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Concept learning is challenging in part because the meanings of many concepts depend on
their relationships to other concepts. Learning these concepts in isolation can be difficult,
but we present a model that discovers entire systems of related concepts. These systems
can be viewed as simple theories that specify the concepts that exist in a domain, and
the laws or principles that relate these concepts. We apply our model to several real-world
problems, including learning the structure of kinship systems and learning ontologies. We
also compare its predictions to data collected in two behavioral experiments. Experiment 1
shows that our model helps to explain how simple theories are acquired and used for
inductive inference. Experiment 2 suggests that our model provides a better account of
theory discovery than a more traditional alternative that focuses on features rather than
relations.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction 1986; Carey, 1985; Field, 1977; Goldstone & Rogosky,
Parent: A person who has begotten or borne a child.
Child: The offspring, male or female, of human parents.

The Oxford English Dictionary, 2nd edition, 1989.

Samuel Johnson acknowledges that his dictionary of
1755 is far from perfect, but suggests that ‘‘many seeming
faults are to be imputed rather to the nature of the under-
taking, than the negligence of the performer.” He argues,
for instance, that ‘‘some explanations are unavoidably reci-
procal or circular, as hind, the female of the stag; stag, the
male of the hind.” Analogies between dictionary definitions
and mental representations can only extend so far, but
Johnson appears to have uncovered a general truth about
the structure of human knowledge. Scholars from many
disciplines have argued that concepts are organized into
systems of relations, and that the meaning of a concept de-
pends in part on its relationships to other concepts (Block,
. All rights reserved.
2002; Quillian, 1968; Quine & Ullian, 1978). To appreciate
the basic idea, consider pairs of concepts like parent and
child, disease and symptom, or life and death. In each case
it is difficult to imagine how a learner could fully under-
stand one member of the pair without also understanding
the other. Systems of concepts, however, are often much
more complex than mutually dependent pairs. Concepts
like life and death, for instance, are embedded in a system
that also includes concepts like growth, eating, energy and
reproduction (Carey, 1985).

Systems of concepts capture some important aspects of
human knowledge but also raise some challenging puzzles
(Fodor & Lepore, 1992). Here we mention just two. First, it
is natural to think that many concepts (including dog, tree
and electron) are shared by many members of our society,
but if the meaning of any concept depends on its role with-
in an entire conceptual system, it is hard to understand
how two individuals with different beliefs (and therefore
different conceptual systems) could have any concepts in
common (Fodor & Lepore, 1992). Second, a holistic ap-
proach to concept meaning raises a difficult acquisition
problem. If the meaning of each concept depends on its
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role within a system of concepts, it is difficult to see how a
learner might break into the system and acquire the con-
cepts that it contains (Hempel, 1985; Woodfield, 1987).
Goldstone and Rogosky (2002) recently presented a formal
model that helps to address the first puzzle, and here we
present a computational approach that helps to address
the second puzzle.

Following prior usage in psychology (Carey, 1985) and
artificial intelligence (Davis, 1990) we use the term theory
to refer to a system that specifies a set of concepts and
relationships between these concepts. Scientific theories
are paradigmatic examples of the systems we will con-
sider, but psychologists have argued that everyday knowl-
edge is organized into intuitive theories that are similar to
scientific theories in many respects (Carey, 1985; Murphy
& Medin, 1985; Wellman & Gelman, 1992). Both kinds of
theories are believed to play several important roles. As
we have already seen, theories help to individuate con-
cepts, and many kinds of concepts derive their meaning
from the roles they play in theories. Theories allow learn-
ers to explain existing observations, and to make predic-
tions about new observations. Finally, theories guide
inductive inferences by restricting a learner’s attention to
features and hypotheses that are relevant to the task at
hand.

Theories may take many different forms, and the exam-
ples we focus on are related to the ‘‘framework theories”
described by Wellman and Gelman (1992). Framework
theories specify the fundamental concepts that exist in a
domain and the possible relationships between these con-
cepts. A framework theory of medicine, for example, might
indicate that two of the fundamental concepts are chemi-
cals and diseases, and that chemicals can cause diseases
(Fig. 1). A ‘‘specific theory” is a more detailed account of
the phenomena in some domain, and is typically con-
structed from concrete instances of the abstract categories
provided by the framework theory. Extending our medical
DISEASES

cancer
asthma

pneumonia
flu

cause cause
SYMPTOMS

fever
fatigue

weight loss
coughing

CHEMICALS

mercury
chlorine

ammonia
asbestos

...
...

...

ANIMALS

cat
dog

mouse
human

interact with

...

affect

Fig. 1. A fragment of a medical framework theory. The theory specifies
four abstract concepts (chemicals, diseases, symptoms, and animals), and
states for instance that asbestos is a chemical and that cancer is a disease.
The theory also specifies relationships between these four concepts—for
instance, chemicals cause diseases, and diseases affect animals.
example, a specific theory might indicate that asbestos can
cause lung cancer, where asbestos is a chemical and lung
cancer is a disease. The framework theory therefore sug-
gests that any specific correlation between asbestos expo-
sure and lung cancer is better explained by a causal link
from asbestos to lung cancer than a link in the opposite
direction. Although researchers should eventually aim for
models that can handle both framework theories and spe-
cific theories, working with framework theories is a useful
first step. Framework theories are important since they
capture some of our most fundamental knowledge, and
in some cases they appear simple enough that we can be-
gin to think about them computationally.

Three fundamental questions can be asked about theo-
ries: what are they, how are they used to make inductive
inferences, and how are they acquired? Philosophers and
psychologists have addressed all three questions (Carey,
1985; Hempel, 1972; Kuhn, 1970; Popper, 1935; Wellman
& Gelman, 1998), but there have been few attempts to pro-
vide computational answers to these questions. Our work
takes an initial step in this direction: we consider only rel-
atively simple theories, but we specify these theories for-
mally, we use these theories to make predictions about
unobserved relationships between entities, and we show
how these theories can be learned from raw relational
data.

The first of our three fundamental questions requires us
to formalize the notion of a theory. We explore the idea
that framework theories can be represented as a probabi-
listic model which includes a set of categories and a matrix
of parameters specifying relationships between those cate-
gories. Representations this simple will only be able to cap-
ture some aspects of framework theories, but working with
simple representations allows us to develop tractable an-
swers to our remaining two questions.

The second question asks how theories can be used for
inductive inference. Each of our theories specifies the rela-
tionships between categories that are possible or likely,
and predictions about unobserved relationships between
entities are guided by inductive inferences about their cat-
egory assignments. Since we represent theories as probabi-
listic models, Bayesian inference provides a principled
framework for inferences about category assignments,
relationships between categories and relationships be-
tween entities.

The final question—how are theories acquired?—is
probably the most challenging of the three. Some philoso-
phers suggest that this question will never be answered,
and that there can be ‘‘no systematic, useful study of the-
ory construction or discovery” (Newton-Smith, 1981, p.
125). To appreciate why theory acquisition is challenging,
consider a case where the concepts belonging to a theory
are not known in advance. Imagine a child who stumbles
across a set of identical-looking metal objects. She starts
to play with these objects and notices that some pairs
seem to exert mysterious forces on each other when they
come into close proximity. Eventually she discovers that
there are three kinds of objects—call them magnets, mag-
netic objects and non-magnetic objects. She also discovers
causal laws that capture the relationships between these
concepts: magnets interact with magnets and magnetic
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objects, magnetic objects interact only with magnets, and
non-magnetic objects do not interact with any other ob-
jects. Notice that the three hidden concepts and the causal
laws are tightly coupled. The causal laws are only defined
in terms of the concepts, and the concepts are only defined
in terms of the causal relationships between them. This
coupling raises a challenging learning problem. If the child
already knew about the three concepts—suppose, for in-
stance, that different kinds of objects were painted differ-
ent colors—then discovering the relationships between
the concepts would be simple. Similarly, a child who al-
ready knew the causal laws should find it easy to group
the objects into categories. We consider the case where
neither the concepts nor the causal laws are known. In
general, a learner may not even know when there are
new concepts to be discovered in a particular domain,
let alone how many concepts there are or how they relate
to one another. The approach we describe attempts to
solve all of these acquisition problems simultaneously.

We suggested already that Bayesian inference can ex-
plain how theories are used for induction, and our ap-
proach to theory acquisition is founded on exactly the
same principle. Given a formal characterization of a theory,
we can set up a space of possible theories and define a
prior distribution over this space. Bayesian inference then
provides a normative strategy for selecting the theory in
this space that is best supported by the available data.
Many Bayesian accounts of human learning work with rel-
atively simple representations, including regions in multi-
dimensional space and sets of clusters (Anderson, 1991;
Shepard, 1987; Tenenbaum & Griffiths, 2001). Our model
demonstrates that the Bayesian approach to knowledge
acquisition can be carried out even when the representa-
tions to be learned are richly structured, and are best de-
scribed as relational theories.

Our approach draws on previous proposals about rela-
tional concepts and on existing models of categorization.
Several researchers (Gentner & Kurtz, 2005; Markman &
Stilwell, 2001) have emphasized that many concepts derive
their content from their relationships to other concepts, but
there have been few formal models that explain how these
concepts might be learned (Markman & Stilwell, 2001). Most
models of categorization take features as their input, and are
able only to discover categories defined by characteristic
patterns of features (Anderson, 1991; Medin & Schaffer,
1978; Nosofsky, 1986). Our approach brings these two re-
search programs together. We build on formal techniques
used by previous models—in particular, our approach ex-
tends Anderson’s rational model of categorization—but we
go beyond existing categorization models by working with
rich systems of relational data.

The next two sections introduce the simple kinds of
theories that we consider in this paper. We then describe
our formal approach and evaluate it in two ways. First
we demonstrate that our model learns large-scale theories
given real-world data that roughly approximate the kind of
information available to human learners. In particular, we
show that our model discovers theories related to folk biol-
ogy and folk sociology, and a medical theory that captures
relationships between ontological concepts. We then turn
to empirical studies and describe two behavioral experi-
ments where participants learn theories analogous to the
simple theory of magnetism already described. Our model
helps to explain how these simple theories are learned and
used to support inductive inferences, and we show that our
relational approach explains our data better than a feature-
based model of categorization.
2. Theories and theory discovery

‘‘Theory” is a term that is used both formally and infor-
mally across a broad range of disciplines, including psy-
chology, philosophy, and computer science. No definition
of this term is universally adopted, but here we work with
the idea that a theory is a structured system of concepts
that explains some existing set of observations and pre-
dicts future observations. In the magnetism example just
described, the concepts are magnets, magnetic objects,
and non-magnetic objects, and these concepts are embed-
ded in a system of relations that specifies, for instance, that
magnets interact with magnets and magnetic objects but
not with non-magnetic objects. This system of relation-
ships between concepts helps to explain interactions be-
tween specific objects in terms of general laws: for
example, bars 4 and 11 interact because both are magnets,
and because magnets always interact with each other. The
magnetism theory also supports predictions about pairs of
objects (e.g. bars 6 and 11) that are brought together for
the first time: for example, these objects might be ex-
pected to interact because previous observations suggest
that both are magnets.

The definition just proposed highlights several aspects
of theories that have been emphasized by previous
researchers. There is broad agreement that theories should
explain and predict data, and the idea that a theory is a sys-
tem of relationships between concepts is also widely ac-
cepted. Newton’s second law of motion, for example, is a
system ðF ¼ maÞ that establishes a relationship between
the concepts of force, mass, and acceleration. In the psy-
chological literature, Carey (1985) has suggested that 10
year olds have an intuitive theory of biology that specifies
relationships between concepts like life, death, growth,
eating, and reproduction—for instance, that death is the
termination of life, and that eating is necessary for growth
and for the continuation of life.

Our definition of ‘‘theory” is consistent with many pre-
vious treatments of this notion, but leaves out some ele-
ments that have been emphasized in previous work. The
most notable omission is the idea of causality. For us, a the-
ory specifies relationships between concepts that are often
but not always causal. This view of theories has some prec-
edent in the psychological literature (Rips, 1995) and is
common in the artificial intelligence literature, where
mathematical theories are often presented as targets for
theory-learning systems (Shapiro, 1991). A second exam-
ple of a non-causal theory is a system that specifies rela-
tionships between kinship concepts: for example, the fact
that the sister of a parent is an aunt (Quinlan, 1990).
Although the kinship domain is one of the cases we con-
sider, we also apply our formal approach to several settings
where the underlying relationships are causal, including an
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experimental setting inspired by the magnets scenario al-
ready described.

Although our general approach is broadly consistent
with previous discussions of intuitive theories, it differs
sharply from some alternative accounts of conceptual
structure. Many formal approaches to categorization and
concept learning focus on features rather than relations,
and assume that concepts correspond to sets, lists, or bun-
dles of features. We propose that feature-based represen-
tations are not rich enough to capture the structure of
human knowledge, and that many concepts derive their
meanings from the roles they play in relational systems.
To emphasize this distinction between feature-based and
relational approaches, we present a behavioral experiment
that directly compares our relational model with a feature-
based alternative that is closely related to Anderson’s ra-
tional model of categorization (Anderson, 1991).

