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Looking across human societies reveals regularities in the languages that people speak and
the concepts that they use. One explanation that has been proposed for these ‘‘cultural uni-
versals’’ is differences in the ease with which people learn particular languages and con-
cepts. A difference in learnability means that languages and concepts possessing a
particular property are more likely to be accurately transmitted from one generation of
learners to the next. Intuitively, this difference could allow languages and concepts that
are more learnable to become more prevalent after multiple generations of cultural trans-
mission. If this is the case, the prevalence of languages and concepts with particular prop-
erties can be explained simply by demonstrating empirically that they are more learnable.
We evaluate this argument using mathematical analysis and behavioral experiments. Spe-
cifically, we provide two counter-examples that show how greater learnability need not
result in a property becoming prevalent. First, more learnable languages and concepts
can nonetheless be less likely to be produced spontaneously as a result of transmission fail-
ures. We simulated cultural transmission in the laboratory to show that this can occur for
memory of distinctive items: these items are more likely to be remembered, but not gen-
erated spontaneously once they have been forgotten. Second, when there are many lan-
guages or concepts that lack the more learnable property, sheer numbers can swamp the
benefit produced by greater learnability. We demonstrate this using a second series of
experiments involving artificial language learning. Both of these counter-examples show
that simply finding a learnability bias experimentally is not sufficient to explain why a par-
ticular property is prevalent in the languages or concepts used in human societies: expla-
nations for cultural universals based on cultural transmission need to consider the full set
of hypotheses a learner could entertain and all of the kinds of errors that can occur in
transmission.

� 2013 Elsevier B.V. All rights reserved.
A comparison of how people speak and think across hu-
man societies reveals some surprising regularities. To give
two examples, the syntax of human languages shows less
variability than might be expected if languages were sim-
ply arbitrary communication schemes (Greenberg, 1963;
Comrie, 1981; Croft, 2002), and religious concepts seem
to follow a common schema (being ‘‘minimally counterin-
tuitive’’) in a range of societies (Boyer, 1994). The existence
of these cultural universals raises a natural question:
Where do they come from? What makes particular lan-
guages or concepts more likely to appear in a society? Re-
cent work has explored a possible answer to this question,
based on differences in the ease with which languages and
concepts are transmitted from person to person (e.g.,
Boyer, 1994, 2001; Boyer & Ramble, 2001; Culbertson,
2012; Finley & Badecker, 2007; Kirby, Cornish, & Smith,
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2008; Moreton, 2008; Scott-Phillips & Kirby, 2010; Wilson,
2006). The basic idea behind this answer is that concepts
and linguistic features that are easier to transmit are more
likely to survive the process of transmission, and thus have
the potential to become more prevalent: ‘‘[I]n order for lin-
guistic forms to persist from one generation to the next,
they must repeatedly survive the processes of expression
and induction. That is, the output of one generation must
be successfully learned by the next if these linguistic forms
are to survive.’’ (Brighton, Kirby, & Smith, 2005, p. 303).
Since ease of transmission is presumably related to the
compatibility of languages and concepts with human
learning and memory, this provides a mechanism by which
we should expect cultural objects to shape themselves to
the structure of human minds.

The idea that cultural universals result from ease of
transmission suggests an empirical strategy for explaining
the prevalence of a particular property of languages or con-
cepts, in which laboratory experiments are used to show
that it is easier for people to learn or remember stimuli
with that property than those without it (e.g., Boyer &
Ramble, 2001; Culbertson, Smolensky, & Legendre, 2012;
Finley, 2012; Finley & Badecker, 2007; Moreton, 2008; Tily,
Frank, & Jaeger, 2011; Wilson, 2006). Moreton (2008) pro-
vides a description of how experimental evidence about
learnability can shed light on biases: ‘‘In typological theo-
ries based on analytic bias, asymmetries between attested
and unattested phonologies are attributed to cognitive pre-
dispositions which admit some phonological patterns and
exclude others.’’ (p. 85). This empirical strategy simplifies
the problem of investigating linguistic universals:
‘‘[E]xperimental techniques, such as artificial grammar
learning paradigms, make it possible to uncover the psy-
chological reality of claimed universal tendencies.’’ (Finley,
2012, p. 1). Similarly, Wilson (2006) notes that ‘‘[b]y dem-
onstrating that participants generalize from a brief period
of exposure in the way predicted by a formal, substantively
biased learning model – not in the way predicted by an
otherwise identical model that lacks substantive bias –
the results reported here shift the debate from speculation
over the source of typological distribution to experimental
investigation of human learning.’’ (p. 968). In this descrip-
tion, it is clear that the goal is to draw conclusions about
typological distributions based on what types of biased
generalizations people make. While Boyer and Ramble
(2001) are somewhat more circumspect about what con-
clusions can be drawn from better recall of one type of con-
cept over another, they too use this evidence in support of
what will become universal, saying, ‘‘[W]e can expect, all
else being equal, concepts that are very easy to recall to
spread in a cultural environment and concepts that are
intrinsically difficult to recall to spread less.’’ (p. 538).

This experimental strategy relies on the premise that
more accurate learning of a language or concept with a
particular property is sufficient for that property to be-
come widespread. We analyze whether this premise is
sound using a combination of mathematical analysis and
behavioral experiments. As a starting point, we use a sim-
ple linear transmission framework to model cultural evolu-
tion. A model of cultural evolution is linear if each agent
observes data that were generated by a single other agent
and forms a hypothesis about which language or concept
generated these data. For example, in the case of language,
each agent might hear a set of utterances and form a
hypothesis about what language generated these utter-
ances. After forming such a hypothesis, the agent then pro-
duces data that will be observed by another agent. After
many such transmission events the distribution over the
hypotheses that are learned converges to an equilibrium
distribution, which indicates the relative prevalence of
particular languages within the population.

Using a formal model of cultural transmission allows us
to analyze how the ease with which particular languages
and concepts are transmitted relates to their ultimate
prevalence. We present two counter-examples showing
that greater probability of being transmitted accurately is
not sufficient for greater prevalence. These counter-exam-
ples correspond to cases that could plausibly arise for the
transmission of languages and concepts. For simplicity
we will refer to the transmission of hypotheses rather than
differentiating the cases of languages and concepts. The
first counter-example concerns a situation in which a
hypothesis is transmitted with high probability, but once
it disappears it is unlikely to reappear. This scenario could
potentially arise with ‘‘minimally counterintuitive’’ reli-
gious concepts (Boyer, 1994; Boyer, 2001), which are more
memorable but less likely to be generated spontaneously.
The second counter-example is a case in which a hypothe-
sis has a sufficiently high probability of being transmitted
successfully as to be more probable than any other single
hypothesis, but there are many more other hypotheses.
In this case, the other hypotheses may still dominate in
the population. This situation can arise in transmission of
languages, where the set of possible languages with a par-
ticular property may be far smaller than the set without.

For each of our counter-examples we illustrate the the-
oretical possibility of greater learnability not resulting in a
universal, and then provide an empirical demonstration of
this phenomenon. For the first counter-example we con-
duct an experiment inspired by work on the transmission
of religious concepts (Boyer & Ramble, 2001), showing that
a distinctive item on a memorized list is transmitted with
high probability, but nonetheless disappears from the list
and does not return. For the second counter-example we
use a paradigm similar to that of Finley and Badecker
(2007) to explore learning and transmission of artificial
languages. An initial experiment shows that an artificial
language containing vowel harmony is transmitted more
successfully than an arbitrary language. However, a second
experiment demonstrates that vowel harmony quickly dis-
appears when languages are transmitted across multiple
generations.

Both of our counter-examples illustrate that it is not
sufficient to show that some types of languages or con-
cepts are more likely to be accurately transmitted in order
to explain why these concepts become dominant across
cultures. Determining the outcome of cultural transmis-
sion is a challenging problem, and accuracy of transmission
is only one of the relevant factors. We argue that conclu-
sions about cultural universals resulting from cultural evo-
lution can only be obtained by making stronger
assumptions about the transmission process, making more
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complete models that capture differences in learnability,
characterizing the pattern of changes that result from
information passing from one person to another, or simu-
lating cultural transmission in the laboratory. We show
that there are cases where learnability differences can be
used to predict long-term outcomes, when certain assump-
tions about the transmission process are made. These pre-
dictions depend on the factors that were highlighted in the
counter-examples, such as the number of hypotheses with
a particular property, in addition to the strength of the
learnability bias.

1. Formalizing cultural transmission

Languages and concepts change over time as they are
transmitted from generation to generation (e.g., Bartlett,
1932; Labov, 2001). Our goal is to understand how the
long-term consequences of this process of change are re-
lated to the factors that influence the success of a single
transmission event. We begin by formalizing cultural
transmission using a linear model, in which it is assumed
that each person learns a concept or language from data
produced by a single person in the previous generation.
This model subsumes other popular models in the litera-
ture on cultural evolution, including simple versions of
the iterated learning model (Griffiths & Kalish, 2007; Kir-
by, 2001) and the replicator dynamics (Komarova &
Nowak, 2003; Schuster & Sigmund, 1983). We use this
model to examine whether greater ease of transmission
is sufficient to allow a language or concept to become
prevalent.

