recreated using z and y1, . . ., y6 by superimposing all the images of
the features it has (given by z) on top of one another.2
1 We will use a convention where matrices are represented by uppercase boldface letters, such as X, vectors are lowercase
boldface, such as x, and scalars are lowercase italic, such as x. Constants are uppercase italic, such as K, and parameters are Greek
letters such as a. P(�) is used for probability mass functions (ie. distributions on discrete quantities, summing to 1) and p(�) is used
for probability density functions (ie. distributions on continuous quantities, integrating to 1).

2 In this example, the observable properties of x are binary pixels. However, our method is general to other observable
properties. For example, in Experiment 3, we represent the observable properties of x are continuous-valued pixels, and then the
feature images will also be continuous.
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This problem of finding the features for a set of objects can be cast mathematically as a problem of
matrix factorization. Intuitively, our goal is to be able to reconstruct X as the product of two matrices:
(1) a N � K binary matrix feature ownership matrix Z (whose rows are the feature ownership vectors
z) and (2) a K � D feature ‘‘image’’ matrix Y that encodes the consequence of an object having each
feature. This is illustrated in Fig. 1b. However, to complete this formulation of the problem we need
to specify the number of features, K. As discussed above, this is a key part of the problem, as objects
can have an arbitrary number of features, with different features becoming salient in different con-
texts. Thus, we want to allow K to be arbitrarily large, but expect that for a set of N objects we will
only use a finite number of features. In the rest of the section, we discuss how this problem can be
solved using tools from nonparametric Bayesian statistics, introduce the particular probability model
used, and then show how this approach can be used to find the features that represent a set of objects.

2.2. Feature learning as nonparametric Bayesian inference

Setting aside for the moment the problem of determining the number of features, the computa-
tional problem presented in the previous section reduces to identifying the most probable feature rep-
resentation for a set of objects given the observable properties of those objects. That is, we want to
infer the most probable feature ownership matrix Z and feature image matrix Y given the observed
properties X. However, the values of Z and Y are underdetermined by X, with many different factor-
izations being possible. The matrix factorization equation X = ZY is underdetermined in exactly the
same way as 2 = ab, where any pair of values for a and b that multiple together to yield 2 is possible.
To solve a problem of this kind, we need to combine the information provided by X with some expec-
tations about the values of Z and Y.

Viewing the problem in these terms makes it clear that it is an inductive problem, and the rational
solution to problems of this kind is provided by Bayesian inference (Griffiths, Kemp, & Tenenbaum,
2008). Here, the properties of the objects X constitute some observed data, and the values of Z and
Y are hypotheses that might explain those data. Finding the most likely values of Z and Y requires cal-
culating P(Z,YjX), the posterior probability of Z and Y given that we have observed X. This can be done
by applying Bayes’ rule, with
PðZ;YjXÞ ¼ PðXjY;ZÞPðZÞPðYÞP
Z0 ;Y0PðXjY

0;Z0ÞPðZ0ÞPðY0Þ
ð1Þ

/ PðXjZ;YÞPðZÞPðYÞ ð2Þ
where P(XjZ,Y), known as the ‘‘likelihood’’, expresses the probability of observing X if a particular va-
lue of Z and Y generated it, and P(Z) and P(Y) indicate the ‘‘prior’’ probability of Z and Y respectively,
expressing the expectations of the learner about the values of these matrices.

Formulating the problem of identifying a set of features as one of Bayesian inference breaks this
problem into two subproblems: finding a representation that generates the observed properties of
the objects with high probability, as captured by the likelihood P(XjZ,Y), and finding a representation
that is in general probable, as expressed by the priors P(Z) and P(Y). The representation that is formed
should be a compromise between these two factors, providing a good match to the objects but also
being consistent with the expectations of the learner. This decomposition also provides insight into
the problem of determining the number of features that a set of objects possess.

The likelihood P(XjZ,Y) should measure how well X is approximated by the product of Z and Y.
Informally, we might imagine comparing each object x with the superposition of the images in Y cor-
responding to the features possessed by that object, as indicated by its feature ownership vector z.
Thus, the only features that have a consequence are those which are used by at least one object, or
in other words those columns of Z that have at least one element that is one (we will refer to these
as ‘‘non-zero’’ columns). If we allow Z to have an infinite number of columns, but allow only a finite
number of non-zero columns, then we can learn feature representations for objects with an arbitrary
number of features. For convenience, we can order the columns such that the non-zero columns ap-
pear first in the matrix, being followed by an arbitrary number of zeros. The non-zero columns thus
determine the effective dimensionality of Z.
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This analysis locates the solution to the problem of having infinitely many possible features of
which only a finite subset are used to represent any set of objects in the prior P(Z). We need to define
a prior distribution that generates matrices with an infinite number of columns, of which a finite num-
ber are non-zero. By applying Bayes’ rule, we can then infer the matrix that best accounts for the struc-
ture of the observed data. In the remainder of this section we introduce such a prior distribution and
then consider how it can be combined with different likelihood functions to infer the features of sets of
objects with different types of observable properties.
2.2.1. A prior on feature ownership matrices
The problem of defining distributions on matrices with infinitely many columns has been explored

in nonparametric Bayesian statistics, a branch of Bayesian statistics that focuses on models that have
potentially infinite complexity. By defining a prior that allows infinite complexity but penalizes more
complex models, the nonparametric Bayesian approach trades off keeping the amount of structure in
the model as small as possible with the model’s ability to explain the data. Thus, nonparametric Bayes-
ian models find the simplest representation for a set of objects without limiting the space of possible
representations.

We will use a particular distribution on binary matrices, which has been used as a prior in a num-
ber of nonparametric Bayesian models. This distribution, known as the Indian Buffet Process (IBP; Grif-
fiths & Ghahramani, 2006), has several nice properties: it allows for multiple features per object, the
probabilities of possessing different features are independent of each other,3 and it generates binary
matrices of arbitrarily large dimensionality. These properties make it a good starting point for an inves-
tigation of people’s expectations about the features of objects, although we imagine that future research
might explore priors that make different assumptions (see the General Discussion for further details).

The IBP defines a distribution over binary matrices with a fixed number of rows and an infinite
number of columns, of which only a finite number are expected to have non-zero elements. However,
an intuitive understanding for this distribution can be obtained by starting with the problem of gen-
erating a binary matrix with K columns. The simplest way we might imagine doing this is by flipping a
coin for each entry in the matrix, putting a 1 in that entry for ‘‘heads’’ and 0 for ‘‘tails.’’ A slightly more
complex model might use a different coin for each column, with a parameter pk indicating the prob-
ability of heads for the coin used for column k. Now, consider what happens as K, the number of col-
umns, becomes larger. Provided pk becomes smaller at a corresponding rate, the total number of ones
in the matrix (and the number of non-zero columns) will remain finite. This is exactly how the IBP was
constructed, by assuming each pk is drawn from a distribution that favors values closer to 0 as K ?1
(for details, see Griffiths & Ghahramani, 2006).

The probability distribution over binary matrices that results from this limiting construction is
equivalent to that provided by a simple stochastic process, which is typically described via a metaphor
in which objects are customers and features are dishes in an Indian buffet. If we imagine a buffet with
infinitely many dishes that is visited by a fixed number of customers, we can generate a binary matrix
with a potentially infinite number of columns but a fixed number of rows by recording the dishes that
are tasted by each customer. The IBP is equivalent to the distribution induced by the following process
(see Griffiths & Ghahramani, 2006 for details). The first customer samples a number of dishes that is
drawn from a Poisson(a) distribution. The next customer tastes each of these dishes with
probability 1/2 (as each of these have been sampled once and this is the second customer), and
samples Poisson(a/2) new dishes. This process continues, with the ith customer tasting the kth dish
with probability mk/i, where mk is the number of people who previously sampled the dish, and
sampling Poisson(a/i) new dishes.

If we define a binary matrix Z such that zik = 1 if the ith customer samples the kth dish and is 0
otherwise, the IBP specifies a distribution on binary matrices that can be used as a prior on feature
ownership matrices. If we continue the culinary metaphor for N customers, imagining that the binary
3 Under the IBP prior, the probabilities of possessing different features are independent. However, they are dependent in the
posterior because if an object has one feature that explains some of its observable properties, it is less likely to take another feature
that explains the same observable properties.



Fig. 2. Inferring representations for objects. Stimuli and feature ownership matrix from Shiffrin and Lightfoot (1997).
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matrix represents how each customer (object) came into the restaurant and choose dishes (features),
the probability of getting a matrix with a particular set of columns is
4 Tec
order o
PðZÞ ¼ aKþQ2N�1

h¼1
Kh!

expf�aHNg
YKþ
k¼1

ðN �mkÞ!ðmk � 1Þ!
N!

ð3Þ
where N is the number of objects, Kh is the number of features with history h (the history is the column
of the feature interpreted as a binary number), K+ is the number of columns with non-zero entries, HN

is the Nth harmonic number Hi ¼
Pi

j¼1j�1
� �

, and mk is the number of objects that have feature k.4 For

example, the history for the first feature in Fig. 2 is 9 ((1,0,0,1) is the binary expansion of 9 = 20 + 23), the
history of the third feature is 5 ((1,0,1,0) is the binary expansion of 5 = 20 + 22), and Kh for all of the non-
zero features in the matrix of Fig. 2 is 1. Note that Eq. (3) does not depend on the ordering of the rows or
columns of Z; meaning that under the IBP, the order that objects enter the restaurant does not matter.
This means that our model is insensitive to the order in which the objects are presented, a point that we
return to in the General Discussion.

The distribution defined by the IBP has the properties that we want in a prior on feature ownership
matrices. First, it allows for potentially infinitely many features. The matrix Z can be thought of as hav-
ing infinitely many columns, although most of those columns contain zeros. As N grows to infinity, the
number of non-zero columns K also grows to infinity, corresponding to the idea that we discover more
features for objects as more objects are observed. Second, this distribution can favor feature represen-
tations with a fewer number of features. By choosing a such that a

N < 1, the IBP implements this bias
because the a

N

� �K term decreases when the number of features in the representation, K, grows. Using
this distribution as a prior, we can infer the number of features required to represent a set of objects,
combining a bias towards a simpler representation with the information provided by the observed
properties of the objects.