Now that we have introduced the notion of a ‘‘theory”
our approach to theory discovery can be summarized. Sup-
pose that we wish to explain the phenomena in some do-
main. Any theory of the domain can be regarded as a
representation: a complex structured representation, but
a representation nonetheless. Suppose that we have a set
of these representations: that is, a hypothesis space of the-
ories. Each of these theories makes predictions about the
phenomena in the domain, and suppose that we can for-
mally specify which phenomena are likely to follow if a gi-
ven theory is true. Suppose also that we have a prior
distribution on the hypothesis space of theories: for exam-
ple, perhaps the simpler theories are considered more
likely a priori. Theory discovery is now a matter of choosing
the element in the hypothesis space that allows the best
tradeoff between explanatory accuracy and a priori plausi-
bility. As we will demonstrate, this choice can be formal-
ized as a statistical inference.
3. Learning simple theories

Before introducing the details of our model, we describe
the input that it takes and the output that it generates and
provide an informal description of how it converts the in-
put to the output. The input for each problem specifies
relationships among the entities in a domain, and the out-
put is a simple theory that we refer to as a relational system.
Each relational system organizes a set of entities into cate-
gories and specifies the relationships between these cate-
gories. Suppose, for instance, that we are interested in a
set of metal bars, and are given a relation interactsðxi; xjÞ
which indicates whether bars xi and xj interact with each
other. This relation can be represented as the matrix in
Fig. 2a.i, where entry ði; jÞ in the matrix is black if bar xi

interacts with bar xj. Given this matrix as input, our model
discovers the relational system in Fig. 2a.iii. The system
organizes the bars into three categories—magnets, mag-
netic objects and non-magnetic objects—and specifies the
relationships between these categories. Fig. 2a.ii shows
that the input matrix takes on a clean block structure when
sorted according to the categories discovered by our mod-
el. This clean block structure reflects the lawful relation-
ships between the categories discovered by the model.
For example, the all-black block in the top row of
Fig. 2a.ii indicates that every object in category 1 (i.e. every
magnet) interacts with every object in category 2 (i.e.
every magnetic object).

Our approach is based on a mathematical function that
can be used to assess the quality of any relational system.
Roughly speaking, the scoring function assigns a high score
to a relational system only if the input data take on a clean
block structure when sorted according to the system. Gi-
ven this scoring function, theory discovery can be formu-
lated as the problem of searching through a large space
of relational systems in order to find the highest-scoring
candidate. This search can be visualized as an attempt to
shuffle the rows and the columns of the input matrix so
that the matrix takes on a clean block structure. Fig. 3
shows an example where the input matrix on the left is
sorted over a number of iterations to reveal the block-
structured matrix on the right. The matrix on the far right
contains the same information as the input matrix, but
shuffling the rows and the columns reveals the existence
of a relational system involving three categories (call them
A, B and C). The final matrix shows that these categories
are organized into a ring, and that the relation of interest
tends to be found from members of category A to members
of category B, from B-members to C-members, and from C-
members to A-members.

Fig. 2 shows two more examples of relational systems
that can be discovered by our model. In Fig. 2b, we are
interested in a set of terms that might appear on a medical
chart, and the input matrix causesðxi; xjÞ specifies whether
xi causes xj. A relational system for this problem might
indicate that the terms can be organized into two catego-
ries—diseases and symptoms—and that diseases can cause
symptoms. Fig. 2c shows a case where we are interested in
a group of elementary school children and provided with a
relation friends withðxi; xjÞ which indicates whether xi con-
siders xj to be a friend. Our model discovers a relational
system where there are two categories—the boys and the
girls—and where each student tends to be friends with oth-
ers of the same gender.

The examples in Fig. 2 illustrate three kinds of relational
systems and Fig. 4 shows four additional examples: a ring,
a dominance hierarchy, a common-cause structure and a
common-effect structure. All of these systems have real-
world applications: rings can capture feedback loops, dom-
inance hierarchies are often useful for capturing social
relations, and common-cause and common-effect struc-
tures are often considered in the literature on causal rea-
soning. Many other structures are possible, and our
approach should be able to capture any structure that
can be represented as a graph, or as a collection of nodes
and arrows. This family of structures includes a rich set
of relational systems, including many systems discussed
by previous authors (Griffiths & Tenenbaum, 2007; Keil,
1993; Kemp & Tenenbaum, 2008).

Even though the relational systems in Figs. 2 and 4 are
very simple, these representations still capture some
important aspects of intuitive theories. Each system can
be viewed as a framework theory that specifies the con-
cepts which exist in a domain and the characteristic rela-
tionships between these concepts. Each concept derives
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its meaning from its relationships to other concepts: for in-
stance, magnetic objects can be described as objects that
interact with magnets, but fail to interact with other mag-
netic objects. Framework theories will not provide a com-
plete explanation of any domain: for instance, the theory in
Fig. 2b.iii. does not explain why lung cancer causes cough-
ing but not fever. Even though systems like the examples
in Figs. 2 and 4 will not capture every kind of theoretical
knowledge, the simplicity of these representations makes
them a good initial target for models of theory learning.

The relational systems discovered by our model depend
critically on the input provided. The examples in Fig. 2a
and b illustrate two rather different cases. In the magnets
example, both the entities (metallic bars) and the interacts
with relation are directly observable, and it is straightfor-
ward to see how a theory learner would gather the input
data shown in Fig. 2a.i. In the medical example, the symp-
toms (e.g. coughing) tend to be directly observable, but the
diseases (e.g. lung cancer) and the ‘‘causes” relation are
not. The input matrix specifies, for example, that lung can-
cer causes coughing, but recognizing this relationship de-
pends on prior medical knowledge. Philosophers of
science often suggest that there are no theory-neutral
observations, and it is important to realize that the input
required by our model may be shaped by prior theoretical
knowledge. We return to this point in the General Discus-
sion, and consider the extent to which our model can go
beyond the ‘‘theories” that are already implicit in the input
data.

We have focused so far on problems where there is a
single set of entities and a single binary relation, but our
approach will also handle more complicated systems of
relational data. We illustrate by extending the elementary
school example in Fig. 2c. Suppose that we are given one or
more relations involving one or more types, where a type
corresponds to a collection of entities. In Fig. 2c, there is
a single type corresponding to people, and the binary rela-
tion friends withð�; �Þ is defined over the domain people�
people. In other words, the relation assigns a value—true
or false—to each pair of people. If there are multiple rela-
tions defined over the same domain, we will group them
into a type and refer to them as predicates. For instance,
we may have several social predicates defined over the do-
main people� people: friends withð�; �Þ; admiresð�; �Þ; respects
ð�; �Þ, and hatesð�; �Þ. We can introduce a type for these social
predicates, and define a ternary relation appliesðxi; xj; pÞ
which is true if predicate p applies to the pair ðxi; xjÞ. Our
goal is now to simultaneously categorize the people and
the predicates (Fig. 5b). For instance, we may learn a rela-
tional system which includes two categories of predi-
cates—positive and negative predicates—and specifies
that positive predicates tend to apply only between stu-
dents of the same gender.

Our approach will handle arbitrarily complex systems
of features, entities and relations. If we include features
of the people, for example, we can simultaneously catego-
rize people, social predicates, and features (Fig. 5c).
Returning to the elementary school example, suppose, for
instance, that the features include predicates like plays
baseball, learns ballet, owns dolls, and owns toy guns. We
may learn a system that organizes the features into two
categories, each of which tends to be associated with stu-
dents of one gender.
4. A probabilistic approach to theory discovery

We now provide a more formal description of the model
sketched in the previous section. Each relational system in
Fig. 2 can be formalized as a pair ðz;gÞ, where z is a parti-
tion of the entities into categories and g is a matrix that
indicates how these categories relate to each other
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and j. We invert this generative model to discover the g and the z that
maximize the posterior distribution Pðz;gjRÞ / PðRjg; zÞPðgjzÞPðzÞ.
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(Fig. 6). The matrix g can be visualized as a category graph:
a graph over the categories where the edge between cate-
gory A and category B has weight gðA;BÞ, expressing the
probability that A-entities will link to B-entities. The sys-
tems in Figs. 2 and 4 are shown as category graphs where
only the edges with high weights have been included. In
the general case, suppose that the input data include m
relations defined over n types. A relational system specifies
a partition zi of each type into categories, and a matrix gj

for each relation Rj. The system can be represented as a
vector ðz1; z2; . . . ; zn;g1; . . . ;gmÞ, where the zi pick out the
concepts that appear in the system and the gj specify rela-
tionships between these concepts.

Suppose first that we are interested in learning a rela-
tional system ðz;gÞ given a single binary relation R like
the example in Fig. 6. We take a probabilistic approach
and search for the system that maximizes the posterior
distribution

Pðz;gjRÞ / PðRjg; zÞPðgjzÞPðzÞ: ð1Þ

The terms on the right hand side of Eq. (1) will capture
assumptions about how relation R is generated from an
underlying g and z, and how this g and z are generated
in the first place. Bayes’ rule allows us to convert these
generative assumptions into a posterior distribution
Pðz;gjRÞ that can be used to identify the unobserved z
and g that best account for the observed relation R. To
complete the model, we will formally specify each term
on the right hand side of Eq. (1).

Consider first the term PðRjg; zÞ. We model relations as
binary-valued functions but extensions to other datatypes
(including continuous data and frequency data) are
straightforward. For the problem in Fig. 6, we have a single
type T and a single two-place relation R : T � T ! f0;1g,
and we expect that the entries in this relation will be
somehow explained by the underlying set of categories.
There may be several ways to formalize this idea but we
pursue one of the simplest, and assume that entry Rði; jÞ
is generated by tossing a coin with bias gðzi; zjÞ, where zi

and zj are the category assignments of entities i and j. Each
entry gðA;BÞ in the parameter matrix g can therefore be
interpreted as the probability that a given entity in class
A will link to a given entity in class B. These assumptions
about how R is generated from z and g lead to an expres-
sion for PðRjg; zÞ that appears as Eq. (8) in Appendix A.
Eq. (1) also includes a term PðgjzÞ that captures assump-
tions about how the g matrix is generated. We assume that
the entries in g are independently drawn from a Beta dis-
tribution with hyperparameters a and b. The equation for
this distribution appears as Eq. (7) in Appendix A.

The final term in Eq. (1) is a prior PðzÞ that captures
assumptions about how the category assignments in z
were generated. Although relation R is assumed to depend
on the category assignments in z, we do not assume that
these category assignments are known in advance, or fix
the number of categories that will be needed. Instead, we
use a prior distribution PðzÞ on category assignments that
assigns some probability mass to all possible partitions of
type T . Note that the number of possible partitions is very
large for any type including more than a handful of enti-
ties: for example, a domain with 20 entities has roughly
1014 partitions. A suitable prior should favor partitions that
use small numbers of categories, but should allow the
number of categories to grow as more data are seen. Fol-
lowing Anderson (1991) and other authors (Antoniak,
1974; Neal, 1991; Rasmussen, 2000) we use a distribution
over partitions induced by a Chinese Restaurant Process
(CRP, also known as a Polya Urn scheme (Aldous, 1985; Pit-
man, 2002)). A formal definition of this prior appears in
Appendix A.

Now that we have specified all three terms on the right
hand side of Eq. (1), we have a fully-specified model that
helps to explain how relational systems can be acquired
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and used. We have focused so far on the acquisition prob-
lem, and have suggested that relational systems can be
learned by searching for the z and g that maximize the pos-
terior distribution in Eq. (1). If a system S ¼ ðz;gÞ is already
known, then our approach helps to explain how the system
supports predictions about any missing entries in relation
R. For instance, if g indicates that entities in category A
tend to send links to entities in category B, we can infer
that a new member of category A is likely to send links
to most entities in category B.

Appendix A provides a formal description of the meth-
ods we used to compute the predictions of our model.
We initially integrate out the g matrix and search for the
best set of category assignments z. Once z is known, it is
straightforward to recover the g matrix that corresponds
best to these category assignments. To discover the best z
for a given data set, we developed a greedy search algo-
rithm, and Fig. 3 shows the progress of this algorithm
when applied to a small problem. The input relation R
can be represented as a matrix, and our algorithm tries
to shuffle the rows and columns of this matrix so that it as-
sumes a clean block structure like the final matrix in Fig. 3.
Note, however, that there will be many other ways to
implement the computational theory we have described,
and that the particular implementation we have chosen
is not intended as a model of cognitive processing.

We began with a problem where the input data include
a single binary relation defined over a single type, but the
same basic approach can be used to discover systems that
involve multiple types and multiple relations. Suppose that
we observe m relations defined over n types. We are inter-
ested in discovering vectors zi which organize each type
into categories, and parameter matrices gj which capture
relationships between these categories. Formally, we
search for the category assignments and parameter matri-
ces that maximize the posterior distribution

Pðz1; z2; . . . ; zn;g1; . . . ;gmjR1; . . . ;RmÞ
/ PðR1; . . . ;Rmjg1; . . . ;gm; z1; z2; . . . ; znÞ
� Pðg1; . . . ;gmjz1; z2; . . . ; znÞPðz1; z2; . . . ; znÞ: ð2Þ

As in Eq. (1), this posterior distribution will favor category
assignments fzig that achieve a tradeoff between simplic-
ity (a good set of assignment vectors should use a relatively
small number of categories) and fit to the data (the cate-
gory assignments should account well for the relations
fRjg). More details can again be found in Appendix A.
5. Evaluating models of theory discovery

Formal accounts of theory discovery can make two con-
tributions to cognitive science: they help to address ques-
tions about the learnability of theories, and they help to
explain human behavior. We will evaluate our approach
along both dimensions.