We will use the term ‘‘hypothesis’’ to refer to any
piece of information transmitted from one person to an-
other, such as a language or a concept. The first step in
specifying our model is then to define the set of possible
hypotheses, denoted H. Each element h 2 H is one possi-
ble hypothesis representing a specific concept or lan-
guage. Transmission occurs when a new member of the
population receives data from another member of the
population and learns some h 2 H. We assume that trans-
mission occurs only from one person to another person,
and that each person learns only one hypothesis. For
example, one member of the population who knows lan-
guage hj might transmit that language to another mem-
ber of the population, and that member might acquire
language hj. Alternatively, another language might be
learned: The learner might not have heard enough data
to fully specify hj as the language or might have misheard
something, and thus infers another language hi that is
(a) (b)

Fig. 1. The linear model of cultural transmission. (a) A hypothesis is passed from
a learner will end up with hypothesis hi when learning from data generated by so
states. (c) The solution to the eigenvector equation Qp = p for this transition matr
hypothesis when hypotheses are transmitted via a process that has transition m
consistent with the data she or he heard. More formally,
we assume that for all hi, hj 2 H, qij is the probability that
someone will learn hypothesis hi from someone who
knows hypothesis hj. These can be encoded in a transition
matrix Q where the (i, j) th entry of the matrix corre-
sponds to the transition probability qij (see Fig. 1).

Using this framework, we can define learnability biases
explicitly and determine whether a learnability bias for
some property necessarily implies that this property will
be present in the majority of hypotheses produced as a re-
sult of cultural transmission. As mentioned previously, a
learnability bias means that one type of hypothesis is more
likely to be transmitted accurately from one generation to
the next than another hypothesis. This definition is similar
to the notion of ‘‘cognitive bias’’ discussed in Wilson
(2003). The learnability of a particular hypothesis is often
found experimentally, as in experiments exploring how
successfully languages or concepts with different proper-
ties are transmitted (e.g., Boyer & Ramble, 2001; Finley &
Badecker, 2007; Wilson, 2003). Experiments that find that
hypotheses with one property are more likely to be suc-
cessfully learned than hypotheses without that property
are establishing a learnability bias for that property. For-
mally, we define a learnability bias for some hypothesis
hi over some other hypothesis hj as meaning that qii > qjj.
For example, one might expose one group of learners to
language hi and another group to language hj. If more
learners in the first group accurately learned the language
they were exposed to, this would indicate a learnability
bias for language hi over language hj. In a Bayesian model,
a learnability bias might be expressed by having higher
prior probability on one hypothesis than on another; how-
ever, our definition of a learnability bias simply expresses a
tendency for one type of hypothesis to be more easily
transmitted than another and does not rely on any partic-
ular model of learning.

We can extend the idea of a learnability bias to an ab-
stract property of a hypothesis, rather than a specific
hypothesis, by applying a similar definition to sets of
hypotheses. Imagine there are two sets of hypotheses, H1

and H2. These sets might be defined by classifying all
hypotheses with a particular property in H1 and all con-
cepts without the property in H2. A learnability bias that
favors a particular property means that each concept or
language with that property is more likely to be transmit-
ted successfully than each concept or language without
that property. That is, for all possible pairs hi 2 H1 and hj -
2 H2,qii > qjj. This would indicate a general learnability bias
for hypotheses in H1 over hypotheses in H2.
(c)

one learner to another, and the transition matrix Q encodes the probability
mebody with hypothesis hj. (b) An example transition matrix Q with four
ix. p gives the equilibrium probability that a learner will learn a particular
atrix Q.
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Using this definition of a learnability bias, we can now
determine whether such a bias is sufficient to establish
that the favored property will be present in the majority
of hypotheses that learners learn. That is, if H1 denotes
the hypotheses with the property of interest, we want to
determine whether a learnability bias for hypotheses in
H1 implies that the majority of the hypotheses in the pop-
ulation will be in H1 and not in H2 after hypotheses have
been transmitted from person to person for some time. If
this is the case, then demonstrating a learnability bias is
sufficient to explain why a particular property might be-
come universal. If not, we should be cautious in interpret-
ing the evidence provided by learnability biases.

We can determine the consequences of cultural trans-
mission by appealing to existing results on the equilibrium
of this linear dynamical system. As mentioned above, this
linear transmission model is related to two kinds of models
that have been used to study language and cultural evolu-
tion: If we assume that learners are organized in a chain,
this linear model is called iterated learning (Kirby, 2001);
alternatively, if we assume that there exists an infinite
number of learners in the population, each of whom learns
from a single randomly selected learner, the model is
called the replicator dynamics (Schuster & Sigmund,
1983). In either case, the probability that a learner will
learn hypothesis h, assuming the population has reached
equilibrium, is given by the solution to the eigenvector
equation Qp = p, normalized such that

Pn
i¼1pi ¼ 1 (for de-

tails, see Griffiths & Kalish, 2007). For hypotheses in H1 to
become dominant, it must be the case that these hypothe-
ses occur the majority of the time. This condition will be
met if

P
h2H1

ph >
P

h2H2
ph.

The analysis given in this section provides us with the
tools needed to determine whether a particular property
will become universal based on examination of the transi-
tion matrix. In the remainder of the paper, we use these
tools to determine when a learnability bias will ensure that
a property will appear in the majority of hypotheses. We
primarily focus on two counter-examples in which this is
not the case. The first counter-example focuses on the case
where a hypothesis is transmitted accurately, but unlikely
to be generated spontaneously. The second counter-example
considers what happens when the favored set of hypothe-
ses is much smaller than the alternative set. In each case,
we suggest that the situation described by this counter-
example could plausibly arise in the context of transmit-
ting concepts or languages and present empirical results
bearing out our predictions. We end by considering when
a learnability bias does lead to a property becoming preva-
lent after many generations and show two special cases
where this result holds.
2. Counter-Example 1: Easy to transmit, hard to
generate

Our first counter-example derives from a situation in
which there exist two sets, one of which has hypotheses
that all have high self-transition probabilities (H1) and
one of which has hypotheses with lower self-transition
probabilities (H2). However, the second set also has high
inter-transition probabilities for hypotheses in the set:
Learners who learn from someone with a hypothesis from
H2 tend to acquire a hypothesis from H2 rather than a
hypothesis from H1. Thus, the self-transition probabilities
for the sets of languages differs from the self-transition
probabilities for individual languages within the sets. This
pattern might occur in cases where learners rarely learn a
particular hypothesis unless they receive data generated
specifically from that hypothesis. For example, some
hypotheses may be unlikely to be spontaneously generated
by learners as a result of transmission errors. Additionally,
this pattern might occur when hypotheses of one type are
less likely to be accurately transmitted than those of an-
other, but are likely to have transmission errors that result
in the learner acquiring a hypothesis of the same type. In
this case, hypotheses of the less learnable type might be
more likely to be confused with one another, resulting in
the whole set being more prevalent.

The transition matrix Q shown in Fig. 1b is an example
of a matrix with this property. Let H1 = {h1,h2} and
H2 = {h3,h4}. We have that qii > qjj for all i 2 H1 and j 2 H2:
Each hypothesis in H2 has a lower self-transition probabil-
ity than any hypothesis in H1. Thus, we have a learnability
bias for H1 over H2. However, the eigenvector p shown in
Fig. 1c indicates that the equilibrium of this system, which
will be reached after languages are transmitted from per-
son to person many times, does not favor hypotheses in
H1. Instead,

P
h2H1

ph ¼ 0:4 while
P

h2H2
ph ¼ 0:6: A plural-

ity of learners will acquire h4, and most learners will adopt
a hypothesis in H2.

The discrepancy between what one might predict based
on simply looking at the self-transition probabilities qii ver-
sus the actual equilibrium distribution comes from the fact
that the qii do not take into account the low probabilities of
transitioning from a hypothesis in H2 to a hypothesis in H1.
For instance, while the probability h3 is transmitted accu-
rately is only 0.75, in almost all cases where the learner ac-
quires a different hypothesis, that hypothesis will be h4:
only 5% of the time will a learner learn a language in H1

when she hears data generated by someone who knows
h3. Rather than involving only the self-transition probabil-
ities, the equilibrium probability that learners learn a con-
cept in H1 (and hence the prevalence of the property
associated with H1) is a function of the fidelity of transmis-
sion between all pairs of hypotheses.

In most cases, one cannot explain away problematic
transition matrices by first collapsing the matrix into two
states, one representing all hypotheses in H1 and one rep-
resenting all hypotheses in H2, and then examining the
resulting transition probabilities between these two sets.
Such a transformation on a Markov chain only preserves
the Markov property in cases where for all i, j 2 Hi-P

n2H2
qni ¼

P
n2H2

qnj (Burke & Rosenblatt, 1958; Kemeny
& Snell, 1960): for all states hi in H1, the total probability
of transitioning from that state to any state in H2 must
be the same. Given that one would expect, for example,
some languages or concepts to be more similar to the
hypotheses in the alternative set than others, and thus to
have varying transition probabilities from one another, it
seems relatively unlikely that this condition will hold in
real cultural transmission situations. Verifying this
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condition also requires knowing the entire transition ma-
trix, something that is rarely obtained in experiments;
however, we discuss several special cases where this crite-
rion holds later in the paper.