2.2.2. Two likelihood functions
To define the likelihood, P(XjY,Z), we assume N objects with D observed properties (e.g., pixels in

an image) are grouped in a matrix X (X ¼ xT
1; . . . ;xT

N

� �
, where xi 2 RD or xi 2 {0,1}D). The feature own-

ership matrix Z marks the commonalities and contrasts between these objects, and the likelihood
P(XjY,Z) expresses how these relationships influence their observed properties. The likelihood links
the feature ownership matrix to the observable properties. We do this by defining a hidden K � D fea-
ture image matrix Y that encodes the consequence of having each feature. The appropriate likelihood
depends on the form of the observed properties in X. When the observed properties are continuous,
we use the linear-Gaussian likelihood (Griffiths & Ghahramani, 2006), and when they are binary,
we use the noisy-OR likelihood (Wood, Griffiths, & Ghahramani, 2006).
hnically, this probability is obtained by summing over all matrices that have the same set of columns, regardless of the
f those columns.
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The linear-Gaussian likelihood assumes that xi is drawn from a Gaussian distribution with mean ziY
and covariance matrix RX ¼ r2

XI, where zi is the binary vector defining the features of object xi and Y is
a matrix of the weights of each element of D properties for each feature k, having continuous values.
This gives the likelihood function
pðXjZ;Y;rXÞ ¼
1

ð2pr2
XÞ

ND=2 exp � 1
2r2

X

trððX� ZYÞTðX� ZYÞÞ
� 	

; ð4Þ
where tr(�) is the trace function, which returns the sum of the elements on the main diagonal of a ma-
trix. This likelihood is the rational choice when the values in X are continuous and the metric of suc-
cess is the sum of the squared errors (SSE) between ZY (the objects reconstructed using the inferred
feature representation) and X. The trace term in Eq. (4) is simply the SSE, meaning that values of Z and
Y that result in a larger SSE will have a lower likelihood. In addition, we assume that each element of Y
is generated from a Gaussian distribution with mean 0 and variance r2

Y . The standard deviations rX

and rY are parameters of the model, and determine how the model trades off errors in reconstructing
X and large values in Y.

For the noisy-OR model (Wood et al., 2006), the raw visual data are reduced to binary pixel values.
This model assumes that the observable properties X are generated from a noisy-OR distribution,
where Z defines the features that each object has and Y defines which properties are associated with
each feature. The noisy-OR distribution is used in research on human causal learning, where it seems
to capture the assumptions that people make about how multiple causes combine to influence an ef-
fect (Cheng, 1997; Griffiths & Tenenbaum, 2005). In this case, each feature is a potential cause of a par-
ticular pixel turning on. The total number of potential causes for object i having pixel d turned on is
given by the inner product of the feature vector for that object with the vector of Y indicating which
features are associated with that pixel, ziyd. The likelihood function results from assuming each xi,d is
sampled independently, with the probability that it takes the value 1 given by
Pðxi;d ¼ 1jZ;Y; k; �Þ ¼ 1� ð1� kÞziyd ð1� �Þ ð5Þ
where � and k are parameters representing the probability a property is present without a cause and
the probability a feature causes an object to possess a property respectively. One interpretation of Eq.
(5) is to assume that each pixel is off a priori, but each feature the object has with that pixel on turns it
on with probability k or that the pixel turns on its own with probability �. In addition, Y is assumed to
have a Bernoulli prior with parameter / representing the probability that an entry of Y is one, with
PðYÞ ¼

Q
k;d/

yk;d ð1� /Þ1�yk;d . The values of �, k, and / determine how the model trades off errors in
reconstructing X with the sparsity of feature images in Y.

The assumptions made about the prior distribution on Y in both of these variants of the model
ignore spatial factors. That is, the pixels that are used by each feature are assumed to be independent.
This simplifying assumption is made because our primary interest is how people form basic units
regardless of domain (as Experiment 4 uses conceptual objects), but it is not necessary. In the General
Discussion we explore a prior that imposes a proximity constraint, in which neighboring pixels are
constrained to have similar values.

3. Modeling the formation of features through unitization

Having discussed theoretical issues of feature learning and defined a model for inferring features,
we now show how one basic phenomenon of feature learning can be understood from the perspective
of this rational model. One line of investigation of human feature learning concerns the phenomena of
unitization and differentiation. Unitization occurs when two or more features that were previously
perceived as distinct features merge into one feature. In a visual search experiment by Shiffrin and
Lightfoot (1997), after learning that the parts generating the observed objects co-vary in particular
ways, participants represented each object as its own feature instead of as three separate features.
In contrast, differentiation is when a fused feature splits into new features. For example, color novices
cannot distinguish between a color’s saturation and brightness; however, people can be trained to
make these distinctions (Goldstone, 1994).
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Unitization and differentiation are typically discussed as the result of perceptual learning
(Goldstone, 1998). Instead of interpreting all cases of unitization and differentiation as the result of per-
ceptual learning, we explore how unitization and differentiation occur in our rational model depending
on how parts co-vary over the set of observed objects. As the rational model does not contain any per-
ceptual constraints, this can be thought of as a domain general approach that connects perceptual unit-
ization and chunking (Hall, 1991). Although general conditions for when differentiation or unitization
occur have been outlined, there is no formal account for why and when these processes take place.
Here, we will focus on the phenomenon of unitization, showing how this falls out of our rational model.

In Experiment 1 of Shiffrin and Lightfoot (1997), participants were trained to find one of the objects
shown in Fig. 2 in a scene where the other three objects were present as distractors. Each object is
composed of three parts (single line segments) inside a rectangle. The objects can thus be represented
by the feature ownership matrix shown in Fig. 2, with zik = 1 if object i has feature k. After prolonged
practice, human performance drastically improved, and this advantage did not transfer to other un-
seen objects created from the same feature set. Shiffrin and Lightfoot concluded that the human per-
ceptual system had come to represent each object holistically, rather than as being composed of its
more primitive features. In this case, the fact that the features tended to co-occur only in the config-
urations corresponding to the four objects provides a strong cue that they may not be the best way to
represent these stimuli.

When should whole objects or line segments be inferred as features? It is clear which features
should be inferred when all of the line segments occur independently and when the line segments
in each object always occur together (the line segments and the objects respectively). In fact, Medin,
Altom, Edelson, and Freko (1982) have shown that for conceptual stimuli people act in accordance
with this principle. However, in the intermediate cases of non-perfect co-occurrence (as with these
stimuli), what should be inferred? Without a formal account of feature learning, there is no basis
for determining when object ‘‘wholes’’ or ‘‘parts’’ should be inferred as features. Our rational model
provides an answer – when there is enough statistical evidence for the individual line segments to
be features, then each line segment should be differentiated into features. Otherwise, the collection
of line segments should be inferred as one unitized feature.

The stimuli constructed by Shiffrin and Lightfoot (1997) constitute one of the intermediate cases
between the extremes of total independence and perfect correlation, and are thus a case in which for-
mal modeling can be informative. Fig. 3 presents the features learned by applying the model with a
noisy-OR likelihood to this object set. Although there is imperfect co-occurrence between the features
in each object, there is not enough statistical evidence to warrant representing the object as a combi-
nation of features. The rational model thus favors representing each object as a single unit. These re-
sults were obtained with an object set consisting of five copies of each of the four objects with added
noise that flips a pixel’s value with probability 1

75 (see Appendix for simulation details).
Though the learned features match the representation formed by people in this experiment, their

psychological plausibility is weakened by the ‘‘speckled holes’’ in the features. In addition to domain
Fig. 3. Inferring feature representations using distributional information from Shiffrin and Lightfoot (1997). The four objects are
learned as features; however, the features inferred by the IBP with the independent feature image prior contain discontinuities
where the objects overlap (see Section 9 for how to include perceptual constraints into the model, which allow the model to
infer more psychologically valid features). The rational model justifies the human perceptual system’s unitization of the objects
as features
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general statistical cues, people use perceptual constraints to infer features, such as proximity informa-
tion (Goldstone, 2000), which are not included in our model. In the General Discussion, we show how
perceptual constraints can be incorporated in our model using a feature image prior with a proximity
bias and how this model infers more psychologically plausible features.

4. Wholes and parts: inferring features using distributional information

Our rational model predicts unitization will occur in Shiffrin and Lightfoot’s (1997) first experiment
because of the statistical structure of the stimuli: The co-occurrence of parts creates a pattern of cor-
relation that is best explained by postulating the objects themselves as features, resulting in a holistic
representation of the objects. To demonstrate that distributional information drives this prediction,
we need to show that we obtain the opposite result – differentiation of features – when the stimuli
have a different statistical structure.

We conducted a simulation to demonstrate that the statistical structure of the input affects the parts
of objects identified as features. Fig. 4a shows the base (on left) and the set of six parts used in the sim-
ulations. Fig. 4b is an artificially generated set of observed objects for which there is not enough statis-
tical evidence to warrant differentiation. The feature membership matrix corresponding to this set of
observed objects is the same as that used in Experiment 1 of Shiffrin and Lightfoot (1997), except that
there are four copies of each object. We refer to this as the correlated set. The sixteen images in the set
were made by adding noise to images of the four objects, and then copying the resulting images iden-
tically four times. The noise was implemented by flipping each pixel with probability 1

75. The four copies
thus had identical noise, although similar results are obtained with independent noise.
(a)

(b)

(d)

(c)

(e)

Fig. 4. Inferring different feature representations depending on the distributional information. (a) The base (on left) and the six
features used to generate both object sets. (b) and (c) The feature membership matrices and objects for the (b) correlated and (c)
independent sets respectively. (d) and (e) The feature representations inferred by model for the (d) correlated and (e) independent
sets respectively.
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Fig. 4c is an artificially generated object set in which the observed objects should be differentiated.
Here, the parts used to generate the objects occur (nearly) independently of each other. The underly-
ing feature membership matrix used to generate the observed objects in this set is the four objects
from the correlated set and twelve of the other possible objects. We refer to this as the independent
set.5 Each image in the set is given independent noise, which was implemented by flipping each pixel
with probability 1

75. This leaves four remaining objects, which form the unseen set (in total there are
6
3


 �
¼ 20 objects constructed by combinations of three parts out of a set of six).

We applied the rational model to the correlated and independent object sets, using a noisy-OR like-
lihood (see Appendix). Fig. 4d and e show the results. When the parts strongly co-occur (the correlated
set), the model forms a representation which consists simply of the objects themselves. When the
underlying parts occur strongly independently of one another (the independent set), the model uses
the parts as features. The pixelation of the inferred features could be removed by averaging over mul-
tiple runs of the model.