Consider first the learnability issue. Many philosophers
have suggested that there can be no computational ac-
count of theory discovery (Newton-Smith, 1981), and
Hempel’s (1985) version of this claim is especially relevant
to our approach. Hempel points out that a theory-learning
system must be able to discover concepts that cannot be
defined as combinations of concepts that appear in the in-
put data: instead, these novel concepts must be character-
ized in part by their relationships to one another. Hempel
argues that is far from clear that computers can make dis-
coveries of this kind, but we suggest otherwise, and sup-
port our claim by applying our model to several data sets
and showing that it simultaneously discovers concepts
and relationships between these concepts. Analyses of syn-
thetic data can show that theories are learnable in princi-
ple, but we take a step further and apply our model to
three real-world problems: learning about animals and
their features, learning ontological concepts, and discover-
ing the structure of a kinship system. By working with
noisy-real world data, we demonstrate that a computa-
tional approach to theory discovery is feasible both in prin-
ciple and in practice.

The second challenge for models of theory learning is to
make accurate predictions about behavioral data. Empiri-
cal studies of theory learning are difficult, since intuitive
theories can be very complex, and typically take much
longer to acquire than the duration of a laboratory experi-
ment. The experimental component of this paper therefore
focuses on very simple theories, and we explore whether
our model makes accurate predictions about how these
theories are acquired and used for inductive inference.

To establish the contribution of any new model it is
important to compare it with existing formal approaches.
Our work is related to previous probabilistic models that
focus on features rather than relations, and to previous
models that address problems such as analogical reasoning
where relational information is critical. Previous models of
categorization can be directly applied to the data sets that
we consider, and we will compare our approach to one
such model—Anderson’s account of categorization
(Anderson, 1991). Previous models of analogical inference
such as the structure-mapping engine (Falkenhainer, For-
bus, & Gentner, 1989) apply less naturally to the problems
that we consider, and we discuss some of these models to-
wards the end of the paper.

6. Categorizing objects and features

Later sections of this paper will demonstrate that our
model can handle rich systems of relations, but we begin
with a very simple setting where the raw data are a matrix
of objects by features. Many models of categorization work
with information about objects and their features and at-
tempt to organize the objects into mutually exclusive cat-
egories (Anderson, 1991; Medin & Schaffer, 1978).
Learning about features, however, can also be important,
and often it makes sense to organize both objects and fea-
tures into groups (Keil, 1991; Malt & Smith, 1984; Rosch,
1978). When learning about mammals, for instance, it
may be useful to recognize a category of aquatic features
that includes features like ‘‘has flippers,” ‘‘swims,” and
‘‘lives in water.” Feature categories provide a way to cap-
ture patterns of coherent covariation (Rogers & McClelland,
2004): notice that a mammal which has one aquatic fea-
ture is likely to have the others. Note also that feature cat-
egories and object categories can be mutually reinforcing:
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an aquatic mammal is a mammal that has aquatic features,
and aquatic features are those that are shared by aquatic
mammals. This section shows that our theory learning
model can simultaneously discover object categories, fea-
ture categories, and the relationships between them.1

Any object-feature matrix can be viewed as a relation
R : T1 � T2 ! f0;1g between a set of objects ðT1Þ and a
set of features ðT2Þ. Since binary features correspond to un-
ary predicates, a feature category can viewed as a simple
instance of a predicate category, and this section will pro-
vide our first example of how predicate categories can be
discovered. We applied our model to a binary matrix
where the rows represent animal species and the columns
represent features (Fig. 7). Osherson, Stern, Wilkie, Stob,
and Smith (1991) ran a task where participants were given
48 species and 85 features and asked to rate the strength of
association between each animal and feature. Participants
gave ratings on a scale that started at zero and had no
upper bound. Ratings were linearly transformed to values
between 0 and 100, then averaged. We ran a similar exper-
iment to collect feature ratings for two additional species—
cow and dolphin—and combined our results with the origi-
nal data set to create a matrix with 50 species and 85 fea-
tures (Kemp & Tenenbaum, 2008). We converted this
matrix into a binary matrix by thresholding the continuous
feature ratings at the global mean.

Fig. 7d shows that the matrix of biological data takes on a
fairly clean block structure when the animals and the fea-
tures are sorted into categories. The 12 animal categories in-
clude groups that correspond to marine mammals,
freshwater mammals, primates, and bears, and the model
assigns two of the more unusual animals—bat and giant pan-
da—to their own categories. The 34 feature categories in-
clude 16 singletons, but the remaining categories tend to
capture patterns of coherent covariation. It is interesting to
note that some of the feature categories include features of
several different kinds. For example, ‘‘quadrapedal” is an
anatomical feature, ‘‘walks” is a behavioral feature, and
‘‘lives on the ground” is an ecological feature, but all three
are assigned to a single category since they tend to occur to-
gether. In addition to discovering feature categories and ani-
mal categories, the model also discovers relationships
between these categories. Some of the strongest relation-
ships indicate that aquatic mammals tend to have features
from the category that includes ‘‘has flippers,” ‘‘swims,”
and ‘‘lives in the ocean,” and that primates tend to have fea-
tures from the category that includes ‘‘has hands,” ‘‘bipedal,”
‘‘lives in the jungle,” and ‘‘found in trees.”

If we choose not to cluster the features, our approach
reduces to a model we will call the feature-based model.
The feature-based model assumes the features are condi-
tionally independent given the set of animal categories.
When applied to the biological data, this model finds five
animal categories, and Fig. 7b indicates that most of these
1 Simultaneously clustering objects and features is sometimes called
biclustering or coclustering, and previous coclustering models have been
developed by statisticians and machine learning researchers (Dhillon,
Mallela, & Modha, 2003; Hofmann & Puzicha, 1999; Madeira & Oliveira,
2004). To our knowledge, however, the problem of coclustering has
received little previous attention in the psychological literature.
categories can be created by merging two or more of the
categories discovered by our model. For example, the sec-
ond category discovered by the feature-based model in-
cludes all of the hooved animals along with the giant
panda, but our model chooses to divide this group further
into categories O2 through O5. If the 50 animals in the data
set are organized into a hierarchical folk taxonomy, the
solutions found by the two models may correspond to cuts
of this tree at two different levels. The feature-based model
may cut the tree near the root, creating 5 relatively large
categories, and the relational model may cut the tree
nearer the leaves, creating a larger number of categories.

The feature-based model is intimately related to Ander-
son’s (1991) rational analysis of categorization. Anderson’s
model is based on assumptions about the generative struc-
ture of the environment and assumptions about the pro-
cessing limitations of human learners. The feature-based
model is the model that follows from the first set of
assumptions alone (Sanborn, Griffiths, & Navarro, 2006).2

One of the assumptions about the structure of the environ-
ment is that features are conditionally independent given
a partition of the objects. Loosely speaking, objects from
the same category are assumed to have similar features,
but features are assumed to be independently generated
subject to this constraint. Given this independence assump-
tion, learning that a robin has wings and flies provides evi-
dence that other robins are likely to fly, but does not
support the conclusion that winged entities from other cat-
egories (e.g. eagles, dragonflies and aeroplanes) are likely to
fly. Although this independence assumption may make
Anderson’s analysis more tractable, there is little reason to
think that it is even approximately true of the features in
Fig. 7. As we have seen, the feature-based model cannot ade-
quately capture the intuition that features (e.g. ‘‘has wings”
and ‘‘flies”) tend to cluster, and the block structure in Fig. 7
confirms that animal features do indeed cluster.

Our primary motivation for working with feature data
was to provide a simple initial demonstration of our model.
The relational systems discovered by our model captures
some aspects of intuitive theories: for instance, just as the-
oretical terms derive meaning from their relationships to
other theoretical terms, the categories in Fig. 7 are perhaps
best described in terms of each other (aquatic mammals
have aquatic features, and vice versa). It is useful to know
that our model can discover interpretable structure in fea-
ture data, but the distinctive contributions of our model
are seen most clearly when the available data are purely
relational. The next three sections consider applications
of this sort, and include our most compelling demonstra-
tions that our model can acquire theory-like knowledge.
7. Discovering ontologies

Intuitive theories vary in abstraction. Some theories
capture detailed knowledge about specific topics such as
illness and its causes, or the laws that govern the motion
2 The feature-based model is also known in some literatures as the
infinite mixture model or the Dirichlet process mixture model (Ferguson,
1973; Neal, 1991).



O1 killer whale, blue whale, humpback, seal, walrus, dolphin
O2 moose, ox, sheep, buffalo, pig, cow
O3 antelope, horse, giraffe, zebra, deer
O4 hippo, elephant, rhino
O5 giant panda
O6 grizzly bear, polar bear
O7 german shepherd, tiger, leopard, fox, wolf, rat, weasel, bobcat, lion, raccoon
O8 skunk, mole, hamster, squirrel, rabbit, mouse
O9 dalmatian, persian cat, siamese cat, chihuahua, collie

O10 beaver, otter
O11 monkey, gorilla, chimp
O12 bat
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F5 F22 muscle
F6 walks, quadrapedal, ground F23 tough skin
F7 ects, scavenger, desert, cave F24 smart
F8 pads, claws, nocturnal, hibernate, stalker F25 hairless
F9 black, brown, furry, chew teeth, new world F26 smelly

F10 blue, tusks, eats plankton, skimmer F27 timid
F11 white, patches, spots, domestic F28 vegetation
F12 fast, active, agility F29 buck teeth
F13 forager, forest, nest spot F30 gray
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Fig. 7. (a) Animal categories discovered by our relational model. (b) A comparison between the 12 categories found by our model (rows) and the 5
categories found by the feature-based model (columns). Each column shows how one of the feature-based categories is distributed over the 12 categories in
(a): for instance, most members of the first feature-based category (column 1) belong to the first relational category (row 1). The numbers indicate the size
of each category: for instance, the first relational category (row 1) has 6 members, and the second feature-based category (column 2) has 15 members. (c)
Feature categories discovered by our model. Some features refer to habitat (jungle, tree, coastal), and others are anatomical (bulbous body shape, has teeth
for straining food from the water) or behavioral (swims, slow). (d) A sorted matrix showing the relationship between the animal categories in (a) and the
feature categories in (c).
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of physical objects. Others are more general theories that
distinguish between basic ontological categories (e.g.
agents, mental states, artifacts, substances, and events)
and specify relationships between these categories (e.g.
that agents can have mental states, or that artifacts are
made out of substances). As mentioned earlier, general
theories like these are sometimes called ‘‘framework theo-
ries,” since they establish a framework that can support the
acquisition of more specialized theories (Wellman & Gel-
man, 1992). For instance, knowing that agents can have
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mental states can support the acquisition of theoretical
knowledge about specific mental states such as beliefs
and desires.

Some fundamental ontological concepts such as the no-
tion of a physical object may be innately provided (Spelke,
1990). Learning, however, can help to sharpen and subdi-
vide the ontological categories that are initially available.
There are many developmental studies that trace the
emergence of ontological knowledge (Carey, 1985; Keil,
1979) but relatively few computational proposals about
how this knowledge might be acquired. In this section
we suggest that our model can acquire ontological catego-
ries given information about the relations between an ini-
tially undifferentiated set of entities. Theory-learners may
acquire this relational information from many sources, but
linguistic input may be one of the most important: Keil
(1983), for example, suggests that linguistic pairings be-
tween objects and predicates help children recognize onto-
logical distinctions that they initially ignore.

To demonstrate that our model can acquire ontological
knowledge, we work with biomedical data from the Uni-
fied Medical Language System (UMLS, McCray, 2003).
Two of the basic categories within this domain are diseases
and symptoms, and an ontology might state that diseases
can cause symptoms (Fig. 1). We show that our model dis-
covers a simple theory that captures ontological knowl-
edge of this sort. The raw data that support this
discovery are taken from a semantic network with 135
entities and 49 predicates (McCray, 2003). The entities in-
clude nouns like ‘‘cell dysfunction,” ‘‘vitamin,” and ‘‘fun-
gus.” The predicates include verbs like complicates, affects
and causes. If T1 indicates the set of entities, each predicate
can be represented as a binary relation R : T1 � T1 ! f0;1g.
Fig. 8 shows matrix representations for 32 of these rela-
tions, and we can use the complete set of matrices as the
input for our model. Fig. 3 suggests how our model pro-
ceeds when given a single matrix as input. When provided
with the 49 matrices in the medical data set, the goal is to
sort the 135 entities into categories such that each of the
input matrices takes on a clean block structure. Fig. 8b
shows that this goal can be achieved, and that the input
matrices are highly structured when sorted according to
the categories in Fig. 8a.