This counter-example implies that if the linear trans-
mission model is an accurate model for understanding cul-
tural evolution, then it is not sufficient to compare how
accurately languages or concepts are maintained over a
single generation in order to predict what trends will
emerge after many generations. Instead, one must also
look at the complete pattern of transition probabilities be-
tween hypotheses. The ways in which hypotheses change
through transmission may be as important as the relative
fidelities of transmission in determining long term trends.
When one only looks for a learnability bias, the rate at
which hypotheses change into other hypotheses is not ac-
counted for, leaving open the possibility that predictions
about long-term trends will be incorrect. To demonstrate
that the situation in which this counter-example arises is
plausible, we now turn to an empirical demonstration
using a laboratory simulation of cultural transmission.
3. Experiment 1: Memory for distinctive items

We have shown mathematically that it is possible for a
set of hypotheses to have a learnability bias but still not
become universal after repeated cultural transmission
due to having a low probability of being spontaneously
generated. We now demonstrate this phenomenon in a
behavioral experiment by simulating cultural transmission
in the lab with human learners. In Experiment 1, partici-
pants completed a memory task in which they were ex-
posed to a list of items and were then asked to reproduce
this list from memory. Each new participant was exposed
to the previous participant’s list, creating a linear transmis-
sion structure. This procedure is an instance of the ‘‘serial
reproduction’’ paradigm introduced by Bartlett Bartlett
(1932) for studying the effects of cultural transmission
on items reproduced from memory, which has recently
been analyzed as an instance of the linear transmission
model (Xu & Griffiths, 2010).

The design of our experiment was motivated by previ-
ous work connecting a difference in memorability to cul-
tural universals in religious concepts (Boyer, 1994, 2001;
Boyer & Ramble, 2001). This work starts from the observa-
tion that across human societies, religious concepts tend to
be ‘‘minimally counterintuitive,’’ involving only a small
number of changes from concepts that correspond to real
objects or forces. For example, a statue that cries is more
likely to appear as a religious concept than a statue that
cries, levitates, and is invisible. One proposed explanation
for this apparent universal is that minimally counterintui-
tive concepts are more memorable than mundane or extre-
mely counterintuitive concepts, and thus come to
dominate through cultural transmission. In support of this
explanation, several experiments found a memory advan-
tage for minimally counterintuitive concepts that appeared
in stories (Boyer, 2001; Boyer & Ramble, 2001).

In this experiment, we explore whether a memory
advantage is actually sufficient to cause a particular type
of concept to dominate after many generations of cultural
transmission. It seems plausible, for instance, that certain
types of memorable stimuli are harder to spontaneously
generate, and thus may never be regenerated if they are
ever forgotten. To explore this possibility, we included a
distinctive item in the initial list that people had to repro-
duce from memory. People were told that they were
remembering a grocery list, and the first list included the
unusual item elephants. We predicted that this distinctive
item would be easier to remember (consistent with the
classic Von Restorff effect, Von Restorff, 1933), but would
be unlikely to be spontaneously generated, and would
hence disappear as a result of repeated cultural transmis-
sion. If this is the case, it suggests that memorability evi-
dence alone is not sufficient to explain why a concept is
prevalent after many generations of cultural transmission.
Such a finding would not invalidate the work of Boyer and
colleagues, especially as we have not tested how counter-
intuitive our unusual item is and thus cannot directly com-
pare to their conditions. However, this finding would
suggest that a memory advantage is not a complete expla-
nation for the prevalence of minimally counterintuitive
religious concepts, since it would show that more memo-
rable items are not necessarily highly prevalent after many
iterations of cultural transmission.

3.1. Methods

3.1.1. Participants
Fifty members of a university community came into the

laboratory and received $10/h compensation for their par-
ticipation in this and several other unrelated studies. An
additional 150 participants were recruited via Amazon
Mechanical Turk and completed the study online; they re-
ceived a small amount of monetary compensation for their
participation.

3.1.2. Stimuli
The stimuli for each participant consisted of ten words

presented on a computer screen. Words were displayed
sequentially, in the center of the screen. Each word was
displayed for four seconds, followed by a half second blank
screen.

3.1.3. Procedure
Participants completed the task on the computer. The

program informed participants that they would be shown
ten words to remember for a subsequent memory test. Par-
ticipants were told not to write down or otherwise record
the words. After exposure to the sequence of words, partic-
ipants were distracted for 60 s with a reading and response
task (either reading and completing a form, or reading a
paragraph and answering questions). Participants were
then asked to list the items that they had seen, either on
the computer or on a sheet of paper. They were instructed
to fill in all ten spaces and to give their best guess if they
did not remember one of the ten items.

The lists to remember were generated as follows. The
first list was composed of the following nine relatively
common nouns, which are all items one would buy at a
grocery store: toilet paper, cheese, tomatoes, eggs, milk, let-
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tuce, orange juice, bread, and bananas. Additionally, there
was one distinctive item (elephants) in this first list. Partic-
ipants were organized into chains. All laboratory partici-
pants formed one chain, and the online participants were
split into three separate chains, each consisting of 50 peo-
ple. After the first participant in the chain, subsequent par-
ticipants were given lists to remember composed of the ten
items given by the previous participant in the chain; items
remained in the same order as remembered by the previ-
ous participant. Participants’ responses were left out if
they failed to provide 10 distinct items.

3.2. Results and discussion

The average number of items retained by each partic-
ipant was similar for all chains, ranging from 8.82 to
9.18, so we analyze the results from laboratory and on-
line participants together. This mirrors previous research
showing that responses from online participants were
similar to responses from lab participants (Sprouse,
2011). To ensure that the chains reached a stationary
distribution, we calculated the expected time to conver-
gence. As described in Appendix A, we bounded this
time by relating our model to the coupon-collector
problem (Feller, 1968), and found that with 95% proba-
bility, the chains would have reached convergence with-
in 45 iterations.

We observed that when elephants occurred in a list, it
was remembered by participants 95% of the time, while
other items were remembered by participants 87% of the
time. To determine if this difference was significant, we
used a logistic regression analysis. We compared a model
with only a constant coefficient to one that had both a con-
stant coefficient and a coefficient set to one for the item
elephants and zero otherwise, and sought to predict the
probability that each word would be remembered in a sin-
gle generation. We found that the elephants coefficient
Table 1
All items generated at least five times in Experiment 1.

Word Apple Juice Cheese Cereal

Times generated 9 8 7 7

milk egg apple bread che
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Fig. 2. Results of Experiment 1, showing the most common w
was positive and that the model with this coefficient was
a significantly better fit than the model without this coef-
ficient (v2(1) = 5.42,p < 0.05). This demonstrates a learna-
bility bias for the distinctive item, as it was more likely
to be remembered than other items. Across all chains, ele-
phants was remembered for an average of 19.5 iterations.

However, in all four chains of participants, elephants
eventually disappeared and was never re-generated. This
is in contrast to more typical grocery list items that tended
to be forgotten more frequently, but were also often spon-
taneously generated (see Table 1); for instance, apple was
generated by nine different participants. To demonstrate
the types of words that occurred frequently after many
generations, Fig. 2 shows the top words in the final ten
iterations, aggregated across lists. Elephants does not ap-
pear among these words, since it never occurred in the last
10 iterations of any of the chains.

Based on these results, the equilibrium distribution for
grocery lists is unlikely to assign high probability to lists
which include elephants, despite this item being highly
memorable. This is consistent with our predictions, and
with the mathematical analysis presented in the previous
section. Consequently, we should be cautious in using
greater memorability as an explanation for why certain
concepts seem to be universal – being easier to remember
is not sufficient to allow a concept to dominate a popula-
tion through cultural transmission, if that concept is not
also reasonably likely to be generated spontaneously. An
experiment that used a single generation of transmission
would have found a memory bias for elephants (accurately
transmitted 97% of the time) as compared to apples (accu-
rately transmitted 89% of the time) and might lead one to
erroneously conclude that elephants will be common in all
future lists. However, to fully understand the way that
memory biases interact with the process of cultural evolu-
tion, an experiment that simulates cultural transmission is
required.
Milk Bread Butter Egg Water Orange

6 6 6 6 5 5

ese juice banana cereal meat

 Last 10 Iterations

ords in the last ten iterations, aggregated across chains.
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4. Counter-Example 2: Differences in the number of
hypotheses

Our first counter-example demonstrated that a learna-
bility bias may not lead to a hypothesis having high prob-
ability in the equilibrium distribution resulting from
cultural transmission. However, it is also possible that lear-
nability biases might fail to translate to universals in the
case where hypotheses with a particular property have
higher equilibrium probabilities than hypotheses without.
For example, consider the case where there are a limited
number of hypotheses with the property of interest: even
if each of these hypotheses is more probable in the equilib-
rium distribution than any hypothesis without the prop-
erty, this property could still fail to become universal if
there are many more hypotheses without that property.
We next show how this situation can arise in language
evolution, using a mathematical model and two artificial
language learning experiments.

For this counter-example, we consider the property of
vowel-harmony, although the counter-example is likely
to apply in many other situations. Vowel harmony is an at-
tested linguistic pattern wherein the vowels in words in a
language must share some phonological feature. For exam-
ple, in Turkish, the plural suffix is -lar in bash-lar ‘heads’,
but -ler in bebek-ler ‘babies’ so as to adhere to the require-
ment that words are front-back harmonic. In the former,
both vowels are back vowels, and in the latter, both vowels
are front vowels. Vowel harmony is relatively common
across the world’s languages (van der Hulst & van de Wei-
jer, 1995), but places a strong constraint on the structure of
the lexicon. For instance, even if we imagine words being
comprised of just two vowels, the requirement that vowels
must share a phonological feature cuts down the space of
possible words significantly.