Importantly, the two different feature representations make different predictions on the unseen ob-
jects. When the whole objects are the features, the unseen objects are unexpected because they cannot
be represented using the objects as features and thus the model should differentiate between them
and the objects it observed. When the parts are features, the unseen objects are expected because they
can be represented using the parts as features and thus, in this case, the model should not differentiate
between them and the objects it observed. These simulations demonstrate that even when the same
underlying parts create two object sets and the same four objects are in both sets, different represen-
tations should be inferred depending on the distributional information contained in the context of the
other objects presented with the four original objects. This suggests that distributional information
can be a powerful driving force behind unitization and differentiation. Furthermore, the different rep-
resentation imply behavioral consequences as different objects should be expected and generalized to
depending on which representation is used. In the remainder of the article, we examine whether this
prediction holds for human feature learning.
5. Experiment 1: Feature learning from binary images

The simulations in the previous section lead to the question of whether people use distributional
information to infer the features of objects, as our rational model predicts. In Experiment 1, we test
whether the way that parts are distributed over objects (correlated or independent) affects how people
form generalizations. Based on our model, the prediction is that people who see correlations will form
features consisting of the whole objects, and thus generalize less to unseen objects made of the same
parts. However, people who have the parts as features should not differentiate between the objects
they observed and the unseen objects.

The stimuli were the same as those used in the simulations in the previous section, with people
being trained on the correlated or independent sets, and then being tested with a set of stimuli that in-
cludes the unseen objects. The training and test sets were carefully constructed to ensure that: (1) the
variance at each pixel was equal for all training sets, as was the number of times each part appeared, and
(2) the average similarity (in terms of pixel overlap) between any training set and any test set was equal.
5.1. Methods

5.1.1. Participants
A total of 28 undergraduates from University of California, Berkeley, participated in the experiment

in exchange for course credit. There were 14 participants in each of the correlated and independent con-
ditions, with test order counterbalanced.
5 The amount of independence between parts increases as novel objects are added to the set. The correlated set has four of the
possible objects and the independent set has 16 of the possible objects. Neither set is perfectly correlated or independent, so a
computational model is needed to decide which features should be used.
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5.1.2. Stimuli
Fig. 4a shows the images of the parts (combinations of lines and curves) and base (a trapezoid

shared by all objects) that combine to form the objects shown to participants. Each object was formed
by the union of three parts and the base. Thus, there were twenty possible objects, corresponding to all
possible ways of choosing three parts from a set of six. The parts and base were designed such that any
combination of three parts with the base formed a connected object with roughly equal a priori ‘‘good-
ness.’’ For simplicity, the images were black and white (binary).

The main manipulation of this experiment, distribution type had two levels: correlated and indepen-
dent. The parts of the correlated sets strongly co-varied over the objects, but did not so perfectly. Thus,
finding out that a particular part was in an object in a correlated set provided information about which
other parts were in the object, but not perfect certainty. The parts of the objects in the correlated sets
had the same amount of correlation as those in Shiffrin and Lightfoot (1997). The correlated stimuli
are shown in Fig. 5a. Each set consisted of four identical copies of four objects that were perturbed
by random noise. The independent set consisted of 16 of the 20 possible objects and is shown in
Fig. 5b. The set of four objects missing from the independent set were the same as the four objects
of the correlated set. This method of generating stimuli guaranteed that each part in the correlated
set and the independent set appeared with the same frequency, allowing us to control for familiarity
Fig. 5. Object sets used for Experiment 1. (a) The correlated training set, consisting of four copies of four images of different
objects. (b) The independent training set. These two sets share four objects. The four objects missing from the independent
training set forms the unseen objects used in testing.
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and raw frequency effects. Finally, noise was added to each object by flipping each pixel in the image
with probability 1

75.
Each participant was shown either the correlated or independent training set. Participants were gi-

ven their objects on printed cards (described in more detail below). The same test set of twelve objects
was given to all participants in one of two random orderings (test order). Fig. 6a–c show how the
twelve test objects group into three test types: four objects seen by the participant already (seen), four
objects that had not been seen already by the participant that were composed of the same parts (un-
seen), and four objects created by deconstructing the images into different parts (shuffled parts) that
still maintain the gross statistical properties of the objects (equal pixel variance and average pixel sim-
ilarity to all other training and test sets). The shuffled parts stimuli were created by first taking the im-
age formed by the union of all six parts and segmenting it into six different parts. We picked four of
the 20 possible images we could make by combining three of the six resulting parts.

5.1.3. Procedure
Participants were given the 16 images appropriate to their conditions on business cards (width

3.5 in. by height 2.5 in.) randomly in front of them and given the following cover story:

Recently a Mars rover found a cave with a collection of different images on its walls. A team of sci-
entists believe the images could have been left by an alien civilization. The scientists are hoping to
understand the images so they can find out about the civilization.

They were asked to alert the experimenter after ‘‘investigating the images’’ by ‘‘laying all the cards
out on the table and organizing them in any way you think might help you learn about the images’’
and told that ‘‘no longer than 5–10 min is necessary.’’ After they finished investigating the images,
they were given the following test instructions:

It looks like there are many more images on the cave wall that the rover has not yet had a chance to
record. If the rover explored the cave wall further, which images do you think it would be likely to
see?
Your task is to rate how likely you believe it is that the rover sees each image as it explores further
through the cave.
In the booklet in front of you are twelve images, each on its own page. After you are finished rating
each image, turn the page to the next image. Once you have turned to the next image, please DO
NOT TURN BACK to any previous images.

To minimize memory effects, the images from the training set were not taken away from the par-
ticipants. Each image was shown on a single page and participants were asked to generalize to the test
Fig. 6. The three sets of test images. (a) Seen for Experiment 1 and unseen for Experiment 2. (b) Unseen for Experiment 1 and
seen for Experiment 2. The seen and unseen objects are switched for Experiments 1 and 2, with the unseen objects for Experiment
1 being the objects that appear in the correlated set of Experiment 2. (c) Shuffled parts for Experiments 1 and 2.
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set (‘‘Rate from 0-10 how likely you believe the rover is to see this image on another part of the cave
wall’’).
5.2. Results and discussion

Fig. 7 shows the responses of participants for each test object in the experiment and the predictions
of three models (the IBP, an exemplar model, and a prototype model). Participant responses for the
same object were averaged. We discuss the participant responses first. Subjects in both distribution
type groups rated the three types of test objects differently (F(2,48) = 40.72,p < 0.001).6 Importantly,
participants in each distribution type group rated the test types differently as is shown by a two-way inter-
action (F(2,48) = 8.77,p < 0.005). There were no other main effects or interactions (all F < 2). As there
were no major effects of test order, we collapsed over this variable in the subsequent pre-planned
analyses.

Confirming our hypothesis, there was no difference between the seen and unseen image ratings for
participants in the independent condition (t(13) = �0.09,p = 0.93), but there was for those in the corre-
lated condition (t(13) = 8.32,p < 0.001). Participants in the correlated condition were more likely to
generalize to the seen images than those in the independent condition (t(26) = 2.06,p < 0.05). Addition-
ally, participants in the independent group were more likely to generalize to the unseen images than
those in the correlated condition (t(26) = 3.84,p < 0.001). There was no difference between participants
in the independent and correlated conditions on the shuffled parts images (t(26) = 0.41,p = 0.69). Finally
participants in the correlated condition were not more likely to generalize to the unseen images than
the shuffled parts images (t(13) = 1.33,p = 0.21). However, participants in the independent condition
were more likely to generalize to the unseen images than the shuffled parts images (t(13) =
5.39,p < 0.001).

The second plot from the top of Fig. 7b shows the predictions of our model. The results from our
experiment are qualitatively the same as the predictions by our model. The input representation of
each object given to the model is a binary vector of the pixel values in its image. The predictions of
the rational model are based on the probability of the new images given the images from either the
independent or correlated set, and then averaged in the same way as the human data. The model pre-
dictions are computed by approximating the full posterior predictive distribution with the probability
of the new images using the most likely features as determined by a Markov chain Monte Carlo sim-
ulation (see the Appendix for details). As there is a large difference in the probabilities of different
types of test images for the IBP, we use an exponentiated Luce choice rule (Kruschke, 1992; Luce,
1959) to model the relationship between log probabilities and judgments (see the Appendix for de-
tails). In this case, this corresponds to raising the probabilities to the power c that minimized the
squared difference between the model and human responses and renormalizing. In this case,
c = 1.5677 � 10�3, which was fit by minimizing the mean squared error between the average ratings
of participants and the IBP model for the test images in Experiments 1 and 2 (grouped and averaged by
test image type). The quantitative fit of the model with the best-fitting c value to human responses on
the twelve test images in the independent and correlated conditions are r = 0.93 and r = 0.98, respec-
tively (Pearson’s product-moment correlation coefficient).

As our task is essentially a categorization task, requiring people to generalize to the other members
of an observed category, we need to demonstrate that our results cannot be explained using pre-
existing psychological models of categorization. To rule out this alternative explanation, we investi-
gated how an exemplar model and a prototype model would generalize to the test objects given each
set of objects observed by participants as belonging to a category. We used an exemplar model similar
to the popular Generalized Context Model (GCM; Nosofsky, 1986), taking each pixel as an input
dimension and assuming that the attention weights for all dimensions were equal. The GCM is de-
signed to be applied to dimensions that are derived from applying multidimensional scaling to the
stimuli, but in this case our key question is what representation people form of these stimuli, making
this inappropriate. Our goal in using an exemplar model here is simply to demonstrate that similarity
6 All statistics concern participant ratings grouped into the three test types (seen, unseen, and shuffled parts) and then averaged.
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to exemplars, expressed in the original raw pixel space, cannot account for the effects we see in the
experiment. As the raw sensory data are not intended to be inputs to the GCM (only features in psy-
chological space), this is not intended as a critique of the GCM.7 For the prototype model, we predicted
generalization based on the distance to the average of the seen objects (as in Reed, 1972).
7 In fact, one interesting avenue for future research would be to use the features inferred by our model as the inputs to the GCM.
This unified model would allow the GCM to be applied to stimuli without first eliciting human similarity judgments and forming a
psychological space through multidimensional scaling.
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Fig. 7c and d show the predictions of the exemplar and the prototype model, respectively. The
exemplar models’ predictions were made by calculating the category similarity with the pixels as fea-
tures, based on the Euclidean distance between each test image and each input image. The prototype
model predictions were made by calculating the category similarity with the pixels as features based
on the Euclidean distance between each test image and the mean of all input images.8 Like the predic-
tive distribution for the IBP, there was a large difference in the category similarity of different types of
test images for the exemplar and prototype models. We also used the exponentiated Luce choice rule to
produce the values in the plot, applied directly to the category similarity (with c = 1.5 � 10�3 for the
exemplar model and c = 0.38 for the prototype model, fit in the same manner as for the IBP model).