The results in Fig. 8b were generated by analyzing a sin-
gle ternary relation rather than 49 binary relations. Since
each of the 49 relations has the same domain ðT1 � T1Þ,
we can treat them as first-class entities and apply the mod-
el to the ternary relation R : T1 � T1 � T2 ! f0;1g, where
T2 is the set of 49 predicates. This analysis is directly anal-
ogous to the elementary school example shown in Fig. 5b.
Both the 135 entities and the 49 predicates are sorted into
categories, and a good solution allows the ternary relation
to take on a clean block structure when sorted according to
these categories. The previous section demonstrated that
features can be clustered, and here we see that relations
form high-level types that can also be clustered. Our gen-
eral philosophy is that every type is a candidate for cluster-
ing, although there may be idiosyncratic reasons why we
choose not to cluster some of them.

Fig. 8 shows some of the categories that emerge when
we cluster both entities and predicates. The model discov-
ers 14 entity categories in total, including a category of
organisms, a category of chemicals and a category of bio-
logical functions. Fig. 8a shows, for example, that the first
category includes entities such as alga, amphibian, animal,
and other organisms. When sorted according to the 14 cat-
egories, the matrices for most predicates take on a clean
block structure, indicating that these categories account
well for the raw data. The first matrix in Fig. 8b, for exam-
ple, shows that members of category 3 (biological func-
tions) affect members of category 1 (organisms). The
second matrix shows that members of category 2 (chemi-
cals) cause members of category 5 (diseases) and members
of category 7 (abnormalities).

By estimating the entries in g we can identify the pairs
of categories that are most strongly linked and the predi-
cates that link them. Fig. 9 shows the strongest relation-
ships between seven of the categories discovered by the
model. Some of these relationships indicate that biological
functions affect organisms, that chemicals cause diseases,
and that bio-active substances disrupt biological functions.
The network in Fig. 9 is a holistic system where each cate-
gory is specified in terms of its relationships to the other
categories in the system (Goldstone & Rogosky, 2002),
and where all of the categories have been discovered
simultaneously. This result is perhaps our most compelling
demonstration that our model can acquire complex sys-
tems of relational knowledge.

Our model discovers 21 predicate categories and all but
one are shown in Fig. 8. The first 14 predicates tend to be
associated with many observations, and each one is as-
signed to its own category. The final 17 predicates are very
sparse, and all of them are assigned to a single category
which is not shown in Fig. 8. The remaining categories in-
clude between 2 and 4 predicates. One of these categories
includes three predicates related to measurement: {ana-
lyzes, measures, assesses effect of}. Another includes several
possible relationships between diseases: {co-occurs with,
degree of, occurs in, precedes}. In most cases, the matrices
for predicates assigned to the same category tend to have
entries in similar positions, which explains why the model
has chosen to group them. The one exception is the cate-
gory {property of, uses}, which includes two miscellaneous
predicates that may be too sparse to be assigned to two
separate categories, but not sparse enough to be grouped
with the final 17 predicates.

If we wanted to organize the entities into categories
without discovering the relationships between these cate-
gories, the feature-based model could be applied to a flat-
tened version of the relational data. Suppose that a is an
element of T1, and we wish to flatten the ternary relation
R : T1 � T1 � T2 ! f0;1g. The features of a correspond to
all values of Rða; x1; x2Þ where x1 2 T1 and x2 2 T2 and all
values of Rðx1; a; x2Þ. Any relational system can be similarly
converted into an object-feature matrix involving just one
of its component dimensions. When applied to the flat-
tened biomedical data, the feature-based model discovers
9 categories, fewer than the 14 categories found by our
model. Fig. 10a compares both of these solutions to a
ground-truth partition created by domain experts (McCray,
Burgun, & Bodenreider, 2001). Each row of the matrices in
Fig. 10a corresponds to one of the ground-truth categories



1. ORGANISMS ungus, human, invertebrate, . . .
2. CHEMICALS amino acid, carbohydrate, chemical, eicosanoid, element or ion or isotope, food, lipid, steroid, . . .
3. BIOLOGICAL FUNCTIONS biological function, cell function, genetic function, mental process, molecular function, . . .
4. BIO-ACTIVE SUBSTANCES antibiotic, enzyme, hormone, immunologic factor, pharmacologic substance, vitamin, . . .
5. DISEASES cell dysfunction, disease, mental dysfunction, neoplastic process, pathologic function, . . .
6. PROCEDURES diagnostic procedure, health care activity, laboratory procedure, molecular biology research technique, . . .
7. ABNORMALITIES acquired abnormality, anatomical abnormality, congenital abnormality, injury or poisoning
8. ANATOMY anatomical structure, body location or region, body part or organ or organ component, cell, . . .
9. PHENOMENA clinical attribute, environmental effect of humans, human-caused phenomenon or process, . . .
10. HUMAN GROUPS age group, family group, group, health care related organization, organization, population group, . . .
11. HUMAN PRODUCTIONS entity, manufactured object, medical device, . . .
12. SIGNS
13. OCCUPATIONS biomedical occupation or discipline, occupation or discipline
14. MISCELLANEOUS activity, behavior, body system, carbohydrate sequence, educational activity, event, geographic area, . . .
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Fig. 8. (a) Biomedical categories discovered by our relational model. (b) Adjacency matrices for 32 of the 49 predicates, where the rows and columns are
sorted according to the partition of the entities shown in (a). We see, for instance, that chemicals affect biological functions and that organisms interact with
organisms. The dashed grey lines between the matrices indicate the predicate categories discovered by our model. For instance, each of the first 14
predicates belongs to its own category, and category 15 includes evaluation of and measurement of.
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and the columns of these matrices show the composition
of the categories discovered by the two models. Both mod-
els find solutions that are roughly consistent with the
ground-truth categories. Our model discovers some cate-
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Fig. 9. A category graph showing the strongest relationships between seven of the categories discovered by our model. All links with weights greater than
0.8 have been included.
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gories (e.g. the Procedures category) that the feature-based
model misses, but splits some of the ground-truth catego-
ries in two (e.g. the Chemicals and Drugs category). To
quantify the similarity between the model solutions and
the ground-truth partition, we used the adjusted Rand in-
dex (Hubert & Arabie, 1985). Compared to a ground-truth
partition, a randomly generated partition has an expected
score of zero, and the correct partition has a score of 1.
As Fig. 10a shows, the adjusted Rand indices for the two
comparisons are similar (0.53 vs. 0.47), and reveal no clear
difference in the quality of the model solutions. Ultimately
the best representation for the entities in the data set
might be an ontological tree, and the partitions found by
the two models and the ground-truth partition might cor-
respond to cuts of this tree at three slightly different levels.

Our results for the UMLS data suggest that our model
discovers a framework theory for the biomedical domain
that is similar in some respects to the ontological knowl-
edge acquired by humans. Like humans, for example, the
model makes a fundamental ontological distinction be-
tween objects (e.g. chemicals) and processes (e.g. biologi-
cal functions). A critical question for future work is
whether our model can discover ontological categories gi-
ven input that resembles more closely the input available
to human learners. We supplied our model with raw data
that were highly relevant to the problem of discovering
ontological categories, but human learners must distin-
guish the raw data that are relevant from the raw data that
are not so useful. Linguistic input specifies many relations
like those that appear in the UMLS data, but designing sim-
ple techniques to extract these relations may raise some
interesting challenges.

8. Discovering kinship theories

Humans are social creatures, and intuitive theories
about social systems govern many of our interactions with
each other. Social systems take many forms: we all know,
for example, that families, companies, and friendship net-
works are organized differently, and that membership in
any of these systems is associated with a characteristic
set of rules and obligations. Social theories represent a par-
ticularly important test case for models of theory acquisi-
tion, since there is compelling evidence that these
theories are learned rather than acquired through matura-
tion or some other means. Social systems vary greatly
across cultures, and every child must learn the customs
of her own social group.

Western kinship systems may appear relatively com-
plex, but Australian tribes have become renowned among
anthropologists for the complex relational structure of
their kinship systems. Even trained field workers can find
these systems difficult to understand (Findler, 1992) which
raises an intriguing question about cognitive development:
how do children discover the social structure of their tribe?
The learning problem is particularly interesting since some
communities appear to have no explicit representations of
kinship rules, let alone cultural transmission of such rules.
Findler (1992) describes one such case where the ‘‘extre-
mely forceful injunction against a male person having sex-
ual relation with his mother-in-law and with his son’s
wife” could only be expressed by naming the pairs who
could and could not engage in this act (p. 286). Here we
consider one Australian tribe—the Alyawarra, from Central
Australia—and show that our model can discover some of
the properties of the Alyawarra kinship system.

To a first approximation, Alyawarra kinship is captured
by the Kariera system shown in Fig. 11a. The Alyawarra
have four kinship sections, and Fig. 11a shows how the kin-
ship sections of individuals are related to the kinship sec-
tions of their parents. For example, every member of
Section 1 has a mother in Section 4 and a father in Sec-
tion 3. The system implies that marriages are only permit-
ted between Sections 1 and 2 and between Sections 3 and
4, and these marriage restrictions are just some of the
important behavioral consequences of the Alyawarra kin-
ship system. The Aranda system is an alternative to
Fig. 11a which uses eight rather than four categories, and
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Fig. 10. Comparisons of model solutions with ‘‘ground-truth” categories for the medical data and the kinship data. The adjusted Rand index (RI) for each
comparison is shown. (a) Medical data. Each row in each matrix corresponds to a ground-truth category. (i) Composition of the categories found by the
relational model (Fig. 8). Each column shows how one of these categories is distributed across the ground-truth categories. For instance, the relational
model splits the Chemicals and Drugs category into two categories: Bio-active substances and Chemicals. (ii) Composition of the categories found by the
feature-based model. Each column shows how one of the categories discovered by this model is distributed across the ground-truth categories. (b) Kinship
data. Each row in each matrix corresponds to a ground-truth category, and each ground-truth category includes people from the same age-group, gender,
and kinship section (OM1 includes older men from Section 1). (i) Composition of the categories found by the relational model (Fig. 11). Each column shows
how one of these categories is distributed across the ground-truth categories. The categories discovered by the relational model match the ground-truth
partition fairly closely. (ii) Composition of the five categories found by the feature-based model. This model discovers the four kinship sections but little
else.
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Denham, McDaniel, and Atkins (1979) have suggested that
Alyawarra kinship may be better described by the Aranda
system than the Kariera system.3 For our purposes, how-
ever, the simpler four section model is enough to give a fla-
vor for the structure of the Alyawarra kinship system.

We applied our model to Alyawarra kinship data col-
lected by Denham (2001). Denham asked 104 tribe mem-
bers to provide kinship terms for each other, and Fig. 11c
shows the 26 different kinship terms recorded. Each kin-
ship term can be represented as a matrix where the ði; jÞ
3 Denham and colleagues have also noted that Alyawarra practice
occasionally departs from both the Kariera and Aranda systems (Denham
et al., 1979; Denham & White, 2005). Both of these normative systems rule
out marriages that are seen rarely in practice.
cell is shaded if person i used that term to refer to person
j. Aiyenga for example, is a term meaning ‘‘myself,” and
the matrix for Aiyenga includes entries only along the
diagonal, indicating that person i used the term Aiyenga
only when looking at a picture of himself. We applied
our model to the ternary relation R : T1 � T1 � T2 ! f0;1g
where T1 is the set of 104 people and T2 is the set of kin-
ship terms (see Fig. 6b). Denham recorded demographic
information for each of his informants, and we created a
‘‘ground-truth” partition by assigning each person to one
of 16 clusters depending on gender, kinship section, and
a binary age feature (older than 45). The best solution
according to our model uses 15 categories, and Figs. 10b.i
and 11b show that these categories are clean with respect
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shown in (b).
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to the dimensions of age, gender, and kinship section. The
first five charts in Fig. 11b, for example, show that the first
five categories discovered by the model include only indi-
viduals from Section 1. Category 1 includes older men, cat-
egory 2 includes younger men, category 3 includes young
children of both sexes, category 4 includes older women,
and category 5 includes younger women.

The matrices in Fig. 11c have been sorted according to
the 15-category partition discovered by our model
(Fig. 11b). The four kinship sections are clearly visible in
many of the 26 matrices. For example, the sorted matrix
for Adiadya has four rough blocks along the diagonal, indi-
cating that speakers tend to use this term only for others
who belong to the same kinship section. Consistent with
this pattern, Adiadya refers to a classificatory younger
brother or sister: that is, to a younger person in one’s
own section, even if he or she is not a biological sibling
(glosses for each kinship term are provided in Appendix
B). Umbaidya is used by female speakers to refer to a clas-
sificatory son or daughter, and by male speakers to refer to
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the child of a classificatory sister. We see from the relevant
matrix that women in Section 1 have children in Section 4,
and vice versa. Anowadya refers to a preferred marriage
partner. The eight rough blocks in the relevant matrix indi-
cate that men must marry women, that members of Sec-
tion 1 are expected to marry members of Section 2, and
that members of Section 3 are expected to marry members
of Section 4. For example, the data points in the eighth
block along the first row indicate that members of the first
category (older men in Section 1) can marry members of
the eighth category (older women in Section 2).