Past work has shown that typologically attested vowel
harmony patterns are generally more easily learned by
English speakers than alternatives (Finley & Badecker,
2009; Moreton, 2008), although English does not possess
this property. This demonstrates that there is a learnability
bias for vowel harmony in human learners. In this section,
we analyze language evolution using iterated learning with
Bayesian agents in order to ascertain how large such a lear-
nability bias must be in order to cause harmonic languages
to dominate after many generations of cultural evolution.
This allows us to explore how the necessary magnitude
of the bias scales with the relative difference in number
of hypotheses.

To analyze the prevalence of harmonic languages, we
use iterated learning to explore the evolution of the lexicon
of a language over time. In an iterated learning model,
learners are organized in a chain, just as in Experiment 1.
As in the more general transmission model, the dynamics
of iterated learning depend on the transition matrix Q. To
define this matrix, we must specify the process by which
learners select a language. We assume that learners are
Bayesian, meaning that they infer a language h based on
the data d that they receive according to Bayes’ rule. The
posterior probability assigned to h after observing d is
p(hjd) / p(djh)p(h), where p(djh) (the likelihood) indicates
the probability of d being generated from h, and p(h) (the
prior) indicates the extent to which the learner was biased
towards h before observing d. If we assume learners select
hypotheses with probability equal to their posterior prob-
ability, we obtain a transition matrix Q with entries

qij ¼ pðhðtþ1Þ ¼ ijhðtÞ ¼ jÞ ¼
X

d

pðhðtþ1Þ ¼ ijdÞpðdjhðtÞ ¼ jÞ;

ð1Þ

where h(t) and h(t+1) are the languages of learners at itera-
tions t and t + 1 respectively. Griffiths and Kalish (2007)
have shown that in this model, iterated learning with
Bayesian agents that sample from the posterior, the equi-
librium distribution p is simply the learners’ prior distribu-
tion p(h). If a language hi is more probable in the prior
distribution and the likelihood function p(djh) takes the
same form for all hypotheses, then hi will have a self-tran-
sition probability qii that is greater than the self-transition
probability of other languages, indicating a learnability
bias. The equilibrium probability of this language will be
p(hi), so if pðhiÞ >

P
j–ipðhjÞ then hi will be more prevalent

than all other languages at equilibrium. This implies that
in order to dominate after many generations, it is insuffi-
cient for a particular language to have higher prior proba-
bility than any single other language. If there are many
alternative languages, then the combined probability of
these languages may overwhelm the bias towards the fa-
vored language.

To show that this situation can occur with the linguistic
property of vowel harmony, we consider a particular lexi-
con. Assume that we have a finite number of words N, each
of which has a vowel-harmonic variant and a variant that
is not vowel harmonic. For example, words might be com-
posed of a stem and one of two suffixes. With one suffix,
the word is harmonic due to the suffix sharing a phonolog-
ical feature of the vowel with the stem; with the other suf-
fix, this feature is not shared. We define a language h as a
binary vector of length N. If the ith position of the vector is
a 1, the vowel-harmonic variant of the word is in the lan-
guage; otherwise, the variant that is not vowel-harmonic
is a part of the language. This results in 2N possible lan-
guages. If we define a language as vowel-harmonic only
if all words in the language are harmonic, then one of these
2N languages is vowel-harmonic. More realistically, we
might define a language as vowel-harmonic if the propor-
tion of non-harmonic words is less than some �. We can
quantify the bias towards harmonic languages defining
the prior probability on a hypothesis h as uniform within
each type of language (harmonic and non-harmonic), and
setting p(hharmonic) = kp(hnon�harmonic) for each hypothesis.
Each harmonic language is thus k times more likely in
the equilibrium distribution than each non-harmonic lan-
guage; for k > 1, there is a learnability bias for harmonic
languages.

Fig. 3 shows the value of k that is necessary for har-
monic languages to be more prevalent than non-harmonic
languages at equilibrium as a function of the proportion �
of non-harmonic words allowed: As � decreases, the num-
ber of harmonic languages decreases, and thus the bias k
towards these languages must be larger (see Appendix B
for mathematical details). If k is greater than one, even
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much greater, but less than the value shown in the figure,
there will be a learnability bias for harmonic languages
over non-harmonic languages, but these languages will
not be acquired by the majority of learners, and thus the
learnability bias will not be sufficient to cause harmonic
languages to be universal.

This mathematical analysis demonstrates that a rela-
tively strong learnability bias will be required for languages
with a particular property to dominate in cases where there
are many more languages that lack the property. While past
work has shown that some bias towards vowel harmony ex-
ists for English speakers (Finley & Badecker, 2009; Moreton,
2008), it is not clear whether this bias is sufficient to over-
come the imbalance in the number of possible languages
of each type. To explore this question, we conduct two
experiments in which human learners learn an artificial lan-
guage. In Experiment 2, we establish a learnability bias for a
linguistic pattern based on vowel harmony over an arbitrary
pattern, replicating results in prior work. In Experiment 3,
we examine what happens when a language with the com-
mon pattern is transmitted multiple times among learners
in the lab. Each learner learns a language and then produces
data from this language to teach the next learner. By study-
ing the languages that emerge after several generations of
transmission in Experiment 3, we are able to determine
whether the learnability bias found in Experiment 2 results
in vowel harmony becoming widespread across the learned
languages.
5. Experiment 2: Learnability of vowel harmony

5.1. Methods

5.1.1. Participants
A total of 40 members of the Berkeley community re-

ceived either monetary compensation at $12/h or course
credit for their participation. All were native speakers of
English.1
1 57% of participants were monolingual, and 43% were bilingual. None of
the languages spoken by bilingual participants (e.g., Mandarin or Spanish)
had vowel harmony.
5.1.2. Stimuli
A trained linguist and native speaker of English was re-

corded saying 160 CVCVC words. Each word began with
one of 80 CVC stems, twenty each with the vowels /i/, /e/
, /u/ and /o/ and random consonants. Each stem was re-
corded with both variants, or allomorphs, of a suffix, [it]
and [ut]. Thus, half the words were front-harmonic (e.g.,
pel-it, bis-it) and half were front-disharmonic (e.g., pel-
ut, bis-ut). Alternatively, stimuli could be classified based
on a dependency between the height of the first vowel
and the frontness of the second value. Stimuli were
height-front dependent if when there was a mid-vowel
stem, there was a front vowel suffix (e.g., pel-it, bod-it),
and when there was a high-vowel stems, there was a
back-vowel suffix (e.g., bis-ut, tug-ut). Half of the words
had this dependency, while the other half did not. The
set of stimuli were constructed to be similar to those in
Moreton (2008), but use a wider range of consonants to
promote learning of the words and greater generalization
(Gómez, 2002; Lively, Logan, & Pisoni, 1993).

5.1.3. Procedure
The procedure followed a modified artificial grammar

paradigm. Participants were assigned to one of two condi-
tions: the (attested) harmonic condition or the (unattested)
height-front dependency condition. In both conditions, par-
ticipants were exposed in training to 40 words from the lan-
guage they were learning. In the harmonic condition, 40
harmonic words were selected. In the height-front depen-
dency condition, 40 words were selected that met the
height-frontness condition described above. This rule was
chosen arbitrarily from the space of possible languages in
order to test the hypothesis that vowel harmony would have
a learnability bias over other unattested patterns.

Participants were familiarized with the words in the
same way regardless of condition. They were given alter-
nating blocks of passive listening and blocks in which for
each trial, two words were played and they were required
to choose which word they had previously heard. In the
forced choice trials, the choice was between a word that
had been played in the passive listening section and a word
with the same stem and the alternate suffix. A total of five
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blocks of 40 trials each were included in training: three
passive listening blocks with a forced choice block in be-
tween each. The forced choice trials were included as a
method for consolidation of learning.

Following the training trials, participants completed
one block of 80 test trials. On each test trial, participants
were asked to choose which of two words they thought
was from the language they had learned in the training tri-
als. In each trial, the two words both had the same stem
and differed in the suffix. 40 of the test trials included
words from training, and 40 were generalization trials
involving novel words.

5.2. Results and discussion

As shown in Fig. 4, we found a learnability bias for the
harmonic language. Learners had significantly greater
accuracy in test when they learned the vowel harmonic
language than when they learned the height-frontness
dependency language (80% correct for learners of the har-
mony rule versus 68% correct for the height-frontness rule,
t(38) = 2.23, p < .05; Cohen’s d = 0.73). Additionally, the
proportion of generalizations that followed the learned
rule was greater for learners in the harmony rule condition
than learners in the height-frontness rule condition. 70% of
generalizations made by learners of the harmonic language
were harmonic in contrast to the 57% of generalizations by
learners of the height-frontness dependency language that
followed the height-frontness rule (t(38) = 2.05,p < .05;
d = 0.67).2 The result of these two phenomena was that
the final languages produced by the learners in the harmony
condition had a greater prevalence of harmonic words than
the final languages of learners in the height-frontness
dependency had of adhering words.