The exemplar and prototype models both have trouble explaining in judgments made by the hu-
man participants in the two conditions. The exemplar wrongly predicts a difference between the seen
and unseen images for the independent images. This is one of the main problems with explaining the
behavior of our participants with an exemplar model: a previously observed stimulus is typically rated
higher than an unobserved stimulus. The quantitative fits of the exemplar model with the best-fitting
c value to the human responses for the independent and correlated conditions are r = 0.62 and r = 0.98,
respectively (Pearson’s product-moment correlation coefficient). Like the exemplar model, the proto-
type model predicts a difference between the seen and unseen images for the independent condition,
which was not observed in participant responses. The quantitative fits of the prototype model with
the best-fitting c value to the human responses for the independent and correlated conditions are
r = 0.70 and r = 0.94, respectively (Pearson’s product-moment correlation coefficient). Though it is
plausible that the exemplar and prototype models could explain human judgments using a represen-
tation inferred via multidimensional scaling or the IBP model, they are insufficient on their own to ex-
plain the results in this experiment.
6. Experiment 2: Feature learning from binary images with independent noise

Experiment 1 demonstrated that people infer features using distributional information as our mod-
el predicts. However, there were two possible confounds in the experiment. First, the observed differ-
ences could be due to the particular parts we correlated together, rather than distributional
information. Second, each copy of the four correlated objects had identical noise, whereas each object
in the independent condition had independent noise. In this experiment, we rule out these confounds
by replicating the same effect using correlated images created by correlating a different set of parts
than those used in Experiment 1 and by adding independent noise to each image in each set.

6.1. Methods

6.1.1. Participants
A total of 28 undergraduates from University of California, Berkeley, participated in the experiment

in exchange for course credit. There were 14 participants in each of the correlated and independent con-
ditions, with test order counterbalanced.

6.1.2. Stimuli
Like Experiment 1, Fig. 4a shows the images of parts and base that combine to form the objects

shown to participants. There are two main differences between the stimuli in this experiment and
those in Experiment 1: whereas in Experiment 1, the copies of the four objects in the correlated set
had identical noise, each image in the correlated set of Experiment 2 was perturbed by independent
noise (each pixel’s value was flipped with probability 1

75), and different parts were correlated together,
which resulted in the correlated and independent sets shown in Fig. 8a and b. As the correlated set of
this experiment is the same as the unseen test set used in Experiment 1, Fig. 6b, a, and c form the seen,
8 For both models, the negative Euclidean distance was multiplied by a specificity parameter j and then exponentiated. The
best-fitting value for the exemplar model was j = 6.5273 � 10�4 and for the prototype model was j = 0.37, found in the same
manner as c.



Fig. 8. Object sets used for Experiment 2. (a) The correlated training set, consisting of sixteen images of four objects, each with
independent noise. (b) The independent training set. These two sets share four objects. The four objects missing from the
independent training set forms the unseen objects used in testing.
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unseen, and shuffled parts test sets for Experiment 2, respectively. Otherwise the stimuli were identical
to Experiment 1.
6.1.3. Procedure
The procedure was identical to Experiment 1.
6.2. Results and discussion

As shown in Fig. 9, the results of Experiment 2 for participants and predictions of the three models
replicate the results of Experiment 1. Like before, we first analyze the participant responses and then
the predictions of the three models in order. Participants in both distribution type groups rated the
three types of test objects differently (F(2,48) = 21.38,p < 0.001). Importantly, participants in each dis-
tribution type group rated the test types differently as is shown by a two-way interaction
(F(2,48) = 4.14,p < 0.05). There were no other main effects or two-way interactions (all F < 2). There
was a three-way interaction of test type, test order, and distribution type (F(2,48) = 4.25,p < 0.05) How-
ever, the effect is irrelevant to the question of whether people use distributional information as it is
caused by participants in the first test order, independent condition rating the seen images higher than
those in the second test order, independent condition (and was not replicated in any other experiment).
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As there were no major effects of test order, we collapsed over this condition in the subsequent pre-
planned analyses.

Confirming our hypothesis, there was no difference between the seen and unseen image ratings for
participants in the independent condition (t(13) = 0.60,p = 0.56), but there was for those in the corre-
lated condition (t(13) = 5.29,p < 0.001). Participants in the correlated condition were more likely to
generalize to the seen images than those in the independent condition (t(26) = 2.16,p < 0.05). However,
we did not detect a difference between participants in the independent and correlated groups in how
likely they were to generalize to the unseen images (t(26) = 0.80,p = 0.22). As can be seen in Fig. 9a,
this is due to the high rating to the fourth unseen image and the effect was found in all other
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experiments (this is probably due to the unanticipated high similarity between the fourth unseen im-
age and second image in the correlated set). There was no difference between participants in the inde-
pendent and correlated conditions on the shuffled parts images (t(26) = 0.2,p = 0.80). Finally
participants in both the independent and correlated conditions were more likely to generalize to the
unseen images than the shuffled parts images (t(13) = 2.46,p < 0.05 and t(13) = 3.51,p < 0.005,
respectively).

Fig. 9b shows the predictions of our model, which were generated in the same manner as Experi-
ment 1, but using the images from Experiment 2. The results from our experiment are qualitatively the
same as the predictions by our model. The quantitative fit of the model with the same c value as before
to human responses on the twelve test images in the independent and correlated conditions are r = 0.85
and r = 0.90, respectively (Pearson’s product-moment correlation coefficient).

Fig. 9c and d show the predictions of the exemplar and the prototype model, respectively. The
exemplar and prototype models’ predictions were made in the same manner as Experiment 1, but
using the images from Experiment 2. Contrary to participant responses, the exemplar and proto-
type models both do not predict any major effect of distribution type. The sensitivity of participant
responses to distribution type is a challenging result for prototype and exemplar models (particu-
larly challenging is insensitivity of participants to the weak part correlations present in the
independent conditions). The quantitative fits of the exemplar model using the same c value as
before to the human responses for the independent and correlated conditions are r = 0.82 and
r = 0.78, respectively (Pearson’s product-moment correlation coefficient). The quantitative fits of
the prototype model using the same c value as before to the human responses for the independent
and correlated conditions are r = 0.77 and r = 0.59, respectively (Pearson’s product-moment correla-
tion coefficient).
7. Experiment 3: Feature learning from grayscale images

Although Experiments 1 and 2 established that people use statistical cues to infer feature represen-
tations as our model predicts, the images were very impoverished, using pixels that were either black
or white. In this experiment, we demonstrate the same effect using computer-rendered 3-dimensional
grayscale images. This provides a more stringent test of our hypothesis by replicating the result with
more complex stimuli. Additionally, it showcases the power of our rational model, which can work
with grayscale images as input representations.

7.1. Methods

7.1.1. Participants
A total of 98 undergraduates from University of California, Berkeley, participated in the experiment

in exchange for course credit. There were 48 participants in the correlated condition and 50 partici-
pants in the independent condition.

7.1.2. Stimuli
Fig. 10 shows the objects used as stimuli, and location of the six parts used in the experiment. The

part is a extrusion on the surface of the sphere (motivated by the stimuli used in Schyns & Murphy,
1994). The parts are equidistant from the focal point and single artificial light source of the image.
The sphere has other extrusions on it and is connected on the bottom to a cylinder, which is the same
in every image. To generate the images, we used the computer graphics renderer Blender (http://
www.blender.org/). Fig. 11 shows four of the images used in the experiment.

This experiment had the same main manipulation as Experiments 1 and 2, distribution type had two
levels: correlated and independent. As the parts we chose to correlate together did not have an effect in
the previous experiments (the results of Experiments 1 and 2 were identical), we did not include a
training set condition in this experiment. Additionally, there were no shuffled part images, so there
were only two levels to the test type manipulation. Gaussian noise was added to each image, by adding
to each pixel a random draw from a Gaussian distribution with a mean of zero and standard deviation

http://www.blender.org/
http://www.blender.org/


Fig. 11. Four of the Martian tools from the independent set. From left to right, the objects have parts 1, 2, and 6, parts 1, 2, and 5,
parts 1, 2, and 3, and parts 1, 3, and 4.

Fig. 10. Images used as stimuli in Experiment 3. Each number corresponds to the location of a part – a small extrusion on the
surface of the sphere. Each object has three parts, which were assigned in the same manner as Experiments 1 and 2.
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of two. Otherwise, the design of this experiment was identical to Experiments 1 and 2, with the
combinations of parts being used to generate each training set being the same as those in the corre-
lated and independent conditions of the previous experiment.

7.1.3. Procedure
Participants were given the sixteen images appropriate to their conditions on cards (width 4.25 in.

by height 5.5 in.) randomly in front of them and given the following cover story (which was similar to
but slightly different from Experiments 1 and 2):

Recently a Mars rover found a cave with a collection of Martian artifacts. A team of scientists
believes the artifacts were used by an alien civilization as tools. The scientists are hoping to under-
stand the artifacts so they can find out about the civilization.

They were asked to alert the experimenter after ‘‘investigating the images’’ by ‘‘laying all the cards
out on the table and organizing them in any way you think might help you learn about the images’’
and told that ‘‘no longer than 5–10 min is necessary.’’ Additionally, they were told that ‘‘although
some cards may be the same, every card does not have the same image on it.’’ After they finished
investigating the images, they were given the following test instructions:
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It looks like there are many more artifacts in the cave that the rover has not yet had a chance to
record. If the rover explored the cave wall further, which artifacts do you think it would be likely
to see?
Your task is to rate how likely you believe it is that the rover sees each artifact as it explores further
through the cave. While rating the artifacts, please feel free to refer back to the cards that you
explored.
In the booklet in front of you are eight images, each on its own page. After you are finished rating
each image, turn the page to the next image. Once you have turned to the next image, please DO
NOT TURN BACK to any previous images.