Discovering relationships between the 15 categories is
crucial to understanding the kinship structure of the tribe.
If, however, we were only interested in clustering the 104
individuals, we could apply the feature-based model to a
flattened version of the data. The best partition discovered
by this model includes 5 categories, and Fig. 10b.ii shows
that these categories are closely related to the four kinship
sections. The adjusted Rand indices in Fig. 10b confirm that
the partition discovered by the relational model is closer to
the ground-truth partition than the feature-based solution.
Again, however, the relational solution can be viewed as a
refinement of the feature-based solution, and the best rep-
resentation of the 104 individuals may ultimately be a
hierarchy, or a set of nested partitions.

9. Experiment 1: learning causal theories

As children learn about the structure of their world,
they develop intuitive theories about animals and their
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Fig. 12. A computer interface used to study theory learning in the
laboratory. (a) Participants are free to drag around the objects and to
organize them however they please. (b) Some objects activate other
objects whenever they touch. Here objects H and C activate each other
(both objects turn red and beep).
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Fig. 13. Category graphs and relations for
properties, about relationships between entities from dif-
ferent ontological kinds, and about the kinship system of
their social group. Our results so far demonstrate that
our model discovers interpretable theories in each of these
domains. Each of these theories includes many categories,
and the medical and kinship theories also include many
relations. Our model therefore helps to explain how com-
plex theories can be learned from noisy real-world data.

We now move on to a second challenge and explore
some of the behavioral predictions of our model. Experi-
mental studies of theory learning are difficult to design,
since intuitive theories can be very complicated and can
take many years to acquire. Consider, for instance, the
sophisticated knowledge we have about animals and their
properties, and the many years it takes for a mature theory
of folk biology to emerge (Carey, 1985). Computational
models should eventually aim to explain how people ac-
quire large-scale theories of domains like folk biology,
but here we focus on a family of simple theories, each of
which includes exactly two concepts. Working with these
simple theories will allow us to develop controlled labora-
tory experiments and to collect quantitative data that can
be compared against the predictions of our model.

Many studies have explored how people group objects
into categories on the basis of their observable features
(Anderson, 1991). We developed a paradigm for exploring
how people learn systems of concepts, where each concept
is defined by its relationships to other concepts. Our stud-
ies rely on a computer interface where objects can be
moved around on screen. Some objects ‘‘activate” other ob-
jects whenever they touch (Fig. 12): if x activates y then y
lights up and beeps whenever x and y touch. In some cases,
activation is symmetric: both x and y light up and beep
when they touch.

Our first experiment includes four conditions that ex-
plore the four different theories in Fig. 13. Each of these
theories includes two categories, A and B. In the asymmetric
regular condition ðA! BÞ, every A-object activates every B-
object but B-objects do not activate A-objects. In the sym-
metric regular condition ðA$ BÞ, every A activates every B
and every B activates every A. In the two irregular condi-
tions (A!0:5 B and A$0:5 B), each A activates a random subset
(on average, 50%) of B’s. The theory-learning problems
A

B

A

B

A BA B

A B
0.5

A B
0.5

asymmetric irregular symmetric irregular

the four conditions in Experiment 1.
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we consider are motivated in part by the magnetism exam-
ple described in the introduction and illustrated in Fig. 2a.
For example, the objects in the A$ B condition are analo-
gous to magnetic poles, and the activation relation in this
condition is analogous to the attraction relation (positive
and negative poles attract each other, but positive poles
do not attract positive poles and negative poles do not at-
tract negative poles). Theories of this kind may be very
simple, but they capture an essential aspect of real-world
theories that challenges conventional models of concept
learning: the concepts and explanatory laws belonging to
each theory are intrinsically relational, and can be defined
only in terms of each other.

Our first experiment explores several questions. The
first and most basic is whether people can learn simple
theories and use them to make predictions about unob-
served relations between objects. Our experiment also pro-
vides information about the dynamics of theory learning,
and about the relative difficulties of the four theories in
Fig. 13.

9.1. Participants

Seventy-five members of the MIT community partici-
pated for pay, and around 20 participants were assigned
to each of the four conditions in Fig. 13. The exact number
of participants in each condition is shown in Table 1.

9.2. Stimuli

The experiment used a custom-built graphical interface
which displayed a set of objects and allowed participants
to drag them around and touch them against each other
(Fig. 12). The objects were labeled with randomly-assigned
letters, but were otherwise perceptually identical. The la-
bels were used to refer to the objects: for instance, partic-
ipants might be asked to touch G to O, or to predict what
would happen when H and C touched.

9.3. Procedure

Each condition begins with three objects on screen, and
participants are asked to ‘‘play around with the objects and
see what lights up.” New objects are added as the experi-
ment progresses. Each condition has six phases, and three
new objects are added to the screen during each phase.
Whenever new objects are added, participants make pre-
Table 1
Average correlations between model predictions and human responses for two
suggested that they had discovered the underlying theory, and all remaining pa
response to all questions in tests 1 and 2 were dropped before computing average c
contributed to the average is shown in parentheses.

Condition Theory-learners

# Phases 5 and 6 All phase

A! B 17 0.83 0.71
A$ B 14 0.88 0.72

A!0:5 B 10 0.57 0.41

A$0:5 B 1 —(0) �0.02
dictions about how these objects will interact with some
of the objects that are already onscreen. During the first
and last phases (phases 1 and 6), participants provide a
couple of sentences describing how the objects work.

During each phase, one of the three new objects serves
as the probe object x. Before observing any interactions
involving the new objects, participants respond to Test 1:
they predict how x will interact with two old objects, one
ðoAÞ from category A and the other ðoBÞ from category B.
These predictions are provided in response to the following
questions:

Consider what will happen when x and oA touch.

1. Will x light up?
2. Will oA light up?

Consider what will happen when x and oB touch.

3. Will x light up?
4. Will oB light up?

Note that the symbols x; oA and oB are replaced by the
letter labels participants could see on screen (Fig. 12). Re-
sponses are provided on a scale from 0 (definitely not) to
10 (definitely).

After answering these questions, participants are in-
structed to touch the probe object to an old object w that
plays no role in the first test. Objects x and w always belong
to different categories, and in each case w is chosen to en-
sure that the interaction between x and w will activate one
or both of these objects. A learner who has discovered the
correct theory should therefore be able to confidently pre-
dict the category of x based on this single interaction. Par-
ticipants then respond to Test 2, which contains exactly
the same questions as Test 1. After the second test, partic-
ipants are instructed to play around with the objects, and
are able to manipulate all of the objects that appear on
screen, including the three new objects. When they are
ready, participants proceed to the next phase, three new
objects are added, and the cycle of tests continues.
9.4. Model predictions

We model inferences at each stage in the experiment by
giving our model a binary matrix R that includes all obser-
vations that are currently possible. The four matrices in
Fig. 13 capture all possible observations when there are
groups of participants. Theory-learners gave written descriptions which
rticipants are classified as non-learners. Participants who gave the same

orrelations. In each case where participants were removed, the number who

Non-learners

s # Phases 5 and 6 All phases

3 0.30 0.45
4 0.26 0.16
9 0.22 (7) 0.24 (8)

17 0.16 (13) 0.20 (14)
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18 objects on screen, and the matrices for earlier phases in
the experiment are smaller. Note that participants were re-
quired to generate their own observations by touching ob-
jects against each other, and some may have failed to
observe all possible interactions at a given stage in the
experiment. Informal observations suggest, however, that
many participants observed each possible interaction at
least once. Since all interactions were deterministic, note
that repeated observations add no new information, and
can be ignored for the purpose of computing model
predictions.

Given all possible observations for the final phase in
each condition, our model discovers the underlying theory
in each case. The model also makes predictions about the
dynamics of learning as each theory is acquired. Figs. 14
and 15 show learning curves for conditions A! B and
A$ B. Each plot shows responses to two of the four ques-
tions that were asked during Test 1 and Test 2.

Consider first the model predictions about the A! B
condition. By the final phase there are 18 old objects on
screen, and the model is quite confident that there are
3 6 9 12 15 18
0 0

0.2 2

0.4 4

0.6 6

0.8 8

1 10

number of old objects

3 6 9 12 15 18
0

0.2

0.4

0.6

0.8

1

number of old objects

0

2

4

6

8

10

 ii)(a) i)

(b) i)  ii)

Model: A B

Fig. 14. Learning curves for the asymmetric regular condition ðA! BÞ. Each curv
the old objects. The interactions of interest are shown in the legend on the right:
activated by one of the A-objects, and the green curve shows inferences about wh
(top row) or category B (bottom row), and inferences are shown before x is obser
between x and a member of the category that does not include x (Test 2). Note tha
that the legends only show tests for the phase where there are exactly six old o
represent average judgments on a scale from 0 to 10.
two categories of objects and that A-objects activate B-ob-
jects. When a new object x is introduced, the model is ini-
tially uncertain about its category assignment, and is
unable to make confident predictions about whether x will
be activated by an A-object, and whether x will activate a
B-object (the dark blue and green curves in Fig. 14a.i and
b.i are close to 0.5). After observing x activate a B-object,
however, the model is confident that x belongs to category
A, and predicts that x is very likely to activate another B-
object, but is very unlikely to be activated by an A-object
(cyan and red curves in Fig. 14a.i). In every phase of the
experiment the model is uncertain about the Test 1 ques-
tions in Fig. 14 (dark blue and green curves), but becomes
increasingly confident about the Test 2 questions (cyan
and red curves) as more objects are observed. Fig. 15 shows
that predictions about the A$ B condition follow a similar
pattern.

In addition to making predictions about the tests in
each condition, our approach makes predictions about
the relative difficulties of the four conditions. To allow
the four theories to be compared on an equal footing, we
3 6 9 12 15 18
number of old objects

3 6 9 12 15 18
number of old objects

Test 1:

Test 2:

Test 1:

Test 2:

A:namuH B

e shows inferences about whether a new object x will interact with one of
for instance, the dark blue curve shows inferences about whether x will be
ether x will activate one of the B-objects. Object x may belong to category A
ved to interact with any other object (Test 1) and after a single interaction
t the number of old objects increases as more objects are encountered, and
bjects. Model predictions represent probabilities, and human predictions
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model a choice between two hypotheses. The first hypoth-
esis HM asserts that the observed data were generated from
our relational model—in other words, that the data for a gi-
ven condition can be explained in terms of relationships
between some set of latent categories. The ‘‘null hypothe-
sis” H0 asserts that the data were generated from a model
where each object is assigned to its own category—in other
words, that there is no interesting latent structure to dis-
cover. The choice between these two hypotheses depends
on the ratio of their posterior probabilities:

PðHMjRÞ
PðH0jRÞ

¼ PðRjHMÞ
PðRjH0Þ

PðHMÞ
PðH0Þ

: ð3Þ

We assume that the two hypotheses have the same prior
probability: PðRjHMÞ ¼ PðRjH0Þ ¼ 0:5. To compute the like-
lihood PðRjH0Þ we use Eq. (9) in Appendix A, where z is a
partition that assigns each object to its own category. To
compute the likelihood of HM we sum over all possible
partitions:

PðRjHMÞ ¼
X

z

PðRjzÞPðzÞ; ð4Þ

where PðRjzÞ is given by Eq. (9) and PðzÞ is given by Eq. (6).
Fig. 16 shows the relative support for these two hypoth-

eses as the number of objects increases. In all cases the
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Fig. 15. Learning curves for the symmetric regular condition ðA$ BÞ
support for HM increases as more objects are observed,
but the rate of increase varies across the four theories. In
particular, the two regular theories (A! B and A$ B) are
expected to be easiest for participants to learn, since these
are the theories that allow HM and H0 to be discriminated
most easily.

The predictions in Fig. 16 can be understood by inspect-
ing the sorted matrices in Fig. 13. Clean blocks in these fig-
ures represent lawful relationships: in the symmetric
regular case, for example, the white block at the upper left
indicates that A objects never activate A objects, and the
black block at the upper right indicates that A objects al-
ways activate B objects. The theories for the two regular
conditions are equally easy to learn, since the relations R
for these cases can both be organized into 4 perfectly clean
blocks. The asymmetric irregular case is more difficult,
since the sorted matrix shows only 3 perfectly clean
blocks. The symmetric irregular case is most difficult of
all, since it has the fewest number of lawful relationships
(only 2 perfectly clean blocks).
9.5. Results

Given experience with 18 objects, most participants in
the A! B and A$ B conditions successfully learned the
3 6 9 12 15 18
number of objects
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number of objects

Test 1:

Test 2:

Test 1:

Test 2:

A:namuH B

. The inferences plotted are explained in the caption to Fig. 14.