These results establish that the probability of transi-
tioning from a harmonic language to another language
with a high proportion of harmonic words is higher than
2 For Experiment 3, participants who had low accuracy (<62.5% of
previously heard words chosen in test as ‘‘from the language’’) were
excluded. Performing the same exclusion in this experiment preserves the
results: Mean accuracy of 87% for the harmonic condition versus 73% for
the height-frontness rule condition (t(28) = 2.74,p < .05; d = 1.04), and 77%
mean proportion of generalizations following the rule for the harmony
condition versus 58% for the height-frontness rule condition
(t(28) = 2.43,p < .05; d = 0.92). This exclusion criterion resulted in removing
five participants from each condition.
the probability of transitioning from a height-frontness
language to another language with a high proportion of
adhering words. In terms of the transition matrix, this cor-
responds to q‘harm ; ‘harm

> q‘h�f ; ‘h�f
, where ‘harm is the set of

languages with a high proportion of harmonic words and
‘h�f is the set of languages with a high proportion of words
that follow the height-frontness rule. This satisfies our cri-
terion for a learnability bias, and is the same quantity that
is typically evaluated in arguments that relate learnability
to typology in previous work (e.g., Finley & Badecker, 2007;
Moreton, 2008; Tily et al., 2011; Wilson, 2006). This bias is
of roughly the same magnitude as found in previous work.
6. Experiment 3: Transmission of vowel harmony

6.1. Methods

6.1.1. Participants
A total of 104 members of the Berkeley community re-

ceived either monetary compensation of $12/h or course
credit for their participation. All were native speakers of
English.3

6.1.2. Stimuli
The same stimuli were used as in Experiment 2.

6.1.3. Procedure
The procedure for this experiment was similar to the

procedure in Experiment 2, but the way that words were
chosen for training differed. For the first participant in each
chain, a total of 40 stems were selected at random, and
based on the starting condition of the chain, the suffix for
each stem was selected. For example, for the 50% harmonic
starting condition, 40 stems were chosen and of those
stems, half were chosen to have the appropriate suffix to
make the word harmonic and half were chosen to have
the suffix to make the word non-harmonic. For subsequent
participants in each chain, 40 words were chosen at ran-
dom from those words which the previous participant
had said was in the language. In order to exclude
participants who had not actually learned the language
3 53% were bilingual, and 47% were monolingual. As in Experiment 2,
none of the languages spoken by bilingual participants exhibited vowel
harmony.
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in training, participants were not included in the chain if
their accuracy in test on previously seen words was below
62.5%4; this is the lowest level of accuracy that is signifi-
cantly different from chance guessing (binomial test,
p < 0.05). Chains were started at 100%, 75%, 50%, 25%, and
0% harmonic. One chain with 10 participants was run for
each starting point except for 100%. Four chains of 10 partic-
ipants each were run at the 100% starting point as this is the
point of most interest: given a learnability bias, does the
percentage of harmonic words in a language remain consis-
tently large?

6.2. Results and discussion

While Experiment 2 showed a learnability bias for the
harmonic language over an arbitrarily chosen language,
the iterated learning chains in Experiment 3 did not favor
the harmonic language. As shown in Fig. 5, all chains
tended toward languages with approximately 50% har-
monic words. Grouping the chains into those starting with
100% harmonic words and those with a different starting
point, we compared the number of harmonic words chosen
at each generation via a t-test. While initial generations
had significantly different numbers of harmonic words
chosen based on the chains’ starting points, they were
not significantly different after six generations (all
p > 0.10). There is also no difference in accuracy on the har-
monic items based on generation and chain starting point
(t-test with groups as above, all p > 0.10), as shown in
Fig. 6. This is empirical evidence that the pattern of
behavior exhibited in the mathematical model reflects
the behavior in human subjects: While one language is
more accurately transmitted than others across one
generation, the large number of possible languages prevent
the biased language from predominating after multiple
transmissions.
4 25% of participants in the first experiment and 24.5% of participants in
the second experiment failed to meet the accuracy criterion. Failure to meet
this criterion was not reliably associated with condition or generation.
In contrast with the results of our experiment, harmony
does exist in many languages of the world. Several factors
might result in harmony being more common in these lan-
guages than in the final generations of our chains. Our
experiments focus on cognitive learning biases, but it is
likely that there are also sensorimotor biases that favor
the articulation and perception of harmonic languages
(Blevins, 2004). There may also be qualitative factors not
included in our experiment that lead to the harmony bias
being stronger in natural language than in the lab. For in-
stance, children could have stronger harmony biases. Addi-
tionally, the quantitative bias towards harmony may be
stronger than we found in Experiment 1. This could occur
due to the existence of more words and a longer period
of learning and use in naturalistic settings. Since all of
our participants were adult speakers of English, their bias
could also be weaker due to the fact that English is not a
vowel-harmonic language. Another factor that could lead
to a divergence between our results and natural language
learning is the use of a linear transmission structure. In
natural language learning, children may learn from people
who are part of generations other than the prior genera-
tion. Transmission patterns are likely also influenced by
other factors, such as language contact. This can result in
speakers borrowing phenomena from other languages,
resulting in the spread of properties that are unlikely to
be generated spontaneously. Finally, there may be in-
creased noise in transmission in lab experiments due to
the fact that learning occurs over a relatively short period.
This might mean that we would expect harmonic lan-
guages to eventually become less prevalent due to trans-
mission errors, but that this process will be much slower
in natural language than in the lab. In the experiment,
we see that by the third generation the languages no long-
er contain more harmonic words than would be expected
by random chance. This rapid shift may indicate that par-
ticipants exhibit very little bias towards harmonic words
when the input language is not 100% harmonic; in a natu-
ralistic context, generalization is likely to be somewhat
more robust due to the longer learning period and broader
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exposure to the language. Despite these differences, our
experiment provides evidence for the fact that a bias need
not lead to a universal tendency, something which is born
out in the pattern of vowel harmony in existing languages:
vowel harmony is relatively common, but it is not present
in the majority of languages.

7. Cases where learnability leads to dominance

We have considered two counter-examples in which a
mathematical analysis predicts that a learnability bias will
not necessarily lead to a universal, and shown experimen-
tal evidence supporting these counter-examples. Yet, there
also exist cases where learnability biases and the outcomes
of cultural evolution are aligned (e.g., Griffiths, Christian, &
Kalish, 2008; Kalish, Griffiths, & Lewandowsky, 2007; Reali
& Griffiths, 2009). This leads to the question of how one
can determine whether a learnability bias will lead to a
universal through a process of cultural evolution. In this
section, we use tools from Markov chain theory to identify
two cases where learnability biases and long-term
outcomes are aligned. We show that these cases require
constraints on the quantities empasized in our counter-
examples: the relative size of the two sets of hypotheses,
and the likelihood of transmission errors from a hypothesis
in one set to a hypothesis in the other.

To identify cases where learnability leads to universals,
we use the strategy of collapsing the Markov chain into a
related chain with one state for all hypotheses in one set
and a second state with all hypotheses in the other set.
For a transmission matrix with two hypotheses, Griffiths
and Kalish (2007) show that if the learnability of h1 is
greater than that of h2, then h1 will be the majority hypoth-
esis in the evolved population. Thus, if we could derive a
2 � 2 transition matrix corresponding to sets of hypothe-
ses, then we could determine under what conditions a
learnability bias would lead to a universal. However, as
noted previously, we cannot in the general case transform
a transition matrix over individual hypotheses into one
over sets of hypotheses: the Markov property may not be
preserved in the collapsed chain. This transformation can
be made, though, when the matrix is lumpable with respect
to the two sets of hypotheses (Burke & Rosenblatt, 1958;
Kemeny & Snell, 1960). A matrix is lumpable with respect
to a partition of the states into two sets H1 and H2 if the fol-
lowing criterion holds:

8i; j 2 Hi :
X
k2H2

qki ¼
X
k2H2

qkj: ð2Þ

Intuitively, this criterion means that for all states hi in H1,
the total probability of transitioning from that state to
any state in H2 must be the same. It is met if transmission
errors in which the learner acquires a hypothesis in one set
are equally likely to occur if the data came from any state
in the other set.

Lumpability imposes relatively stringent constraints on
the structure of the transition matrix, which we cannot ex-
pect to hold in all cases. However, there are several exam-
ples of transmission structures where this criterion does
hold; we now turn to two special cases in which lumpabil-
ity does hold and conditions for when learnability will lead
to universals can be derived. First, consider a case where all
hypotheses in set H1 have self-transition probability equal
to ‘1, and all hypotheses in set H2 have self-transition prob-
ability equal to ‘2. Letting the probability of transmission
errors from a given hypothesis be uniform, this results in
a matrix with the following structure:

‘1

..

. . .
. ..

.

1�‘1
n1þn2�1

2
664

3
775; ð3Þ

where n1 = jH1j and n2 = jH2j. It is easy to verify that the cri-
terion in Eq. (2) is met, so lumpability holds (see Appendix
C for details). We can derive the transition matrix over the
two sets and find conditions on how learnability relates to
a set being dominant. For any single hypothesis in H1 to be
more prevalent than any single hypothesis in H2, we need
only the simple learnability condition that ‘1 > ‘2. How-
ever, hypotheses in H1 will occur more often than hypoth-
eses in H2 if and only if

n1

n2
>

1� ‘1

1� ‘2
: ð4Þ

If H1 has more hypotheses than H2 and hypotheses in
H1 are more learnable than hypotheses in H2, then this
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condition will always hold and hypotheses in H1 will be
most prevalent. Otherwise, which set will dominate is
dependent on the relative sizes of the sets of hypotheses
and the strength of the learnability bias. This is suggestive
of the issue with our second counter-example, which dem-
onstrated that differences in the number of languages in
each set could result in a learnability bias being over-
whelmed. While one cannot create a general criterion for
when such a size difference will negate a learnability bias,
this special case shows the type of relationship that one
should expect among these quantities.