To minimize memory effects, the images from the training set were not taken away from the par-
ticipants. Each image was shown on a single page and participants were asked to generalize to the test
set (‘‘Rate from 0-10 how likely you believe the rover is to see this object in another part of the cave’’).

7.2. Results and discussion

Fig. 12a shows the mean responses of participants in the experiment. Participants responses were
grouped into the two test types (seen and unseen) and then averaged. The results replicate the main
findings of Experiments 1 and 2: Participants who observe parts that occur independently over objects
do not differentiate between old and new combinations of the parts (t(48) = 1.16,p = 0.25), but partic-
ipants who observe the parts co-vary over objects do (t(46) = 3.55,p < 0.001). Fig. 12b gives the
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Fig. 12. Results of Experiment 3. (a) The mean ratings participants made for test items as a function of training condition. Error
bars show one standard error. (b) Predictions made by the rational model as a function of training set. Notice the close
qualitative correspondence to human performance. Replicating Experiments 1 and 2, the participants in the independent
condition do not differentiate between the seen and unseen objects. Participants in the correlated condition differentiate
between the seen and unseen objects.
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predictions made by the best-fitting IBP model (c = 3.35 � 10�5), using the exponentiated Luce choice
rule to generate predictions, as in Experiments 1 and 2. The quantitative fit of the IBP with the best-
fitting c value to the human responses is r = 0.93 (Pearson’s product-moment correlation coefficient).

A mixed-effects ANOVA corroborates the results of our planned t-test. There was an interaction be-
tween the training condition of the participants and their judgements on the seen vs. unseen objects
(F(1,47) = 5.72,p < 0.05). There was no main effect of training condition (F(1,47) = 0.33,p = 0.58), sug-
gesting participants in the two training conditions used the rating scale similarly. This is important as
it rules out a potential alternate explanation that participants in the independent condition are simply
rating everything higher.

8. Experiment 4: Conceptual feature learning

Experiments 1, 2, and 3 show that the features people identify for visually presented objects are
sensitive to the distribution of parts across those object. This raises the question of how domain-
general this phenomenon might be. Does distributional information only affect how visual features
are learned or does it play a role in other domains? Experiment 4 explored whether distributional
information affects feature learning when the objects and parts are conceptual. The experiment was
analogous to the two previous experiments, other than being conducted in the conceptual domain.
Participants learned about different facts about novel animals found from fossils in a Martian
meteorite. Then, they were asked to rate how likely other animals with three facts were to be found
on the Martian meteorite.

8.1. Methods

8.1.1. Participants
A total of 28 undergraduates from University of California, Berkeley, participated in the experiment

in exchange for course credit. There were 14 participants in both the correlated and independent
conditions.

8.1.2. Stimuli
Six facts about animals were used to construct the stimuli: (1) lays eggs, (2) moves fast, (3) has

small claws, (4) spends most time on land, (5) has scaly skin, and (6) is a small herbivore. Each animal
was described in terms of three of these facts, which play the same role as the three parts of the ob-
jects used in Experiments 1 and 2. The design of the experiment was analogous to that of Experiment
3, with the structure of the training and test sets being identical except for the substitution of facts for
parts. Each animal was presented as a listing of the facts known about it.

8.1.3. Procedure
Participants were given the sixteen cards appropriate to their condition (width 3.5 in. by 2 in.) that

had each fact on its own line (printed in Times New Roman font of size 23) in front of them in a ran-
dom order. The following cover story was used (slightly different from the previous two experiments).

Recently a meteorite from Mars landed in Antarctica. Scientists have excavated fossils of organisms
from inside the meteorite, which they think correspond to 16 different species of Martian organ-
isms. The scientists have discovered three facts about each species.
The cards in front of you are examples of facts of all different species that were found.

They were asked to alert the experimenter after ‘‘investigating the images’’ by ‘‘laying all the cards
out on the table and organizing them in any way you think might help you learn about the images’’
and told that ‘‘no longer than 5–10 min is necessary.’’ After they finished investigating the images,
they were given the following test instructions:

It looks like there are many more fossils in the meteorite that the scientists have not yet had a
chance to excavate. If the scientists excavated the meteorite more, what sorts of species do you
believe they will find?
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Your task is to rate how likely you believe it is that the scientists will excavate a fossil with the
given three facts as they excavate more of the meteorite.
In the booklet in front of you are facts about eight species, each on its own page. After you are fin-
ished rating each species, turn the page to the next species. Once you have turned to the next spe-
cies, please DO NOT TURN BACK to any previous species.

To minimize memory effects, the images from the training set were not taken away from the par-
ticipants. Each image was shown on a single page and participants were asked to generalize to the test
set (‘‘Rate from 0-10 how likely you think scientists are to find a species with these facts in the
meteorite’’).

8.2. Results and discussion

Fig. 13a shows the mean responses of participants in the experiment. Participants responses were
grouped into the two test types (seen and unseen) and then averaged. The results replicate the main
findings of the previous two experiments: Participants who observe parts that occur independently
over objects do not differentiate between old and new combinations of the parts (t(26) = 1.72,
p = 0.10), but participants who observe the parts co-vary over objects do (t(26) = 3.49,p < 0.005). How-
ever, in this case, the participants in the independent condition is trending towards significance. This is
not surprising as the parts are presented one-by-one each on their own line on a card and so, we
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Fig. 13. Results of Experiment 4. (a) The mean ratings participants made for test items as a function of training condition. Error
bars show one standard error. (b) Predictions made by the rational model as a function of training set. Notice the close
qualitative correspondence to human performance. Although participants in both conditions differentiate between the seen and
unseen objects, participants in the correlated condition differentiate more than those in the independent condition.
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promote a strategy where participants respond by explicitly judging the number of parts in common
between test objects and objects in the training set. This strategy predicts participants in the indepen-
dent condition should prefer the seen to the unseen objects and thus, we should expect some differ-
ences in this case. Although a mixed effects ANOVA showed no main effect of training condition
(F(1,26) = 0.16, p = 0.69), there was an interaction between the training and test types conditions
(F(1,26) = 7.73,p = 0.01) (there was also a main effect of test type, F(1,26) = 42.97,p < 0.001). The inter-
action demonstrates that though participants in each condition overall expect the same number of ob-
jects, participants in the independent condition rate the seen and unseen objects more evenly than
those in the correlated condition.

Fig. 13b gives the predictions made by the best-fitting IBP model (c = 1.65), which was found by
minimizing the square distance between the model and human responses and renormalizing. The
quantitative fit of the IBP with the best-fitting c value to the human responses is r = 0.92 (Pearson’s
product-moment correlation coefficient).
9. General discussion

What principles do people use to form the basic units to represent an observed set of objects? In
order to explore this question, we performed a rational analysis of how people should solve this prob-
lem of feature learning. We used a nonparametric Bayesian model to infer arbitrarily rich feature rep-
resentations, allowing an infinite number of features but expecting that only a finite subset will be
expressed in any collection of objects. This model predicts that people’s inductive generalizations
should be sensitive to the amount of co-variation present in the parts that are used to create objects.
Four behavioral experiments confirmed this prediction. Experiments 1 and 2 demonstrated that when
given objects created from parts that occur independently, people generalize to novel combinations of
the parts, but do not generalize when given objects whose parts strongly co-vary. Experiment 3 rep-
licated this result with more realistic grayscale three-dimensional rendered objects. Experiment 4
generalized this result to the conceptual domain. Taken together, these results suggest that people
use distributional information as a domain-general cue for forming feature representations and mak-
ing generalizations.

In the remainder of the paper, we consider some of the issues raised by our analysis. First, we com-
pare our approach to previous models of feature learning from the psychological and machine learning
literatures. We highlight some of the differences from previous psychological approaches, and show
that classic dimensionality reduction techniques from machine learning do not capture the pattern
of results we observed in our experiments as well as our model. We then turn to ways in which
our account can be extended. We show that imposing a proximity bias on the feature image prior
helps the model infer more psychologically plausible visual features, and discuss how our abstract
computational-level approach might connect to accounts of the cognitive processes behind feature
learning at the algorithmic level. Finally, we consider some of the limitations of our analysis and sug-
gest some directions for future research, and conclude the paper.

9.1. Comparison with other approaches to feature learning

While Experiments 1 and 2 were designed to rule out alternative explanations based on popular
psychological models of categorization, previous work in both psychology and machine learning has
produced models that can be applied to feature learning. In this section we consider these other mod-
els, comparing them with our approach and analyzing their predictions.

9.1.1. Psychological models
Goldstone (2003) introduced a neural network model of feature learning, which uses a soft con-

straint-satisfaction process to find good feature representations of objects. This model provided an
important first step towards automatically inferring the features of objects, but it has one limitation
that ours does not possess. The number of features must be specified in advance. This is a serious issue
for an analysis of human feature learning because it does not allow us to directly compare different
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feature set sizes – a critical factor in capturing unitization and differentiation phenomena.9 In contrast,
the use of a nonparametric Bayesian approach allows us to adaptively learn the appropriate number of
features to be used in a representation based on the observed data, while allowing potentially infinitely
many features.

Orban, Fiser, Aslin, and Lengyel (2008) investigated how the human perceptual system learns to
group objects that seem to arise from a common cause, defining an ideal observer model that can be
used to pick out ‘‘visual chunks’’ consisting of objects that tend to co-occur. This work uses a Bayesian
model that can vary the number of causes it identifies, but assumes indifference to the spatial position
of the objects and that the basic objects themselves are already known, with a binary variable repre-
senting the presence of an object in each scene being given to the model as the observed data. By assum-
ing the basic units given to the model are whole parts instead of pixels (as our model does), the input to
their model solves a part of the problem we are interested in (how does the human perceptual system
identify these primitives?). In addition, it cannot explain results like those in Experiment 3, where the
features need to be identified from continuous input data. However, once those primitives are provided,
the assumptions of this model are similar to those behind our nonparametric Bayesian model.10

Although computational modeling of psychological visual feature learning is a relatively unex-
plored area, work on language acquisition has provided many computational models of how people
learn linguistic representations without explicit instruction. Primarily, researchers have explored
how people learn grammars (Solan, Horn, Ruppin, & Edelman, 2005) and segment continuous streams
of phonemes into words (Batchelder, 2002; Brent, 1999; Goldwater, Griffiths, & Johnson, 2009;
Perruchet & Vinter, 1998; Venkataraman, 2001). These models share with our analysis an interest
in the use of distributional information in determining discrete representations. However, they are
not directly applicable to inferring the features that appear in two-dimensional images without signif-
icant modification because they assume the representational units are negatively correlated, whereas
they are independent in our model. The models used by Brent (1999), Goldwater et al. (2009) share
with our model a grounding in nonparametric Bayesian statistics, which provides a general-purpose
tool for solving the problem of determining the amount of structure expressed in observed data.