Fig. 16. Support for the hypothesis that there is an underlying relational
theory ðHMÞ vs. a null hypothesis ðH0Þ where each object is assigned to its
own category.
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underlying theories. After the final phase, their
descriptions of how the objects worked almost always
mentioned two categories. One participant wrote that

XFWIKTAON all light up when touching objects
ELHBQRMSDY, but if one box from the first group
touches another from the first group then there is no
light up. If two boxes from the second group touch
[each] other then also there is no light up.
4 Note that there was only a single probe object during each phase, and
that this probe object was either an A-object or a B-object. For this reason,
only half of the model predictions plotted in Figs. 14 and 15 actually
correspond to cases explored during our experiment, and each of the
human curves has half as many points as the corresponding model curve.
Based on these descriptions, we classified each partici-
pant as a theory-learner or a non-learner. Theory-learners
gave descriptions which suggested that they had parti-
tioned the objects into exactly two categories, and 70% or
more of the participants in the A! B and A$ B conditions
met this criterion (Table 1). The way in which participants
grouped the objects on screen confirmed that most of them
had discovered the underlying theory. A common strategy
was to arrange the objects in two rows, one for each
category.

Predictions during the final phase provide further evi-
dence that participants had discovered the regular theories
by the end of the experiment, and suggest that participants
were able to use these theories to support inductive infer-
ences. In the final phase of the A! B condition, Fig. 14 sug-
gests that participants were initially unsure about whether
probe object x was an A-object or a B-object. Observing x
activate one of the B-objects was enough for participants
to realize that x must be an A-object, and to respond
accordingly on Test 2. Responses to the two tests for the
A$ B support a similar conclusion (Fig. 15). Figs. 14 and
15 show average responses, but the responses of individual
participants were also highly correlated with the predic-
tions of our model. In every phase, each participant pro-
vided 8 judgments on a scale from 0 to 10, and our
model generates 8 probabilities in response to the same
8 questions. For each participant, we computed the corre-
lation between human responses and model predictions
across the final two phases (16 judgments in total) and
across all phases (48 judgments in total). Average correla-
tions for the theory-learners and non-learners are shown
in Table 1. Across the final two phases of the experiment,
the average correlations between model predictions and
the responses of the theory-learners exceeded 0.8 in both
conditions.

By the end of the two regular conditions, participants
generated responses similar to the predictions of our mod-
el, and the average learning curves in Figs. 14 and 15 show
that our model also makes accurate predictions about ear-
lier phases in the experiment. As predicted by the model,
participants are initially relatively uncertain about their re-
sponses to both tests, but become more confident once
more objects have been observed.4 Again, responses of indi-
vidual participants were highly correlated with the predic-
tions of our model. Across all phases of the experiment,
average correlations between the responses of individual
theory-learners and model predictions exceeded 0.7 in both
conditions. The verbal descriptions provided by participants
provide further evidence that observations of several objects
were needed to discover the underlying theory. Descriptions
at the start of the first phase rarely used terms like ‘‘group”
or ‘‘class,” and most participants referred only to interac-
tions between specific pairs of objects. One participant
wrote

When C or A touches U, U turns red and there’s a beep.

By the end of the final phase, however, most partici-
pants used terms like ‘‘group,” ‘‘class” or ‘‘lighter-uppers”
in their descriptions.

Although participants successfully learned the two reg-
ular theories, they found the remaining theories more dif-
ficult. Ten of 19 participants in the A$0:5 B condition were
classified as theory-learners, and inductive inferences in
this condition showed a lower correlation with the predic-
tions of our model. The symmetric irregular theory ðA$0:5 BÞ
was even more difficult. Only 1 of 18 participants was clas-
sified as a theory-learner, and inductive inferences were
uncorrelated with the predictions of our model.

Although our model predicts the relative difficulties of
the four theories (Fig. 16), it successfully learns a theory
ðA$0:5 BÞ that humans find very difficult. There are several
reasons why this condition may be easier for our model
than for human learners. Our model is not subject to mem-
ory or attentional limitations, but keeping track of the ob-
jects and relations in these experiments imposes heavy
processing demands on human learners. If the data ob-
served for the first several objects provide strong evidence
for a block structure, people may quickly infer the theory
and use it to encode the remaining observations that they
make. In the A$0:5 B condition, however, several phases are
required before there is strong statistical evidence for the
underlying theory, and memory demands may become
overwhelming before this point is reached. Future work
can explore whether assumptions about processing limita-
tions can allow our model to better predict human re-
sponses, but future studies should also explore variants
of our task that may make it easier for participants to learn
the A$0:5 B theory. For instance, Kemp, Goodman, and Ten-
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enbaum (2008a) describe an alternative theory-learning
paradigm that minimizes memory demands, and that
may allow participants to discover theories like A$0:5 B.

Taken together, the results of Experiment 1 suggest that
our model helps to explain how humans learn simple the-
ories. The most basic result is that people succeed in three
of the four conditions, suggesting that they are able to
learn systems of concepts where each concept is defined
by its relationships to the others. The learning curves in
Figs. 14 and 15 show that participants can use these theo-
ries to make predictions about unobserved relations, and
that these predictions are sensitive to the weight of statis-
tical evidence observed. Finally, the model predicts the rel-
ative difficulties of the four theories we considered, and
suggests that the difficulty of learning a given theory is
determined in part by the amount of statistical evidence
for the categories and relationships specified by the theory.

Although Experiment 1 provides some initial support
for our model, it is natural to ask whether existing models
of categorization might also explain how people learn rela-
tional systems. We designed a second experiment to ad-
dress this question.
10. Experiment 2: relations or features?

As mentioned already, psychologists have developed
many models of categorization, including the contrast
model (Medin & Schaffer, 1978), the generalized contrast
model (Nosofsky, 1986), and Anderson’s rational model
(Anderson, 1991). The most prominent modeling tradition
has focused on a feature-based approach where the cate-
gory assignment for a given object is determined by its fea-
tures. We have argued instead for a relational approach
where the category assignment for an object is determined
by its relationships to other objects.

Although the feature-based approach and the relational
approach seem different on the surface, some careful
thought is needed before deciding whether the apparent
differences are truly fundamental. In particular, it is impor-
tant to consider whether the relational approach can be
converted to a feature-based approach by converting a
set of relations into a set of features. For instance, if a is
the father of b, perhaps we can say that a has two fea-
tures—father, and father of b—and that b also has two fea-
tures—child, and child of a.

Converting relations to features may be acceptable un-
der some circumstances, but this move has several prob-
lematic consequences. First, father of b may not match
our intuitive idea of a feature. Second, systematicity is lost.
A person who knows about the father of ð�; �Þ relation
knows that the relation is either true or false for each pair
of his relatives, but there is no reason why a list of features
that includes the feature father of a must also include fea-
tures like father of b or child of a. Third, compositionality is
lost. A person who knows that the relation father of ða; bÞ is
true knows that the components father of ð�; �Þ, a and b have
the same meaning in this proposition as they do in other
relations such as father of ðb; dÞ and brother of ðb; cÞ. The
relational approach makes these connections transparent,
but the feature-based approach does not explain how com-
plex features can be built from simpler pieces. Finally, con-
verting relations to features makes it difficult to learn
about the structure of any particular relation, and about
the ways in which relations may be linked to one another.
For instance, a model that works directly with a set of kin-
ship relations may be able to discover that the
sibling of ð�; �Þ relation is symmetric and can be defined in
terms of the parent of ð�; �Þ relation, but a model that con-
verts all of these relations to features will find it hard to
match this ability.

The reasons just described provide theoretical grounds
for distinguishing between feature-based and relational
approaches, but this distinction can also be explored
empirically. Throughout we have compared our relational
model to a feature-based approach that converts a relation
to a set of features then applies Anderson’s rational model
of categorization. We designed a second experiment to ex-
plore two cases where our relational model and this fea-
ture-based alternative make very different predictions.
Each case is a setting where learners observe relationships
among one set of objects then make predictions about rela-
tionships between a second set of objects. The critical
question is whether participants can use what they have
learned about the objects in the first set to make inferences
about the objects in the second set. Our relational model
supports this kind of transfer, and predicts that learners
will acquire abstract knowledge that can be carried over
from one set of objects to another. The feature-based mod-
el, however, will only learn about features that are tied to
specific objects in the first set, and predicts that learners
will fail to generalize to the second set of objects.

10.1. Participants

Thirty-eight members of the MIT community partici-
pated for pay. The experiment includes two conditions:
18 participants were assigned to the first condition, and
20 were assigned to the second condition.

10.2. Procedure

The two conditions (the xz condition and the yz condi-
tion) are identical to the A$ B condition of Experiment 1
except that the final phase now includes three tests. At
the beginning of this final phase, 18 objects are on screen,
9 from category A and 9 from category B. Three new objects
(x; y, and z) are now introduced. In the xz condition, x and z
belong to the same category, but y belongs to a different
category. Before seeing any interactions involving the
new objects, participants are asked to predict whether x
will activate z (Test 1). Participants are then asked to touch
x and y together, and to touch y and z together (Fig. 17a). In
both cases, participants observe that these pairs activate
each other. Participants are now given a second test where
they predict whether x will activate z, and whether x and y
will activate old objects from categories A and B. After this
test, participants are instructed to touch y against one of
the old A-objects. In principle, participants now have en-
ough information to infer whether x belongs to category
A or B, and they indicate what they have learned by
responding to a third test. The yz condition is very similar,
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except that z is now a member of the same category as y
rather than x, and participants observe that z and y fail to
activate each other when touched (Fig. 17b).
10.3. Model predictions

Test 2 in Fig. 17 exposes a critical difference between
the relational and feature-based models. By this stage of
the task, learners cannot infer whether any of the novel ob-
jects is an A-object or a B-object, but should be able to de-
cide whether any two novel objects belong to the same
category. In the xz condition, learning the A$ B theory al-
lows our model to recognize that only two possibilities are
likely. Since x and z both activate y, either x and z are A-ob-
jects and y is a B-object, or x and z are B-objects and y is a
A-object. In both cases, however, x and z belong to the
same category, and the model therefore predicts with high
confidence that the two will fail to activate each other
when touched. In contrast, the feature-based model pre-
dicts that x will activate z with probability greater than
0.5. Under this model, learning about relations between
new objects is equivalent to learning about entirely new
features, and none of the observations made in previous
phases is directly relevant. The predictions of the feature-
based model are driven by only two pieces of information:
the observation that x and y activate each other, and the
observation that z and y activate each other. Since all trials
involving x and z have produced activations, the model
makes a weak prediction that x and z are likely to activate
each other.
Predictions about the yz condition show a similar differ-
ence between the models (Fig. 17b). Observing that x acti-
vates y and that z fails to activate y is enough for our model
to conclude that x belongs to one category and that y and z
belong to the other. Our model therefore predicts that x
will activate z, but the feature-based model makes no such
prediction.

Notice that the critical question in Test 2 is the same in
both conditions: will x activate z? The relational model
provides very different answers in the two conditions,
and predicts that responses to Test 2 will differ across con-
ditions. The feature-based model, however, predicts that
responses to Test 2 will be similar across conditions.

10.4. Results

In both conditions, most participants appeared to learn
the A$ B theory, which replicates our result from Experi-
ment 1. Participants were classified as ‘‘theory-learners” if
the correlation between their responses and the correct re-
sponses to phases 4 and 5 exceeded 0.5. Thirteen or more
participants met this criterion in each condition, and all
further analyses are restricted to this group of theory-
learners.

Responses to the critical question in Test 2 of phase 6
are summarized in Table 2. The counts in this table indi-
cate how many participants inferred that x was likely to
activate z. As predicted by the relational model, most par-
ticipants in condition xz infer that x will fail to activate z,
but the opposite result is true for condition yz. Binomial
tests indicate that the result for the xz condition is statisti-



Table 2
Inferences about whether x will activate z in Test 2 of Experiment 2.
Participants have been organized into two groups depending on whether
their response is greater than 5 on a scale from 0 to 10.

xz condition yz condition

pðx activates zÞ 6 0:5 11 4
pðx activates zÞ > 0:5 2 10
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cally significant (p < 0:05, one-sided), and that the result
for the yz condition is marginally significant (p ¼ 0:09,
one-sided). Table 2 also suggests that responses to the crit-
ical test question were different across the two conditions.
As predicted by the relational model, participants in the yz
condition were more likely to predict that x would activate
z. A Fisher’s exact test indicates that this result is statisti-
cally significant (p < 0:01, one-sided).

Mean responses to all questions in Test 2 of phase 6 are
shown in Fig. 17. In condition xz, the average response pro-
file is qualitatively similar to the predictions of our model:
participants predict that x is unlikely to activate z, but are
uncertain about the remaining questions in Test 2. Fig. 18
shows average responses after participants are partitioned
into three groups depending on whether their response to
the critical question in Test 2 is greater than, less than, or
equal to 5 on a 0–10 scale. Although there are individual
differences, the largest group in both conditions matches
the predictions of the relational model.

Consider now the responses to the third test in phase 6.
Casual inspection of Fig. 17 suggests that the relational
model accounts better for responses in the xz condition,
but that the feature model accounts better for responses
in the yz condition. Fig. 18, however, indicates that the
average response in the yz condition is somewhat mislead-
ing. When the participants are partitioned into the same
groups used to analyze Test 2, the responses of the largest
group match the prediction of the relational model in both
conditions. Overall, then, our results indicate that the fea-
ture-based model may predict the responses of a small
minority, but that the majority of participants provide re-
sponses consistent with the relational model.