The above example requires strong uniformity condi-
tions. These conditions can be relaxed somewhat. Consider
a system in which we again have qii = ‘1 if i 2 H1 and qii = ‘2

otherwise. Now, we let the transmission error probabilities
vary based on whether the error results in transmission to
another hypothesis within the set or to a hypothesis in the
other set. This is likely to occur if, for instance, hypotheses
in the same set tend to be more similar to one another than
hypotheses that are in different sets. Let o1 be probability
of a transmission error from a hypothesis in H1 to any gi-
ven hypothesis that is also in H1. That is, for any i, j 2 H1,
qji = o1. Then we similarly define o2 such that for any i,
j 2 H2, qji = o2. We also define the probability of transmis-
sion errors from a hypothesis i to any hypothesis j that is
not in the same set to be uniform. Letting n1 = jH1j and
n2 = jH2j, this gives a transition matrix with the following
structure:

‘1 o1

o1 ‘1

1�‘1�o1ðn1�1Þ
n2

1�‘1�o1ðn1�1Þ
n2

1�‘1�o1ðn1�1Þ
n2

1�‘1�o1ðn1�1Þ
n2

2
66666664

3
77777775
: ð5Þ

This matrix is again lumpable, and we can derive condi-
tions on the effects of a learnability bias: H1 will occur
more often than H2 if and only if ‘1 + o1(n1 � 1) > ‘2 + o2(-
n2 � 1) (see Appendix C for details, and for when a single
hypothesis in H1 will occur more often than a single
hypothesis in H2). This example is somewhat reminiscent
of the first counterexample we presented, which high-
lighted the fact that one must consider not just how likely
it is that a hypothesis will be transmitted accurately, but
also how likely transitions are between hypotheses in the
two sets.5

These two cases provide a positive account of how a re-
searcher interested in linking learnability biases to univer-
sals might proceed (a topic we consider further in the
General Discussion). If the researcher believes that the
assumptions of the first model – consistent learnability
within a set of hypotheses, uniform probabilities of moving
to other hypotheses – are satisfied, then Eq. (4) indicates
5 Note that while we have stated the uniformity conditions here strongly
in order to illustrate the example and because we believe this is likely to be
the most relevant to behavioral researchers, the same criterion holds if the
non-diagonal entries are not uniform but only total some value oi for
transmission errors from a hypothesis in set Hi to all hypotheses in the
same set and 1 � ‘i � oi for transmission errors from a hypothesis in set Hi

to all hypotheses in the other set.
the strength of a learnability bias that needs to hold in or-
der for learnability to account for an observed universal.
Alternatively, the observed strength of a learnability bias
can be entered into this inequality to place bounds on
the relative sizes of the sets of hypotheses that would have
to hold for this explanation to be valid. If the more realistic
assumptions of the second model are taken to hold, then
the researcher needs to identify not just ‘1 and ‘2, as was
done in most previous arguments from learnability to uni-
versals, but also o1, o2, and the size of each set of hypoth-
eses. These estimates can then be used to determine
whether the observed learnability bias is sufficient to over-
come the rate of transitions between sets of hypotheses.
Note that researchers creating models of cultural evolution
can also check these conditions to determine whether a
particular analysis applies to their models. While many
cultural evolution models are not explicitly specified in
terms of the transmission matrix, the transmission matrix
can usually be calculated for a given mathematical model.
Overall, the positive cases we have considered point to the
fact that researchers must consider not only the strength of
a learnability bias, but the relative sizes of the sets of
hypotheses and probability of errors in transmission lead-
ing to the acquisition of a hypothesis in the same set versus
the alternative set.
8. General discussion

The learnability of languages and concepts clearly plays
a role in their transmission and should be part of explana-
tions of why languages and concepts with particular prop-
erties are more prevalent than others. However, greater
learnability is not sufficient to explain how a property be-
comes a universal. Through mathematical analysis and
behavioral experiments, we have demonstrated that a lear-
nability bias does not always result in a property becoming
prevalent across evolved languages or concepts. While the
definition of a learnability bias that we use is relatively
strict, looser versions of the criterion will generally result
in learnability having less of an effect on the outcome,
not more. The two counterexamples we considered both
make clear that to determine if a property will become a
universal, all of the transition probabilities must be
considered.

The first counterexample highlighted the importance of
considering the pattern of transition probabilities for what
hypothesis is acquired when an error in transmission oc-
curs. For a hypothesis to be widespread after the popula-
tion has reached equilibrium, it is not sufficient for that
hypothesis to be more likely to be transmitted accurately.
The hypothesis must also have a non-negligible probability
of being generated as the result of errors in transmission.
Otherwise, if the hypothesis is ever not transmitted accu-
rately, it will be unlikely to reappear in the population,
as demonstrated in Experiment 1. This situation seems
particularly relevant to arguments about the origin of reli-
gious concepts. Minimally counterintuitive concepts have
been found to be more accurately transmitted than other
religious concepts, but it might be the case that these con-
cepts are unlikely to be regenerated in a population if they
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are ever forgotten. This counter-example is also relevant
for the evolution and transmission of language. Clicks rep-
resent a relatively rare member of phonological invento-
ries around the world, isolated to a handful of languages
in sub-Saharan Africa (Miller, 2011). This is a curious dis-
tribution when one considers the fact that clicks are the
most acoustically salient sounds; that is, languages with
clicks have very high self-transition probabilities (Best,
McRoberts, & Sithole, 1988; Traill & Vossen, 1997). One
may explain this distribution of clicks, however, by noting
that clicks are extremely unlikely to be spontaneously
introduced into a language as they are not easily confus-
able with other sounds. Transitions from the set of lan-
guages without clicks to the set of languages with clicks
are thus highly unlikely.

The second counterexample demonstrated that learna-
bility must be evaluated relative to the number of hypoth-
eses with and without the property of interest. If the set of
languages or concepts that lack the property much larger
than the set with the property, sheer numbers can domi-
nate the effects of a learnability bias. This problem is likely
to be particularly acute in the case of language, as shown in
the Experiments 2 and 3: Harmonic languages are a small
set of all possible languages, so even a relatively strong
learnability bias was not sufficient to allow them to persist
across multiple generations of cultural transmission.

While our main focus was to show that greater learna-
bility need not lead to universals, there are cases where
differences in learnability lead to one set of hypotheses
being more prevalent than another. This has been shown
experimentally in iterated learning experiments in which
biases in the prior distribution are sufficient to lead to
dominance in the stationary distribution (e.g., Griffiths
et al., 2008; Kalish et al., 2007). We have also illustrated
several special cases in which this result can be predicted
from the structure of the transmission matrix.

In the remainder of the paper we consider the implica-
tions of our results for methods for connecting individual
learning to cultural universals, identify some of the limita-
tions of our analysis, and summarize our main conclusions.

8.1. Empirically linking learning and universals

Our results demonstrate that showing that one hypoth-
esis is more accurately transmitted than another is not suf-
ficient to explain its prevalence. However, they do not rule
out empirically investigating the relationship between
individual learning and cultural universals. The problem
with focusing on the accuracy of transmission is that it
only captures one part of the transition matrix Q that char-
acterizes cultural transmission – the diagonal of the ma-
trix. There are at least three ways to get a more complete
picture of the content of this matrix by studying individual
learning.

The first method is simplest, but perhaps also most
expensive in terms of time and the number of experimen-
tal participants required. This is to estimate the full Q ma-
trix by recording not just whether people were accurate in
acquiring each hypothesis, but also which hypotheses they
selected when they were incorrect. Using this approach
with each hypothesis that people could adopt would make
it possible to estimate the set of conditional distributions
that make up the matrix Q. However, estimating the condi-
tional distributions in this way is likely to be feasible only
when the set of hypotheses under consideration is rela-
tively small; otherwise the amount of data that would be
required to get an accurate estimate of the conditional dis-
tribution would be prohibitive.

A second method is to develop a computational model
that characterizes human learning and use that model
either to estimate Q or to directly link individual learning
and the outcome of cultural transmission. In particular,
the results of Griffiths and Kalish (2007) make establishing
such a link straightforward if human learning is modeled
as Bayesian inference, indicating that the equilibrium pro-
duced by the linear transmission model is just the prior
distribution used in Bayesian inference. Under this ap-
proach, a Bayesian model could be used to capture the pat-
terns seen in individual learning in the domain of interest,
with the prior being estimated by examining which distri-
bution best seems to capture people’s behavior. Knowing
the prior would then make it possible to determine which
hypotheses would dominate after multiple generations of
cultural transmission.

A third method is simply to simulate cultural transmis-
sion in the laboratory, and examine what emerges. This pro-
vides a way of directly estimating the equilibrium produced
by cultural transmission, isolating the effects that individual
learning is likely to have in producing universals. This ap-
proach has been used to examine how languages (Scott-
Phillips & Kirby, 2010) and concepts (Griffiths, Kalish, &
Lewandowsky, 2008) change through cultural transmission
in the past, and is the most direct way to appeal to cultural
transmission as a force that could result in cultural univer-
sals. Even simulating a small number of iterations of cul-
tural transmission, as Barrett and Nyhof (2001) did for
religious concepts, is potentially more informative than
simply looking for differences in learnability.