9.1.2. Machine learning methods
Another potential approach for deriving human feature learning models is to borrow related com-

putational methods from machine learning. The matrix factorization formulation of the computational
problem makes it clear that the goal is to find a smaller encoding for a set of observed objects. In the
machine learning literature, this is known as dimensionality reduction. Although a number of different
dimensionality reduction approaches have been proposed in machine learning, we focus on two of the
most influential methods: principal component analysis and independent component analysis.

Principal component analysis (PCA) encodes a set of given objects in terms of the eigenvectors of its
covariance matrix. Usually only some K eigenvectors have non-negligible weight (eigenvalues) and
these are taken to be the redescription of the data (for an excellent introduction to linear algebra writ-
ten for cognitive scientists see Jordan, 1986). This procedure is well motivated mathematically, being
equivalent to encoding a set of objects in the K-dimensional orthogonal subspace that captures the
greatest proportion of the variance in the observed data (Bishop, 2006) and has been previously pro-
posed as a potential method for inferring psychologically valid features (Abdi, Valentin, & Edelman,
1998). Heuristic methods are usually used to select K, but PCA can also be extended to automatically
infer the number of features (Minka, 2001).

Although the features inferred by PCA are uncorrelated, they are not necessarily independent. Inde-
pendent component analysis (ICA) infers features that are statistically independent form each other
9 The model introduced by Goldstone (2003) may be able to infer the number of features by specifying a large number of
potential features, but encoding a constraint that biases it towards leaving a large number of the features unused. However, it still
introduces an artificial theoretical upper bound on the number of features expressed in a set of objects.

10 Technically, these two models represent different philosophies towards the problem of determining the dimensionality of
observed data. The model proposed by Orban et al. (2008) assumes that there is a finite number of visual chunks, and tries to infer
this number. Our model assumes that there are infinitely many features, of which only a finite number are observed. The difference
between these two approaches has been explored in detail in computer science and statistics (Green & Richardson, 2001;
Rasmussen & Ghahramani, 2001).



Fig. 14. Features inferred by Principal Component Analysis (PCA) when given objects whose parts either co-vary or vary
independently. The features are presented as a color map, where negative weights are colored black and positive weights are
colored gray. On left, features inferred by PCA given the correlated set in Experiment 1 and on right, features inferred by PCA
given the independent set in Experiment 1. Only non-noise features are shown.
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(Hyvarinen, Karhunen, & Oja, 2001). This idea is similar to approaches used to model visual cortex
(Bell & Sejnowski, 1995; Olshausen & Field, 1996), and has recently been explored as a way of explain-
ing human dimensionality reduction in multiple domains (Hansen, Ahrendt, & Larsen, 2005).
Olshausen and Field (1996) have shown that ICA with an added sparsity bias given a set of natural
scenes infers features that are very similar to proposed neural representations used in the primary
visual cortex. However, it is unclear whether or not the close correspondence is due to the sparsity
bias or independence between components (or even if the features used in the primary visual cortex
are behaviorally relevant in our task). Thus, it is unclear whether or not the way ICA uses indepen-
dence information will be successful for this simulation.

We can compare the predictions of these two dimensionality reduction techniques with the predic-
tions of our rational model on the correlated and independent object sets used in our experiments.
Additionally, we can investigate how each technique generalizes to new objects by looking at how
well the best-fitting predictions given each object set can capture the pattern of results observed in
Experiments 1 and 2. The predictions are formed by averaging over each type of test object the amount
of reconstruction error formed from projecting each of the test objects onto the subspace learned by
the dimensionality reduction technique.11 The best-fitting predictions are found by transforming the
reconstruction distance using the exponentiated Luce choice rule with the parameter value that mini-
mizes the mean squared error between the model predictions and the human data (see Appendix).

Fig. 14 shows the features inferred by PCA in Experiment 1 (similar features are inferred given the
objects from Experiment 2), restricting the number of recovered dimensions to include only those that
do not capture noise in the data. The features inferred from the correlated set of Experiment 1 (shown
in Fig. 8) are the shared part and the three sets of anti-correlated parts in the training set (e.g., the fea-
ture on the bottom left of Fig. 14a captures that the third and seventh parts never occur together). The
features inferred from the independent set capture the minor correlations between parts (shown in
Fig. 14b). Thus, the features inferred by PCA do not use statistical information in the same way as
the IBP model or as our intuition would expect. Fig. 16a and b show the best-fitting predictions from
PCA given each object set found in the same manner as for the other models (c = 0.3082). It incorrectly
predicts a weaker effect of distribution type than we found in Experiment 2. Quantitatively, the corre-
lation between its predictions and human responses are r = 0.84, r = 0.98, r = 0.86, and r = 0.80 for the
independent and correlated conditions of Experiments 1 and 2, respectively. Though the fit of PCA is
slightly higher than the fit of the IBP model for the independent condition of Experiment 2 (by
0.01), its fit is much lower (about 0.1) for the independent condition of Experiment 1 and correlated
condition of Experiment 2.
11 Since the reconstruction error is monotonically related to the predictive probability of the test objects given the training
objects, it is equivalent to using the predictive probability directly.
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Fig. 15 shows the features inferred by ICA (using the FastICA software package Hyvarinen, 1999)
when given (a) the correlated and (b) the independent sets of objects of Experiment 1 (similar features
are inferred given the objects from Experiment 2). For both cases, we asked ICA to learn sixteen com-
ponents and then only present the non-noise features. The features inferred from the correlated set by
ICA (shown in Fig. 15a) have the same problem as those inferred by PCA. The features inferred by ICA
are somewhat better than those inferred by PCA when given the independent set. For example, the top
two features inferred by ICA are the parts used to create the independent set. However, the feature rep-
resentation is still intuitively unappealing. The bottom right feature captures the small negative cor-
relation between two of the parts in the independent set. This is because sixteen of the total twenty
possible objects were shown. So, there are small non-zero correlations between some parts in the ob-
ject set. Unfortunately, this yields a feature that does not expect two of the parts to occur together in a
single object, which means the feature representation inferred by ICA differentiates between the seen
and unseen objects (the two parts occur together in some of the objects in the unseen set). Fig. 16c and
d show the best-fitting predictions from ICA given each object set found in the same manner as for the
other models (c = 0.0726). It incorrectly predicts a weaker effect of distribution type than we found in
Experiment 2. Quantitatively, the correlation between its predictions and human responses are
r = 0.81, r = 0.98, r = 0.81, and r = 0.78 for the independent and correlated conditions of Experiments 1
and 2, respectively. Like PCA, its fit to participant responses is much lower (about 0.1) for the indepen-
dent condition of Experiment 1 and correlated condition of Experiment 2.

Dimensionality reduction is a growing literature, and while PCA and ICA are the most common
methods, it may be that other methods from machine learning or computer vision will be able to cap-
ture the effects of distributional information on feature learning. For example, Ullman (2007) describe
a method for visual feature learning that infers features by picking those that provide the most
amount of information to an object’s category relative to the other categories in the data set. This ap-
proach cannot be used for the sets of objects we analyzed in this paper, since no category information
is provided, but it would be interesting to compare the predictions that result from this kind of ap-
proach to human judgments in future work.

9.2. Encoding a proximity bias in the feature image prior

The model that we used in most of our analyses made a very simple assumption about the struc-
ture of features, asserting that the prior distribution for each pixel was independent. This simplifica-
tion makes it easier to work with the model, but ignores a large literature in perception showing that
people have strong expectations about the forms that parts of objects will take (Biederman & Cooper,
1991; Braunstein, Hoffman, & Saidpour, 1989; Palmer, 1999). One consequence of this simplifying
assumption was seen in the features inferred from the stimuli used by Shiffrin and Lightfoot
Fig. 15. Features inferred by Independent Component Analysis (ICA) when given objects whose parts either co-vary or vary
independently. The features are presented as a color map, where negative weights are colored black and positive weights are
colored gray. On left, features inferred by ICA given the correlated set in Experiment 2 and on right, features inferred by ICA
given the independent set in Experiment 2. Only non-noise features are shown.
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Fig. 16. The best-fitting predictions of Principal Component Analysis (PCA) (a) and (b) to human results of Experiments 1 and 2
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(1997), which were disconnected and contained ‘‘speckled holes’’, both of which seem psychologically
implausible. By changing the feature image prior such that it incorporates more realistic expectations,
we can infer features that are more psychologically plausible. We will show how this can be done for
the noisy-OR likelihood, although a similar extension is possible for the linear-Gaussian likelihood.

For the noisy-OR model, the prior probability distribution on Y assumes each element is indepen-
dently drawn from a Bernoulli distribution. This misses some obvious psychological constraints on the
types of features we learn, such as proximity (i.e., all else equal, features should be connected). We can
introduce a proximity bias by taking our prior to be a distribution (called the Ising model; e.g., Geman
& Geman, 1984) on the elements of Y such that neighboring pixels tend to have the same value. Let q



Fig. 17. Features learned by the model given the objects from Experiment 1 of Shiffrin and Lightfoot (1997) using the proximity
bias feature image prior. Note that the speckled holes have been filled in using proximity information resulting in more
psychologically plausible features.
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reflect the propensity for two neighboring pixels to share the same value (q > 0.5 indicates neighbors
are more likely to be the same), and h be the propensity for each pixel to be on (h > 0.5 indicates pixels
are more likely to be on). Neighboring pixels are connected by edges (e = {d1,d2}, where d1 is the index
of the first pixel), with C the set of edges between neighboring pixels. This gives us the following prior
probability distribution on Y (up to a proportionality constant):
12 We
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Calculating the normalization constant for this distribution is intractable and thus, approximation
techniques are used to find Y under this prior (see the Appendix for details).