Our second experiment demonstrates that learners
trained on one set of objects make confident inferences
about a second set of objects, suggesting that the knowl-
edge they acquired is not tied to specific objects in the first
set. Our relational model supports generalizations of this
kind, but a more conventional feature-based approach fails
to transfer its knowledge to situations involving new ob-
jects. Our results therefore suggest that theories are better
treated as systems of relations than collections of features,
and support the idea that learners maintain and reason
about entire systems instead of converting these systems
into collections of independent features.
11. General discussion

Our work is motivated by three general questions: what
are theories, how do they support inductive inference, and
how are they acquired? We approached these questions by
working with a space of very simple theories. Each of these
theories specifies the categories that exist in a domain and
the relationships that exist between these categories. We
showed that theories in this family can be characterized
as generative models that make inductive predictions
about unobserved interactions between entities. Statistical
inference can be used to compute these predictions, and
statistical inference also explains how these theories can
be acquired in the first place. We assume that a theory-
learner starts out with a hypothesis space including many
possible theories, and a prior distribution over this space
that favors the simpler theories. Theory discovery is a mat-
ter of choosing the element in this space that maximizes a
tradeoff between fit to the data and a priori plausibility.

We analyzed both behavioral data and data inspired by
real-world problems that humans must solve, and the re-
sults suggest that our model discovers interpretable theo-
ries across a broad range of domains. In particular, our
results show that that the model can capture knowledge
about folk biology, folk sociology, and folk physics. In the
realm of folk biology, we showed that the model discovers
a theory that specifies relationships between animal cate-
gories and clusters of features. In the realm of folk sociol-
ogy, we showed that the model discovers a theory of the
kinship structure of an Australian tribe. Finally, our behav-
ioral experiments were inspired by simple physical theo-
ries about interactions between entities like magnets or
electric charges.

11.1. Theory-laden data

All computational models rely on input data—in our
case, observations of relationships between entities. We
have discussed how relational data can support theory dis-
covery, but it is important also to consider whether sophis-
ticated theoretical knowledge must already be implicit in
the input. The data sets we considered rely on prior theo-
retical knowledge to different extents. The kinship data
and the causal interaction data are based on direct obser-
vations: for example, a child can observe how person 1 re-
fers to person 2, and the participants in our experiments
could observe whether object 1 activated object 2 upon
contact. The animal data represent an intermediate case—
some of the features in this data set are directly observable
(e.g. ‘‘has a bulbous body shape”), but others (e.g. ‘‘smart”)
seem rather more complex. The biomedical data rely on
prior theoretical knowledge to the greatest extent. The in-
put data include entities (e.g. ‘‘amphibian” and ‘‘mental
dysfunction”) and relations (e.g. ‘‘causes,” ‘‘complicates”)
that cannot be directly observed, and are defined in part
by the roles that they play in theories.

Although the kinship data and the causal interaction
data appear more primitive than the other cases we con-
sider, even these two data sets assume a considerable
amount of background knowledge. Note, for example, that
when modeling our behavioral tasks, we did not supply our
model with information about the location of the objects
on the screen, but instead used an input matrix that high-
lights the information most relevant to the theory-learning
problem. Some researchers have argued that a theory is
characterized in part by the phenomena that it explains
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(Carey, 1985). In each of our analyses we gave our model a
good chance of success by providing it with a coherent set
of observations to explain.

Our general approach is consistent with the common
claim that there are no theory-neutral observations
(Hanson, 1958; Kuhn, 1970). Our contribution is not to ex-
plain how a learner who is entirely innocent of theoretical
knowledge might acquire her first intuitive theory. Instead,
our work helps to explain how a learner who already has
some amount of knowledge might be able to acquire more.
In each case we considered, our model acquires concepts
and relationships between these concepts that are not di-
rectly present in the input data. The input data may be the-
ory-laden to a greater or lesser extent, but in each case our
model goes beyond the theories that are implicit in the in-
put representation.

Future models of theory discovery will always need to
rely on background knowledge of some kind, but future
work can explore settings where the amount of pre-
existing knowledge is minimized. For example, to cap-
ture the idea that theory-learners often confront prob-
lems where the relevant data are not clearly identified
in advance, we can provide our model with a noisy set
of relations, only some of which are relevant to an
underlying theory. Since we take a probabilistic ap-
proach, our model should be robust to noise, and Kemp,
Tenenbaum, Griffiths, Yamada, and Ueda (2006) describe
analyses of synthetic data which support this conclusion.
Future modeling and experimental work can explore this
area in more detail, and can aim to characterize theory
discovery in settings that more closely resemble the
problems faced by human learners.
11.2. Related work

Although there have been few previous attempts to
model the discovery of intuitive theories, our approach
builds on previous work in several fields.

11.2.1. Psychology
Psychologists have developed many models of categori-

zation, including the contrast model (Medin & Schaffer,
1978), the GCM (Nosofsky, 1986), and Anderson’s rational
model (Anderson, 1991). Unlike our approach, most of
these models focus on features rather than relations. A rep-
resentative example is Anderson’s rational analysis of cat-
egorization, which takes a matrix of objects and features as
its input and organizes the objects into categories so that
members of the same category tend to have similar pat-
terns of features. Our model extends this idea to relational
data, and organizes objects into categories so that mem-
bers of the same category tend to be related in similar
ways to other objects in the domain.

Although most models of categorization focus on fea-
tures, several authors have discussed the difference be-
tween relational categories and feature-based categories.
Goldstone (1996) distinguishes between isolated and
interrelated categories: isolated categories can be under-
stood in isolation, but interrelated categories depend on
other categories for their meaning. Closer to our work are
proposals about role-governed categories, or categories de-
fined by the roles they play in a system of relations (Gent-
ner & Kurtz, 2005; Goldstone & Rogosky, 2002; Jones &
Love, 2007; Markman & Stilwell, 2001). For example, pri-
vate may be defined by its relationships to other military



5 AI researchers often discuss intuitive theories—consider, for example,
the extensive literature on naive physics (Hayes, 1985)—but models of
theory discovery have tended to focus on scientific theories.
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concepts—in particular, privates take orders from corporals
and sergeants (Markman & Stilwell, 2001). Our work is
motivated by similar intuitions, and our approach can be
viewed as a model for learning role-governed categories.
Previous models have addressed related issues. Goldstone
and Rogosky (2002) describe a model that identifies pairs
of concepts which play corresponding roles in two concep-
tual systems, and Jones and Love (2007) describe a model
where the similarity of two concepts increases if they play
similar relational roles.

Although role-governed categories have been discussed
by several authors, there are few experimental studies that
explore how these categories might be learned. Other than
our own experiments, the most relevant study was carried
out by Larkey, Narvaez, and Markman (2004), who ex-
plored a setting where objects varied in their perceptual
features (e.g. some were blue and others orange) and in
their relational roles (some objects pushed others). The
majority of participants categorized these objects based
on their roles rather than their features, but additional
studies are needed to explore the tradeoff between fea-
tures and relations in more detail.

A role-governed category is defined by its role in a rela-
tional system, but accounts of relational categorization of-
ten focus on cases where a single category corresponds to a
structured relational system (Gentner & Kurtz, 2005;
Kittur, Hummel, & Holyoak, 2004; Rehder & Ross, 2001;
Tomlinson & Love, 2006). Robbery, for example, can be
viewed as a system that specifies a relationship between
a thief, a victim, and the goods that were stolen (Gentner
& Kurtz, 2005). Some authors have argued that many cate-
gories correspond to causal systems: for instance, bird may
be represented as a causal network which specifies that
flying and living in trees are causally related (Ahn, Kim,
Lassaline, & Dennis, 2000; Rehder, 2003). Our model fo-
cuses on role-governed categories, and these categories
are importantly different from categories that correspond
to relational systems in their own right, but both kinds of
categories depend critically on relational information.

Models of analogy also emphasize the importance of
relations (Falkenhainer et al., 1989; Goldstone & Rogosky,
2002; Holyoak & Thagard, 1989; Hummel & Holyoak,
2003), and psychologists have argued that analogy and cat-
egorization may be intimately linked (Gentner & Markman,
1997). The learning problem we considered, however, is
rather different from the problem typically addressed by
models of analogical reasoning. Most of these models at-
tempt to establish a mapping between two relational sys-
tems: for example, a mapping between the solar system
and the atom. We focused on settings where a learner must
construct a single relational system by discovering catego-
ries and the relationships between them. The structure-
mapping engine, for instance, does not seem capable of
converting the UMLS data we analyzed into a relational
system like the network in Fig. 9.

Although analogical models do not naturally address
the problem of theory discovery, they may be able to han-
dle some of the tasks explored in our behavioral experi-
ments. When asked to make inferences about the causal
powers of a new object, for example, an analogical model
might rely on a mapping between the relations observed
for the new object and the relations observed for previous
objects. In Test 2 of Experiment 1, for example, a learner
may be able to predict unobserved interactions involving
the new object x by using an analogy that maps object x
onto one of the previously observed objects. Some account
along these lines may be possible, but it is not clear
whether existing analogical models will account for all of
our results. In particular, it is not clear whether existing
models will account for the finding that inferences become
more confident as more blocks have been observed
(Figs. 14 and 15), since a perfectly good analogy can be
established after observing the three blocks available in
phase 1.
11.2.2. AI, machine learning and statistics
Several fields have developed models of relational

learning that are not explicitly presented as models of the-
ory acquisition but can be interpreted in this fashion. Our
work is related most closely to the stochastic blockmodel
(Nowicki & Snijders, 2001; Wang & Wong, 1987), an ap-
proach used by statisticians and sociologists to discover
structure in social networks. More recently, machine learn-
ing researchers have developed systems that discover
structure in large relational data sets (Getoor, Friedman,
Koller, & Taskar, 2002; Kok & Domingos, 2005), and applied
them to citation databases (Taskar, Segal, & Koller, 2001),
social networks (Kubica, Moore, Schneider, & Yang, 2002),
and genomic data (Segal et al., 2003).

There are several formal approaches in AI and machine
learning that explicitly address the problem of theory dis-
covery. Most of these accounts focus on scientific theories:
for example, DENDRAL has been used to understand the
structure of chemical compounds, the BACON system
(Langley, Simon, Bradshaw, & Zytkow, 1987) has been used
to model the discovery of the ideal gas law, Ohm’s law and
the law of conservation of momentum, and inductive logic
programming has been applied to problems in chemistry
(King, Muggleton, Srinivasan, & Sternberg, 1996) and
genetics (King et al., 2004).

Compared to most previous work on relational learning
and scientific theory discovery, our work is different in two
key respects. First, we have focused on intuitive theories
rather than scientific theories.5 Most of the data sets we
considered are motivated by everyday problems that chil-
dren solve over the course of development, and we also
showed that our model accounts for data collected in two
behavioral experiments. Second, we presented a computa-
tional-level analysis of theory discovery (Anderson, 1991;
Marr, 1982). Langley et al. (1987) focus on algorithmic ac-
counts, and the complicated search heuristics used by these
algorithms often obscure the computational theory (Marr,
1982) that is implicitly assumed. Understanding the process
by which people construct intuitive theories is an important
challenge for the future, but it is valuable first to abstract
away the details of this process and to attempt to under-
stand the computational problem of theory discovery.
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Inductive Logic Programming (ILP) is an alternative ap-
proach to theory discovery that does qualify as a computa-
tional theory in Marr’s sense (Muggleton & De Raedt,
1994). ILP systems work with theories represented as logic
programs, or sets of definite clauses. Given a set of obser-
vations, ILP systems attempt to find the simplest theory
that accounts for the data, and ILP can be given a principled
formulation using the Minimum Description Length (MDL)
principle (Conklin & Witten, 1994). ILP systems have been
applied to scientific problems in biology and chemistry,
and the basic idea behind ILP can also help to explain
how intuitive theories are learned (Kemp et al., 2008a).

The MDL principle is closely related to Bayesian infer-
ence (Chater, 1996; MacKay, 2003), and the ILP approach
to theory discovery is similar in spirit to the approach we
presented. There are some important practical consider-
ations, however, which mean that off-the-shelf ILP systems
are unlikely to work well on the problems we considered.
In order to match the performance of our model, an ILP
system must support predicate invention (Stahl, 1993),
and must rely on a probabilistic semantics that allows it
to deal gracefully with noise and exceptions. Predicate
invention is crucial since part of our goal is to discover no-
vel concepts, and new predicates will be needed to refer to
these concepts. Although there are ILP systems that handle
predicate invention, and there have been attempts to com-
bine logic programs with probabilities (De Raedt & Ker-
sting, 2003), both technologies are relatively immature.
The reason why our model can improve on current ILP sys-
tems is the familiar tradeoff between complexity and lear-
nability. Since our model only considers relatively simple
theories, we can give a principled account of how these
theories might be acquired. ILP systems, however, must
consider a much bigger space of theories, and learning
these theories is substantially more difficult.