Finally, as discussed above, the mathematical analyses
of the two special cases where learnability biases do result
in greater prevalence provide a more sensitive alternative
to the existing empirical methods that have been used to
try to link these two factors. The first case provides a
clearer threshold on the strength that a learnability bias
is required to have, and the second makes it clear how
examining not just the accuracy with which a hypothesis
is transmitted but also the rate at which hypotheses
change form can lead to more accurate predictions about
the outcome of cultural transmission. While these special
cases are somewhat restrictive, Franceschinis and Muntz
(1994) showed that the stationary distribution does not
change dramatically in cases of ‘‘quasi-lumpable’’ trans-
mission matrices, which violate the lumpability criterion
only slightly. These mathematical analyses thus provide
new criteria that can be used to make stronger arguments
for a relationship between empirical measures of learnabil-
ity and cultural universals.

8.2. Limitations of analysis

The main limitation of our analysis is the use of the sim-
ple linear transmission model, in which each learner learns
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from one member of the previous generation. The experi-
mental results that we show are dependent upon this
assumption. It is easy to imagine variants on this model
that make more realistic assumptions about cultural trans-
mission. There is mixed evidence for whether a more com-
plex transmission model would alter our findings. For
instance, some research has found that allowing interac-
tion between members of a generation can preserve con-
cepts and properties within a cultural system (Fay,
Garrod, & Roberts, 2008; Fay, Garrod, Roberts, & Swoboda,
2010). However, learning from multiple members of the
previous generous generation is another potential change
to the population structure that tends to dilute the effects
of learnability on the languages produced by a population
(Burkett & Griffiths, 2010; Smith, 2009).

Further research is necessary to clarify how combining
such variations affects the outcome of cultural evolution,
but to the extent that such modifications can be mathe-
matically specified, our work provides guidance for draw-
ing conclusions about long-term trends from the results
of transmission in a single generation. For instance, in
the case of multiple new members of the current genera-
tion learning from multiple members of the previous gen-
eration, the transition matrix Q can be specified over the
possible combinations of languages in generation n and
the possible combinations in the next generation n + 1.
Explicitly enumerating these sets will result in a large in-
crease in the number of possible states, but the resulting
matrix can be analyzed to determine if the counter-exam-
ples provided here, or the lumpability criterion, apply to
the model. Conversely, if behavioral experiments show
that learnability tends to lead to long-term prevalence in
a particular context, it demonstrates that cultural evolu-
tion must be modeled such that the transmission matrix
does not fall into one of the counterexamples we have
presented.

While many of our analyses considered only the trans-
mission matrix, and thus are applicable to any model
where the transmission matrix meets the constraints in
the analysis, we also included a Bayesian model in which
we assumed that learners acquire a hypothesis by sam-
pling from the posterior distribution over hypotheses given
the observed data. Under this sampling assumption, the
equilibrium distribution corresponds to learners’ prior dis-
tribution (Griffiths & Kalish, 2007). However, different
models of acquisition, such as maximizing over the poster-
ior distribution, would result in different patterns of trans-
mission. For example, previous work has shown that
maximization tends to magnify biases in the prior (Kirby,
Dowman, & Griffiths, 2007; Smith & Kirby, 2008), and that
the extent to which the language with maximal prior prob-
ability is favored is dependent on the amount of noise in
transmission (Griffiths & Kalish, 2007). If language acquisi-
tion is more accurately characterized as maximizing over
the posterior, rather than sampling, then it suggests that
the counter-examples we have described will be relatively
infrequent in cultural evolution. Whether this is the case
has not yet been established. While Smith and Kirby
(2008) make a strong argument that a maximization model
would be favored evolutionarily, more behavioral experi-
ments should examine the question of whether and in
what circumstances language acquisition follows the max-
imization pattern. Smith and Wonnacott (2010) show
some evidence that language evolution can magnify indi-
vidual learner biases, but because this work only considers
a single starting language for establishing the effects of
language learning within a generation, the magnification
does not necessarily support the hypothesis that learners
are maximizing over the posterior distribution; as the
authors note, their work demonstrates the difficulty of pre-
dicting long term trends based on limited data from a sin-
gle generation of language evolution. By testing the
assumptions of the Bayesian model experimentally and
relaxing the constraints of this model in theoretical work,
we hope that future research will help to develop a more
complete picture of how individual learning occurs and
the implications of this process for the outcome of cultural
transmission.

In considering limitations, it is also important to note
that while we think the situations identified in our coun-
ter-examples arise sufficiently often with languages and
concepts that we should assert caution in interpreting
explanations of universals in terms of learnability, we still
expect learnability to play an important role in shaping the
languages and concepts that appear across human socie-
ties. The results of Griffiths and Kalish (2007) make it clear
that factors that influence how easy it will be for people to
learn or remember a hypothesis will directly affect
whether cultural transmission will favor that hypothesis.
Our goal is simply to point out that greater learnability is
not in itself sufficient to produce a universal, and conse-
quently not necessarily a complete explanation for why
certain properties of concepts and languages are prevalent.

8.3. Gaining a deeper understanding of cultural evolution

The approach we have taken suggests a strategy for
gaining a deeper understanding of existing proposals about
cultural evolution. For a given model of the cultural evolu-
tion process, it is usually possible to calculate the patterns
of transmission that occur and specify these patterns as a
Q-matrix. For example, many models of cultural evolution
involve a two-step process: first, possible variants of a lan-
guage or utterance are generated, and then, a variant is se-
lected from these possibilities (e.g., Blythe & Croft, 2012;
Niyogi, 2006). This mirrors genetic evolution, which in-
volves both random variation (reproduction and mutation)
and selection. While the specification of these models is on
the surface very different from the Bayesian language
learning model that we have discussed, the Q-matrix for
these models can still be calculated. Each entry in the ma-
trix represents the probability that the language was gen-
erated given the observed data and that once it was
generated, it was selected by the learner.

Explicitly calculating the Q-matrix for a given model
provides the opportunity to analyze what predictions the
model makes about cultural evolution after many genera-
tions and to differentiate models from one another. For in-
stance, by checking whether a model meets the
lumpability conditions that we have described, one can
verify whether that model predicts that learnability biases
will result in dominance after many generations. If these
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conditions are not satisfied, one can turn to establishing
whether either of the counterexamples we have described
is relevant. Via the Q-matrix, one can also explore finer-
grained predictions such as whether a larger learnability
bias will result in a hypothesis being more prevalent than
a smaller learnability bias. In the case of disagreement be-
tween models, further experimentation and verification of
which outcome occurs in the real-world transmission of
concepts and languages can provide support for one model
over another. These analyses thus provide a tool for better
understanding individual models of cultural evolution and
for comparing models to one another based not on imme-
diate processes of evolution but on predictions about the
outcome of evolution after many generations.

8.4. Conclusion

Our results suggest that the relationship between lear-
nability and cultural universals is more complex than as-
sumed in previous work. This complexity is congruent
with the evidence that all languages and cultures do not
exhibit all properties for which learnability biases have
been found (e.g., as discussed in Evans & Levinson
(2009)). Indeed, in historical linguistics, the general princi-
ple is one of language divergence, rather than convergence
on some universal language (e.g., Greenberg, 1971). Given
this relationship, one must rethink using empirical evi-
dence for particular learnability biases to explain why par-
ticular cultural or linguistic tendencies occur. Instead, one
must either gain a more complete picture of cultural trans-
mission by understanding how hypotheses change when
transmitted, or actually simulate multiple transmissions
in the lab to establish whether a particular property is
actually maintained over many generations. Ultimately,
we hope that by identifying a stronger criterion for con-
necting individual learning to cultural universals we have
provided a tool that can be used to definitively understand
how human societies relate to the structure of human
minds.
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Appendix A. Convergence of Experiment 1 to stationary
distribution

To bound the probability that the chain in Experiment 1
reached the stationary distribution, we can relate it to a
stochastic process with known behavior. We assume that
when an item in the list is forgotten, the replacement item
is sampled from the prior distribution over words. It is thus
a sufficient condition for convergence to the stationary dis-
tribution to have forgotten all of the original items in the
list. Since each one is resampled from the prior, its new va-
lue is independent of the starting state of the chain. This
condition is equivalent to the coupon-collector problem
(Feller, 1968), which bounds the number of cereal boxes
necessary to collect all n coupons given that each box con-
tains one coupon and coupons are distributed uniformly
across boxes. When the first box is sampled, a new coupon
is collected with probability n

n. With the next box, the prob-
ability of a new coupon falls to n�1

n , and similarly, after col-
lecting i coupons, the probability of a new coupon is n�i

n .
The expected number of boxes needed to find all coupons
is thus

n
Xn

i¼1

1
i
¼ nHn; ð6Þ

where Hn is the nth harmonic number. To bound the time
to reach the stationary distribution in Experiment 1, we
first seek to bound the number of replacements necessary
to have resampled all 10 items; let the number of replace-
ments necessary be a random variable r. By Eq. (6),
E[r] = 10H10 = 29.3. We then need to convert this into an
expected number of iterations to convergence by calculat-
ing the expected number of items that will be resampled at
each iteration, np̂. p̂ is the empirical probability of any gi-
ven item will be resampled; in our data, averaged across
chains, this is 0.107. Thus, the expected number of itera-
tions to reach convergence is d10H10

10p̂ e ¼ 28.
The variance of the coupon collector problem is also

known and is equal to n2Pn
i¼1

1
i2
� nHn. Substituting

n = 10, we have standard deviation r = 11.2 replacements.
The one-tailed 95% confidence interval for reaching the
stationary distribution corresponds to E[r] + 1.65r = 47.8
replacements, which is equivalent to 47:8

np̂ ¼ 45 iterations.