Using the feature image prior with a proximity bias, the model infers features that are more con-
nected, and thus more psychologically plausible than before. For example, consider the aforemen-
tioned case of inferring features given the images from one experiment of Shiffrin and Lightfoot
(1997). The original model infers features with ‘‘speckled holes’’, as shown in Fig. 3. When the model
uses the feature image prior with a proximity bias, the holes get filled in because the prior penalizes
the neighboring pixels not all being on (shown in Fig. 17). Thus, we have incorporated a proximity
constraint simply by changing the prior probability on feature images. As we develop better models
of other perceptual principles (see for example Zhu, 1999), our model can use these in the same
way to improve the psychological plausibility of the features it infers.

One future direction is exploring how distributional and proximity information interact using our
model with the proximity bias feature image prior.12 Goldstone (2000) showed that when a category-
irrelevant part is flanked by two category-relevant parts (forming one contiguous unit), the conjunction
of the three parts are learned as a single feature. This demonstrates the importance of proximity infor-
mation when features are learned through categorization training. If categorization information is in-
cluded into our model (by either including it as part of the sensory data of an object as in Austerweil
& Griffiths, 2009, or by including hierarchies into our model, Thibaux & Jordan, 2007), it would infer a
contiguous feature (containing all three parts) when the feature image prior with a proximity bias is used
(but our original model would infer a feature only containing the two category-relevant parts).

Our model predicts that parts that are less good from a proximity standpoint need to vary more
independently than those that are good from a proximity bias. Another interesting line for future work
would be to explore this prediction and more generally how proximity information affects perceptual
feature learning. Although Goldstone (2000) showed that proximity information is used to infer fea-
tures through categorization training, it is unclear how proximity information is used when features
are inferred without categorization training or how proximity interacts with distributional and cate-
gory information.
thank Rob Goldstone for this suggestion.
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9.3. Connecting to the algorithmic level

Our goal in this paper was to provide a rational analysis of the effects of distributional information
on feature learning, which is framed entirely at Marr’s (1982) ‘‘computational’’ level, identifying the
nature of the underlying computational problem and its optimal solution. The results of our experi-
ments suggest that people are sensitive to distributional information in the way that this optimal solu-
tion predicts. However, this raises the question of what cognitive processes people might be using to
solve this problem – what Marr termed the ‘‘algorithmic’’ level. Linking the computational and algo-
rithmic levels represents an important challenge for future work on feature learning.

Previous psychological models of feature learning provide clues as to possible algorithmic-level
models that might approximate the behavior of our rational model. The model introduced by Gold-
stone (2003) is one promising candidate, particularly if a similar penalty for the number of features
is introduced. Our experiments were designed to provide people with resources similar to those of
an ideal agent, not imposing time or memory constraints by allowing people free inspection of the
stimuli. Conducting experiments in which these factors are manipulated may provide a way to tease
apart the predictions of different algorithmic-level models.

Order effects provide another important source of evidence about underlying cognitive processes.
Our analysis assumes that all stimuli are available when the learner is inferring a representation,
which was the case in our experiments. However, presenting the stimuli one at a time might provide
a way to identify effects of the order of presentation. Our rational model cannot predict order effects,
since the posterior distribution P(Z,YjX) is invariant to the order of the stimuli. However, recent work
exploring approximations to rational models based on Monte Carlo methods provide tools for defining
models that incrementally make inferences as data are presented (Levy, Reali, & Griffiths, 2009; San-
born, Griffiths, & Navarro, 2006). One popular algorithm for incremental inference, a particle filter, has
already been derived for models based on the IBP (Wood & Griffiths, 2007), and in future work we
hope to examine whether this ‘‘rational process model’’ can account for order effects in feature learn-
ing (e.g., Schyns & Rodet, 1997).

9.4. Limitations and future directions

In this article, we presented nonparametric Bayesian modeling as a general tool for understanding
how people learn representations. We showed how nonparametric Bayesian models naturally incor-
porate arbitrary amounts of structure into their representations just like cognitive representations,
and demonstrated that people make similar inferences from distributional information. However,
there are a number of directions in which this work could be extended, including providing a more
direct connection to perceptual learning, and evaluating models that make different assumptions
about the relationship between the features of objects.

Our experiments were not designed to evaluate whether people had genuinely altered their per-
ception of the stimuli. Like Schyns and Rodet (1997), we infer what features our participants use based
on the distinctions they make in their generalization behavior. This method leaves open the possibility
that people did not form new percepts of these stimuli, but rather that they changed the amount of
attention or weight that they assigned to existing features. Other experimental methods that have
been used in the literature on perceptual learning, such as participant delineation of features (Schyns
& Murphy, 1994) and speeded part-whole judgments (Pevtzow & Goldstone, 1994), provide a more
direct test of whether there has been a change in the percepts that people form. In future work, it
would be interesting to examine whether the manipulation of distributional information we used
in our experiments actually alters people’s percepts in this way.

Another interesting avenue for research is to extend our rational model to capture other aspects of
human feature learning. For example, translation invariance is an important part of recognizing
shapes, and may play a similarly significant role in people’s recognition of features across objects.
We recently introduced a variant of the IBP that incorporates transformations, allowing features to
be modified when they occur in an object (Austerweil & Griffiths, 2010). This model associates a hid-
den transformation with each feature, which is learned from the observed objects (though a basic set
of transformations is assumed). Allowing spatial transformations provides the opportunity to learn
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that features are translation invariant. This presents the opportunity to compare this model against
other methods from machine learning for inferring translation-invariant features (e.g., Spratling,
2006) as part of a broader account of human feature learning.

The IBP assumes that the features of objects are independent of one another a priori (the features
are not independent in the posterior distribution), and that there is no relationship between the fea-
tures of particular objects beyond the general popularity of a feature. Both of these assumptions can be
relaxed, resulting in models that may capture people’s expectations more accurately in different do-
mains. Infant studies by Spelke (1990) show that the earliest cue to object continuity is time. This sug-
gest that parts of objects moving together over time could be another potentially strong cue to
learning not only what objects are, but also the features of objects. Thus, another future direction
would be to compare feature learning by IBP models that are sensitive to time (e.g., Van Gael, Teh,
& Ghahramani, 2009) to how people learn features with temporal information. Other variants on
the IBP make it possible to specify relationships among objects (Miller, Griffiths, & Jordan, 2008), or
to assume that objects belong to different categories (Thibaux & Jordan, 2007), resulting in priors that
may provide a more accurate account of human feature learning in cases where these assumptions are
appropriate.

Finally, our exploration of a proximity-based prior on feature images illustrates how particular con-
straints on the form of features can be introduced into our model. However, this only scratches the
surface of such constraints. In perception, there is a long literature demonstrating that people prefer
to interpret objects using features that have Prägnanz or ‘‘goodness,’’ where the ‘‘goodness’’ of a fea-
ture refers to a subjective feeling of being better than other possible feature decompositions (generally
based on classic Gestaltist principles of organization, Palmer, 1977, 1999). There are many computa-
tional proposals to formalize the introspective feeling of goodness; usually based on a measure of sim-
plicity in a coding language (Hochberg & McAlister, 1953; Leeuwenberg, 1978; van der Helm &
Leeuwenberg, 1996) or the amount of invariance across different transformations (Garner, 1974;
Palmer, 1991). In our framework, any of the proposals can be formulated as a more elaborate prior dis-
tribution on the types of feature images allowed. Our approach may thus provide a means of defining
novel computational models of different Gestalt constraints.
9.5. Conclusion

Through a series of four behavioral experiments, we demonstrated that people use distributional
information to infer feature representations for novel objects in a way that is predicted by a rational
analysis of feature learning. In particular, we have shown that people generalize category membership
from the same objects differently depending on the statistical distribution of parts in the set of objects.
The differences in their generalization behavior suggest that they represent the same objects using dif-
ferent features. This is a result that was predicted by our rational model, which is based on nonpara-
metric Bayesian statistics. The results of our experiments cannot be explained using exemplar or
prototype models, previous models of feature learning, or dimensionality reduction techniques from
machine learning. We view these results as a first step towards answering the question raised by
Garner (1974) and the Gestaltists of how a cognitive system forms representations for sets of stimuli,
allowing an object to be represented in different ways based on its context.
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Appendix A. Simulation details

In this section, we describe how we calculated the predictions of each model for the experiments.

A.1. Modeling human responses using the Indian buffet process

The Indian Buffet Process (IBP) provides a prior probability distribution on the feature ownership
matrix Z, but this does not fully specify how to infer the probability of new objects xtest, given a set
of previously observed objects X (the form of the human data from our three experiments). First,
we need to infer P(ZjX), which is the inferred feature representation for the set of observed objects.
To infer P(ZjX), we invert it using Bayes Theorem, which gives us two components P(XjZ) (the likeli-
hood or the probability of the objects given the feature representation) and P(Z) (given to us by the
IBP). We use the noisy-OR likelihood function (given by Eq. (5)) for binary input data (Experiments
1, 2 and 4) and the linear-Gaussian likelihood function (given by Eq. (4)) for grayscale input data
(Experiment 3). The matrix of feature weights (the image of each feature when instantiated) is Y.
To infer the feature weights for the noisy-OR model, we put a Bernoulli prior with parameter / (con-
trolling the number of pixels we expect to be on in each feature) on each pixel of the noisy-OR like-
lihood ðykd�

iid Bernoullið/ÞÞ. To infer the feature weights for the linear-Gaussian model, we put a
multivariate Normal prior on the feature weight matrix Y � Normalð0;r2

Y IÞ
� �

where r2
Y is a parameter

controlling how much variation we expect within a feature. So, we infer the feature weight matrix and
feature ownership matrix jointly given the observed objects (P(Z,YjX)), which we will then use to pre-
dict new objects.