Appendix B. Modeling the evolution of vowel harmony
using iterated learning

In this appendix, we give further mathematical detail
concerning how we calculated the results in Fig. 3. This fig-
ure shows the bias k that is necessary to compensate for
the fact that harmonic languages are outnumbered by
non-harmonic languages as a function of �. To calculate this
value, we need to specify the form of the prior for this
model and calculate the number of harmonic languages.
We consider hypotheses that are binary vectors of length
N, with a one in the ith position if the language includes
the vowel harmonic variant of word i and a zero if the
language includes the non-harmonic variant. We define a
language as harmonic if the proportion of non-harmonic
words in the language is less than or equal to some �. The
number of harmonic languages nH can then be calculated as:

nH ¼
Xb�Nc
k¼0

80
k

� �
; ð7Þ

as each harmonic language is a vector of length N with no
more than b�Nc zeros.
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In the model, we define the prior as uniform within
each type: All harmonic languages have the same prior
probability as one another, as do all non-harmonic lan-
guages. To incorporate the bias, we specify that if the prior
on each non-harmonic language p(hnon�harmonic) is equal to
some constant p, then the prior on each harmonic language
p(hharmonic) is equal to kp. We can calculate the value of p
using the constraint that the prior probability of all
hypotheses must sum to one:

pð2N � nHÞ þ kpnH ¼ 1p ¼ 1
2N � nH þ knH

; ð8Þ

where there are 2N � nH non-harmonic languages. Har-
monic languages will be more common after many gener-
ations if they have more than half of the mass in the
equilibrium distribution; in this case, that means they
must have more than half of the mass in the prior
distribution:

kpnH >
1
2

knH

2N � nH þ knH

>
1
2

knH > 2N�1 � nH

2
þ k

2
nH

k >
2N

nH
� 1: ð9Þ

Thus, for Fig. 3, we vary � and calculate the minimum k
necessary for Eq. (9) to hold.
Appendix C. Proof of conditions for when learnability
leads to universals

In this section, we expand upon the technical details in
the section on cases where learnability leads to dominance.
For the 2 � 2 transition matrix, Griffiths and Kalish (2007)
give the equilibrium probability p1 for hypothesis h1 as:

p1 ¼
q12

q21 þ q12
¼ 1� q22

2� q11 � q22
: ð10Þ

From this, we can calculate that p1 will be greater than or
equal to p2 if and only if q11 P q22:

p1 P p2 ()
1� q22

2� q11 � q22

P 1� 1� q22

2� q11 � q22
() 1� q22

2� q11 � q22

P
1� q11

2� q11 � q22
() 1� q22 P 1� q11 () q11

P q22; ð11Þ

with equality only holding in the case that q11 = q22. To
prove the conditions for the matrices which have many
hypotheses, each in one of two sets, we derive the transi-
tion matrix over the sets H1 and H2 and then determine
when the above condition will hold. Kemeny and Snell
(1960) show that for a matrix that is lumpable on a parti-
tion over two sets H1 and H2, the transformed transition
matrix has entries q12 ¼

P
k2H1

qki where hi 2 H2 and
q21 ¼
P

k2H2
qkj where hj 2 H1. q11 and q22 are then set such

that the columns of the matrix sum to 1.
In the first case we describe, all hypotheses hi in set H1

have self-transition probability qii = ‘1, and all hypotheses
hj in set H2 have qjj = ‘2. For any given hypothesis hs, qts = -
qrs when t – s and r – s; this encodes the condition that
transmission errors are uniform. Let n1 = jH1j and
n2 = jH2j. This results in a transmission matrix where each
column k has some ‘g in the diagonal, corresponding to
the set Hg to which hk belongs, and the remaining entries
in the column are uniform.

This matrix is lumpable: For each hj 2 H2,
P

i2H1
qij ¼

n1ð1�‘2Þ
n1þn2�1, and for each hi 2 H1,

P
j2H2

qji ¼ n2ð1�‘1Þ
n1þn2�1. Thus, we

can transform the process into a 2 � 2 transition matrix
on H1 and H2 with the above sums forming the non-diago-
nal entries:

n1�1þn2‘1
n1þn2�1

n1ð1�‘2Þ
n1þn2�1

n2ð1�‘1Þ
n1þn2�1

n2�1þn1‘2
n1þn2�1

2
4

3
5: ð12Þ

By Eq. (11), we know that H1 will occur more often than H2

if and only if n1�1þn2‘1
n1þn2�1 > n2�1þm1‘2

n1þn2�1 . Simplifying, we find:

n1 � 1þ n2‘1

n1 þ n2 � 1
>

n2 � 1þ n1‘2

n1 þ n2 � 1
() n1 � 1þ n2‘1

> n2 � 1þ n1‘2 () n1 þ n2‘1

> n2 þ n1‘2 () n1 � n1‘2

> n2 � n2‘1 () n1ð1� ‘2Þ

> n2ð1� ‘1Þ ()
n1

n2
>

1� ‘1

1� ‘2
ð13Þ

where the above transformations preserve the direction of
the inequality since n1 + n2 � 1 > 0 as there must be at least
two hypotheses and 1 � ‘2 > 0 since by the conditions for
stationarity to exist, ‘2 < 1.

We can also consider when a single hypothesis in H1

will be more prevalent than a single hypothesis in H1.
We can use Eq. (10) to derive the stationary probability
of the sets H1 and H2:

pH1 ¼
n1ð1� ‘2Þ

n1ð1� ‘2Þ þ n2ð1� ‘1Þ
ð14Þ

pH2 ¼
n2ð1� ‘1Þ

n1ð1� ‘2Þ þ n2ð1� ‘1Þ
ð15Þ

By symmetry, we know that all hypotheses within a set
will occur equally often at stationarity, so the stationary
probability of any hi 2 H1 is

pH1
n1
¼ ð1�‘2Þ

n1ð1�‘2Þþn2ð1�‘1Þ
. Thus, hi -

2 H1 will occur more often than hj 2 H2 if and only if
‘1 > ‘2; this is the same condition as for the original 2 � 2
matrix.

For the second example of a matrix where conditions on
learnability can be derived, we consider a system in which
again qii = ‘1 if i 2 H1 and qii = ‘2 otherwise. We let o1 be the
probability of a transmission error from a hypothesis in H1

to any given hypothesis that is also in H1. That is, for any i,
j 2 H1,qji = o1. We similarly define o2 such that for any i,
j 2 H2, qji = o2. We also define the probability of transmis-
sion errors from a hypothesis i to any hypothesis j that is
not in the same set to be uniform. We define n1 = jH1j
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and n2 = jH2j. See main text for a graphical depiction of the
structure of this matrix.

Again, the lumpability criterion is met, so we can com-
press this to a 2 � 2 matrix:

‘1 þ o1ðn1 � 1Þ 1� ‘2 � o2ðn2 � 1Þ
1� ‘1 � o1ðn1 � 1Þ ‘2 þ o2ðn1 � 1Þ

� �
: ð16Þ

By Eq. (11), H1 will occur more often than H2 if and only if
‘1 + o1(n1 � 1) > ‘2 + o2(n2 � 1). In the main text, we note
that the strong uniformity conditions in the structure of
original matrix can be relaxed: the total mass oi(ni � 1)
need not be spread uniformly across other hypotheses in
the same set, and the transmission error probability 1 � ‘i -
� oi(ni � 1) may similarly be placed non-uniformly. This
does not change our results since the sum over these quan-
tities remains the same, and to form the compressed tran-
sition matrix, we need only the sum.

We can also calculate the condition for when a single
hypothesis in H1 will be more common than a single
hypothesis H2, returning to the assumption that probabil-
ity oi(ni � 1) and 1 � ‘i � oi(ni � 1) are uniformly distrib-
uted across hypotheses in the set and not in the set,
respectively. By Eq. (10), the stationary probabilities of
H1 and H2 are as follows:

pH1 ¼
1� ‘2 � o2ðn2 � 1Þ

2� ‘1 � o1ðn1 � 1Þ � ‘2 � o2ðn2 � 1Þ ð17Þ

pH2 ¼
1� ‘1 � o1ðn1 � 1Þ

2� ‘1 � o1ðn1 � 1Þ � ‘2 � o2ðn2 � 1Þ : ð18Þ

Then symmetry again gives us that all hi 2 Hi will have the
same stationary probability. Thus, the stationary probabil-
ity of hi 2 H1 will be greater than hj 2 H2 if and only if:

pH1

n1
>

pH2

n2
() 1� ‘2 � o2ðn2 � 1Þ

n1ð2� ‘1 � o1ðn1 � 1Þ � ‘2 � o2ðn2 � 1ÞÞ

>
1� ‘1 � o1ðn1 � 1Þ

n2ð2� ‘1 � o1ðn1 � 1Þ � ‘2 � o2ðn2 � 1ÞÞ ()
1� ‘2 � o2ðn2 � 1Þ

n1

>
1� ‘1 � o1ðn1 � 1Þ

n2
:

ð19Þ

This quantity is dependent on the probability of an error in
transmission leading to hypothesis in the same set as well
as the relative sizes of the two sets of hypotheses.
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