Unfortunately computing the posterior distribution on feature weight matrices is intractable. Thus,
we approximate it using Gibbs sampling, a Markov chain Monte Carlo method in which a sequence of
samples are generated that ultimately converge to the posterior distribution. Gibbs sampling algo-
rithms have been previously derived by Wood et al. (2006) for the noisy-OR model and Griffiths
and Ghahramani (2006) for the linear-Gaussian model. An alternative to Gibbs sampling is variational
inference (Doshi-Velez, Miller, Van Gael, & Teh, 2009), which can be more efficient for larger sets of
images than those we examine here. For the noisy-OR model, the joint distribution used in Gibbs sam-
pling is given by
13 Alth
likeliho
human
prior di
PðZ; YjXÞ / PðXjY; ZÞPðYÞPðZÞ: ð7Þ
For the linear-Gaussian model, remember that P(XjY,Z) is a Gaussian distribution with mean ZY and
variance r2

Y ID, where ID is the D � D identity matrix. Though we could perform Gibbs sampling in the
same fashion as the noisy-OR case, Y can be integrated out and so, we sample Z directly from
P(ZjX) / p(XjZ)P(Z) where p(XjZ) can be shown to be (Griffiths & Ghahramani, 2006)
pðXjZÞ ¼ exp � 1
2r2

X

tr XTðI� ZðZT Zþ r2
X

r2
Y

IÞ�1ZTÞX

 �� 	

ð8Þ
where r2
X is the expected variance of the observed objects, BT denotes the transpose of matrix B, and

tr(B) denotes the trace of the matrix B (the sum of its elements on the primary diagonal).13 If Y is
needed explicitly (which it will be to predict the new objects), we calculate its posterior mean given
the observed objects and Z (Griffiths & Ghahramani, 2006):
E½YjX; Z� ¼ ZT Zþ r2
X

r2
Y

I

 ��1

ZT X: ð9Þ
For each experiment, we ran the sampler for at least 500 samples and took the inferred bZ (and bY) to be
the mode of the distribution given by the Gibbs sampler after a burn-in of 50 iterations (removing the
ough the IBP model with the noisy-OR likelihood has four parameters and the IBP model with the linear-Gaussian
od has three parameters, these are not free parameters because their values are set without looking at the test objects or
responses. Usually they are set using the gross statistics of the training set, though we obtain comparable results if we put a
stribution over these parameters and sample them as well.
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first 50 iterations from analysis, though the results do not depend on the length of the burn-in). Next,
we used the inferred values to approximate P(xtestjX), the probability of observing new objects xtest

after observing the object set X:
14 Due
comput
transfo

15 In
howeve
PðxtestjXÞ ¼
X

Ztest ;Z;Y

PðxtestjZtest;YÞPðZ; YjXÞ ð10Þ

� PðxtestjbZ test; bYÞ ð11Þ
where we pick the representation of the new object(s) bZtest to be the one that maximizes the proba-
bility of the test objects ðbZtest ¼ arg maxZPðxtest j Z; bYÞÞ. For our experiments, the number of inferred
features is small and so we find bZtest by explicitly searching through all possibilities.

Using the steps described so far, we now have an unnormalized approximate probability of each
test object under the rational model (or each type of test object by summing over the objects of the
same type). To compare this to the data from our experiments (human generalization likelihoods),
we need to rescale the unnormalized probabilities. To do this, we transform the unnormalized prob-
abilities through the exponentiated Luce choice rule PðxtestjbZtest; bYÞc, where c is a parameter fit by min-
imizing the squared distance between the model’s responses and the human data, and then
renormalize over each type of object.14 This is the only parameter that is used to fit the model to the
human results.

For the simulations with binary data (the Shiffrin and Lightfoot modeling, and Experiments 1, 2,
and 4), the parameters, a, �, k, and / of the Gibbs sampler were set to 2, 0.01, 0.99, and 0.1 respectively
and chosen without looking at the test objects. Changing a had little effect on the features that were
inferred by the model (though there are ways of inferring a from the data using the Metropolis-
Hastings algorithm as in Wood et al., 2006). Lowering k resulted in poor performance due to the model
not believing in the efficacy of the features it was trying to infer (roughly, k is the probability that a
feature fails to turn on a pixel it says to turn on). Varying � affects how much noise the model suspects
there is in the data set. As � increases, the model thinks everything is noise and as � decreases, the
model does not think there is any noise and it infers a large number of features to capture every aspect
of each object. Changing / effects the number of pixels that are on in each feature. Small values of /
encourage features that are small and large values of / encourage features that are large (though the
model can infer small and large features when it is appropriate for the observed set of data). For the
simulations with grayscale data (Experiment 3), the parameters, a;r2

Y , and r2
X , of the Gibbs sampler

were set to 2, 15, and 20. r2
X is similar to � in that as it increases, the model thinks everything is noise

and as it decreases the model does not think there is any noise. r2
Y has a similar effect to / except now

low values of r2
Y penalize extreme values in the feature images.

Due to the high dimensionality of the images used in the Shiffrin and Lightfoot and Experiments 1
and 2 simulations (each image in Experiments 1 and 2 is 86 � 146 = 12,556-dimensional), the Gibbs
sampler gets stuck in local minima and thus, simulated annealing (Geman & Geman, 1984) and
‘‘split-merge’’ steps as discussed in detail later were used to help the Gibbs sampler find the feature
representation with highest posterior probability (a standard practice for solving hard global optimi-
zation problems). Given a temperature parameter t, the Gibbs sampler for P(ZjX,Y) using simulated
annealing15 samples from P(ZjX,Y)1/t. As t ?1, the Gibbs sampler with simulated annealing chooses
values uniformly at random (regardless of X and Y). As t ? 1, the sampler draws values from P(ZjX,Y)
and as t ? 0, the sampler converges to the global maximum of P(ZjX,Y). Thus, to help the Gibbs sampler
search get out of local minima, we start with small t (so the sampler chooses new values almost uni-
formly at random) and slowly increase t we iterate using the Gibbs sampler. The temperature t used
by the Gibbs sampler on iteration i was 250

logðiþ1Þ. In the simulations for Experiment 1, we found that the
Gibbs sampler converged to the reported feature representation by approximately iteration 400.
to the high dimensionality of the input data for Experiments 1, 2, and 3, the model predictions were expressed
ationally as log probabilities. We transformed the log probabilities by expfcj log PðxtestjbZtest; bYÞjg. This results in the same

rmation on the probabilities defined previously.
our simulations, Gibbs sampling using simulated annealing to sample from P(YjZ,X) resulted in worse performance;
r, it was necessary to use Gibbs sampling with simulated annealing to sample effectively from P(ZjX,Y).
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For Experiments 1 and 2, the Gibbs sampler was run for 1000 iterations and the best-fitting c was
1.5677 � 103. For Experiment 3, the Gibbs sampler was run for 500 iterations and the best-fitting c
was 3.35 � 10�5. To aid inference, the images were cropped and brightened to increase the contrast
of each image. For Experiment 4, the Gibbs sampler was run for 2000 iterations and the best-fitting
c was 1.65. Importantly, the parameters were the same given either set of observed objects (and for
different experiments using the same likelihood model) and aside from c, chosen without looking
at the test objects. Thus, the model’s difference in generalization when given the correlated set versus
the independent set is due to the statistical properties of the given object set.

In the General Discussion, we explore imposing a proximity bias on the feature image prior for
modeling Shiffrin and Lightfoot (1997) and this filled in the speckled holes that were in inferred when
we used the simple feature image prior. To use the proximity bias, every time P(Y) occurs in the Gibbs
sampler, we used the feature image prior given by Eq. (6) instead of independent Bernoulli coinflips.
Though this does help with inferring more psychologically plausible features, it adds extra complexity
to the probability distribution, which makes inference even more difficult. To deal with this issue, we
performed a stochastic search, where we repeatedly perform four Gibbs sampling steps and then a
‘‘split-merge’’ step. A split-merge step creates a proposal new state that either splits a feature into
two new features or merges two features into one feature with equal probability. The probability
the proposal is chosen as the next state is proportional to the ratio of the probability of the objects
under the current feature set versus the proposal feature set multiplied by the temperature t (so this
step underwent the same simulated annealing as discussed above). The split-merge steps are neces-
sary because the Gibbs sampler for the model with the proximity bias feature image prior rarely
changes dimensionality. The results reported in the article use h = 0.15 and q = 0.999 (the other
parameters were the same).
A.2. Modeling human responses using a prototype and exemplar model

To model the results of Experiments 1 and 2 with a prototype and exemplar model, we formulated
a simple prototype and exemplar model based on Nosofsky (1986). To define each model, we defined a
distance metric between two objects (d(xtest,x)) and a similarity function of a test object to the set of
observed objects using that distance metric ðgxtest ;XÞ, and then computed the generalization likelihood
response function using the exponentiated Luce choice rule. The distance metric we used was
dðxtest;xÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxtest � xÞTðxtest � xÞ

q
; ð12Þ
where x is an observed object to have the property of interest, xtest is another object, and (xtest � x)T

(xtest � x) is the dot product of the vector xtest � x with itself.
The similarity function for both models was based on exponential decay (Nosofsky, 1986; Shepard,

1987), where the prototype model calculates the distance of the test object to the mean of the ob-
served objects (xmean) and the exemplar model sums over the distances of the test object to each of
the given objects. Thus the similarity function gp

xtest ;X

� �
for the prototype model was
gp
xtest ;X ¼ exp �jdðxtest; xmeanÞf g ð13Þ
and the similarity function for the exemplar model ge
xtest ;X

� �
was
ge
xtest ;X ¼

X
x2X

exp �jdðxtest; xÞf g ð14Þ
where j is a ‘‘specificity’’ parameter, scaling the distances in both models. Then, we connected the
unnormalized generalization probabilities to the human responses using the same exponentiated
Luce choice rule as was used in the previous section for the IBP. For Experiments 1 and 2, we found
the best-fitting c and j on averaged responses for each model separately (c = 1.5 � 10�3,
j = 6.2573 � 10�4 for the exemplar model and c = 0.38, j = 0.3705 for the prototype model).
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A.3. Modeling human responses using principal component analysis and independent component analysis

To model the results of Experiments 1 and 2 using principal component analysis (PCA) and inde-
pendent component analysis (ICA), we used the first K non-noise dimensions learned from the training
set as our representation space for the objects. For PCA, there were three non-noise dimensions for the
correlated set and five non-noise dimensions for the independent set. For ICA, there were four non-
noise dimensions for the correlated set and six for the independent set. To calculate the likelihood of
the test objects after observing each image set, we projected the test objects into the subspace learned
to represent the observed image set. The average reconstruction error of the test objects projected into
the learned subspace to the original test object (mean squared error) was taken as a measure of how
likely the test object is after observing the previous objects. For PCA, this is monotonically related to
the predictive probability of the test objects given the observed objects.16 Then, we convert the average
reconstruction error to the results from Experiments 1 and 2 using the same transformation as was used
in the previous section for the IBP. For Experiments 1 and 2, we found that the best-fitting parameter
value was c = 0.3082 for PCA and c = 0.0726 for ICA.
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