11.3. A solution to Fodor’s puzzle?

Concept learning and theory learning are intimately re-
lated, and our model helps to address a puzzle about con-
cept learning that has become known as Fodor’s puzzle
(Fodor, 1975; Laurence & Margolis, 2002). A standard view
of concept learning holds that people acquire new concepts
by combining concepts that they already possess (Laurence
& Margolis, 2002). Under this view, any given concept is
either unlearned (i.e. innate) or structured (i.e. constructed
out of more primitive concepts). Fodor argues that most
lexical concepts are unstructured, and concludes that most
lexical concepts are unlearned primitives. The claim that
concepts like carburetor, coal, and electron are not learned
is highly counterintuitive, and has provoked a great deal of
critical discussion (Laurence & Margolis, 2002; Putnam,
1991).

Block (1986) has proposed a solution to Fodor’s puzzle
that relies on conceptual role semantics, or the idea that
concepts derive their meaning from the roles that they
play in systems of concepts. Conceptual role semantics al-
lows for the possibility that all of the concepts in a novel
system can be simultaneously acquired, where the content
of each novel concept depends on its relationships to the
other concepts in the system. Learning of this kind pro-
vides a counterexample to the claim that learned concepts
must be compositions of pre-existing concepts, and there-
fore undermines a key premise in Fodor’s argument.

Although conceptual role semantics is directly relevant
to Fodor’s puzzle, this approach has been criticised for
being incomplete on several grounds (Fodor & Lepore,
1991; Laurence & Margolis, 2002), and Block (1998) him-
self has written that conceptual role semantics is ‘‘more
of a framework for a theory than an actual theory” (p.
656). An important element missing from Block’s response
to Fodor is a concrete computational account of how sys-
tems of concepts might be collectively learned. Most exist-
ing models of concept learning (Anderson, 1991; Medin &
Schaffer, 1978; Nosofsky, 1986) will not qualify, since they
assume that new concepts are composed out of pre-exist-
ing concepts (often called ‘‘features”). Unlike these previ-
ous models, our work supports the conceptual role
semantics resolution of Fodor’s puzzle by showing how en-
tire systems of novel concepts can be learned.

Even if humans learn entire systems of novel concepts,
it might be questioned whether our model truly accounts
for this learning. The model begins with a prior distribu-
tion over a space of possible theories, and learning is a
matter of identifying the element in this space that best ac-
counts for the observed data. Since the hypothesis space is
defined before any data are observed, in one sense each
possible theory is available from the start, together with
all of the concepts that it specifies. This view of our model
is partly true and partly false, and to explain why it is nec-
essary to distinguish between two very different interpre-
tations of the term ‘‘hypothesis space.”

From a computational perspective (Marr, 1982), every
model of learning relies on a fixed hypothesis space that
represents the abstract potential of the model. If we imag-
ine all streams of input which the model could possibly re-
ceive, the hypothesis space includes all states of
knowledge which the model could possibly reach. Often,
however, psychologists prefer to reserve the term ‘‘hypoth-
esis space” for the set of hypotheses that a learner actively
entertains at a given moment. If we follow this second
interpretation, than our model is not committed to a pre-
defined space of hypotheses. Note, for example, that our
implementation of the model does not enumerate and con-
sider the set of all possible theories—this set would be far
too large to handle. Instead, we developed a method for
searching the space of possible theories, and this method
will often end up in regions of the space very different from
the region where it began (see Fig. 3).

11.4. Psychologically plausible implementations

Although we have not focused on the cognitive pro-
cesses that support theory discovery, understanding
how humans navigate the space of possible theories is
an important direction for future work. Since our model
builds on the formal machinery used by Anderson’s ra-
tional analysis of categorization, previous attempts to de-
velop psychologically plausible implementations of that
model (Anderson, 1991; Sanborn et al., 2006) can be ex-
tended to develop similar implementations of our model.
In particular, we can develop a version of our model
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where the entities are observed one by one, and a single
set of categories is maintained at each stage. Every time
a new entity is observed, the entity is assigned to the
category that best explains the relations in which it
participates.

Eventually we would like to understand theory discov-
ery at all of Marr’s (1982) levels, but the most direct path
towards this goal probably begins with further work at
the level of computational theory. We have argued that
the relational systems discovered by our model deserve
to be called theories, but these representations capture
only some aspects of intuitive theories. An immediate goal
is to develop models of theory discovery that account for a
greater proportion of theory-like knowledge than our mod-
el is able to capture.

11.5. Future directions

In some respects theory discovery is harder for humans
than our model, but in other respects it may be substan-
tially easier. We have focused on the problem of learning
theories from raw relational data, but human learners are
often directly provided with ‘‘theory fragments,” or com-
ponents of the theory that they are trying to learn. The
average physics student, for instance, probably learns more
from theory fragments provided by her teacher than from
observations of raw experimental data. Although we have
not modeled the cultural transmission of theory fragments,
our model should be able to incorporate direct statements
about the theory it is attempting to discover. Consider
again the symmetric activation theory ðA$ BÞ in our first
experiment. The model can take advantage of any state-
ment that places constraints on the partition z and the
parameter matrix g to be learned: for example, statements
like ‘‘there are two categories,” or ‘‘this object and that ob-
ject belong to the same category,” or ‘‘there are two catego-
ries and objects from one category only light up objects
from the other category” can be used to restrict the
hypothesis space that the model must consider. Since ex-
plicit instruction plays a role in so many cases of develop-
mental interest, modeling learning when theory fragments
and raw data are both available is an important direction
for future work.

11.5.1. Learning theories at multiple levels of abstraction
The theories discovered by our model are similar in

many respects to framework theories (Wellman & Gelman,
1992), but future models should explore the acquisition of
theories that are best described as specific theories. A nat-
ural first step is to embed our approach in a hierarchical
model that also includes representations at lower levels
of abstraction. For instance, the framework theory in
Fig. 1 should help a learner who is trying to discover spe-
cific theories that capture the relationships between indi-
vidual chemicals, diseases, and symptoms (Tenenbaum &
Niyogi, 2003). The framework theory rules out any specific
theory where a symptom (e.g. coughing) causes a disease
(e.g. lung cancer), and allows a learner to focus on more
plausible theories (e.g. the theory that lung cancer causes
coughing). Similarly, the framework theory in Fig. 11a is
useful when developing a specific theory that captures
the kinship relationships between the individuals in a gi-
ven family.

A hierarchical Bayesian approach (Gelman, Carlin, Stern,
& Rubin, 2003) can be used to develop models that acquire
both framework theories and specific theories. Suppose
that the specific theories of interest can be represented
using causal Bayesian networks. One of these networks,
for instance, may specify which diseases cause which
symptoms. Mansinghka, Kemp, Tenenbaum, and Griffiths
(2006) develop a hierarchical Bayesian approach that uses
our relational model to place constraints on the arrows in a
Bayesian network. For instance, knowing that symptoms
cause diseases allows this hierarchical model to search
for networks where each arrow extends from a specific dis-
ease to a specific symptom. Kemp, Goodman, and Tenen-
baum (2007) show how a similar approach can be used
to simultaneously learn abstract causal schemata and spe-
cific causal models. Hierarchical approaches like these can
also be explored when the representations to be learned
are more sophisticated than causal Bayes nets or the rela-
tional systems considered by our model.

11.5.2. Towards richer theories
The relational representations considered by our model

provide a useful starting point for models of theory discov-
ery, but it will be important to work towards representa-
tions that can account for more of the content of
intuitive theories. There are several natural extensions of
our model that will discover more complex theories but
should still remain relatively tractable. As previously men-
tioned, the animals in the biological data (Fig. 7), the enti-
ties in the biomedical data (Fig. 8) and the individuals in
the kinship data (Fig. 11) can be usefully organized into
trees. In the kinship case, for instance, the tree may first di-
vide the individuals into the four kinship sections, then
split them up further according to age and gender. Roy,
Kemp, Mansinghka, and Tenenbaum (2007) developed an
extension of our model which assumes that relational data
are generated over an underlying tree, and can discover the
tree that best accounts for a given data set. A factorial mod-
el is the natural next step. This factorial model might be
able to discover something like our ‘‘ground truth” parti-
tion for the kinship data: a system where the 16 categories
are specified by three underlying partitions, one based on
kinship section, one based on gender, and the third based
on age. A final possible extension is a model that can dis-
cover multiple partitions of a given set of objects (Kok &
Domingos, 2007). Shafto, Kemp, Mansinghka, Gordon, and
Tenenbaum (2006) describe a model for feature data that
partitions the features into categories, and discovers a sep-
arate partition of the objects for each of the feature catego-
ries introduced. The same idea can be applied more
generally: given an n-place relation, we can choose some
ordering of the dimensions, and discover a high-level par-
tition of the first dimension, and separate lower-level par-
titions of the remaining dimensions for each category in
the high-level partition.

Ultimately it will be necessary to develop models that
rely on richer representations than those considered here.
Intuitive theories of kinship, for example, are likely to call
for logical representations, and logical theories are also
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useful for capturing abstract causal knowledge (Griffiths &
Tenenbaum, 2007). Existing methods for learning logical
theories provide a useful starting point (Kemp et al.,
2007; Kemp, Goodman, & Tenenbaum, 2008b; Muggleton
& De Raedt, 1994), but will need to be supplemented with
effective techniques for predicate invention and for proba-
bilistic inference over logical representations. Much work
remains to be done, but eventually psychologists should
aim to develop models that account for the acquisition of
rich and complex theories.
12. Conclusion

We presented a model that discovers simple theories, or
systems of related concepts. Our model simultaneously
discovers the concepts that exist in a domain, and the laws
or principles that capture relationships between these con-
cepts. Most previous models of concept formation are able
only to discover combinations of pre-existing concepts.
Unlike these approaches, our model can discover entire
systems of concepts that derive their meaning from their
relationships to each other.

Our model demonstrates that statistical inference can
help to explain the acquisition of highly-structured repre-
sentations: representations as sophisticated as intuitive
theories. Theory discovery sometimes appears mysterious
because many aspects of a theory appear to depend on
each other: theoretical laws are defined using theoretical
concepts, which in turn are defined by their participation
in theoretical laws. Our model helps to dispel the sense
of mystery by explaining how all of the pieces of a theory
can be acquired together.

The theories we considered are all extremely simple,
but future work can explore the acquisition of more
sophisticated theories. Explaining real-world examples
of theory acquisition is undoubtedly a challenging chal-
lenging problem, but many of the technical tools needed
to address this problem may already exist. This paper
has argued that Bayesian inference can explain the
acquisition of richly-structured representations, and clas-
sic approaches to knowledge representation (Davis,
1990; Rumelhart, Lindsay, & Norman, 1972) have led to
many proposals about how intuitive theories should be
represented. Over the next decade it may prove possible
to bring these insights together and to develop a com-
prehensive formal account of the acquisition of intuitive
theories.
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Appendix A. Theory acquisition and use

We previously introduced our model in a setting where
R is a binary relation over a single set of entities. Using sta-
tistical notation, the model can be written as follows:

zjc � CRPðcÞ
gðA;BÞja;b � Betaða;bÞ

Rði; jÞjz;g � Bernoulliðgðzi; zjÞÞ;
ð5Þ

where A;B 2N.
The first line indicates that z is drawn from a Chinese

Restaurant Process (Aldous, 1985) with hyperparameter
c. Imagine building a partition z from the ground up: start-
ing with a category containing a single entity, and adding
entities one by one until all the entities belong to catego-
ries. Under the CRP, each category attracts new members
in proportion to its size. The distribution over categories
for entity i, conditioned on the categories of entities
1; . . . ; i� 1 is

pðzi ¼ Ajz1; . . . ; zi�1Þ ¼
nA

i�1þc nA > 0
c

i�1þc A is a new category

(
ð6Þ

where zi is the category assignment for entity i and nA is
the number of entities already assigned to category A.
The CRP is exchangeable: the order in which entities are as-
signed to categories can be permuted without changing the
probability of the resulting partition. PðzÞ can therefore be
computed by choosing an arbitrary ordering and multiply-
ing conditional probabilities specified by Eq. (6). Since new
entities can always be assigned to new categories, our
model effectively has access to a countably infinite collec-
tion of categories. In recognition of this property, we we re-
fer elsewhere to our model as the Infinite Relational Model
(Kemp et al., 2006).

The second line in Eq. (5) indicates that the entries in g
are drawn independently from a Beta distribution with
hyperparameters a and b. If variable x is drawn from this
Beta distribution, then

pðxÞ ¼ Cðaþ bÞ
CðaÞCðbÞ x

a�1ð1� xÞb�1
; ð7Þ

where Cð�Þ is the gamma function. For all applications in
this paper we use a symmetric prior and set a ¼ b. The final
line in Eq. (5) indicates that entry Rði; jÞ is generated by
tossing a coin with bias gðzi; zjÞ.

To formulate the most general version of our model we
extend Eq. (5) to relations of arbitrary arity. Consider an m
dimensional relation R involving n different types, where Tj

is the jth type, and zj is a vector of category assignments for
Tj. Let dk be the label of the type that occupies dimension k
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of the relation: for example, the three place relation
R : T1 � T1 � T2 ! f0;1g has d1 ¼ d2 ¼ 1, and d3 ¼ 2. As be-
fore, the probability that the relation holds between a
group of objects depends only on the categories of those
objects:

Rði1; i2; . . . ; imÞjz1; z2; . . . ;zn;g� Bernoulliðgðzd1
i1
;zd2

i2
; . . . ;zdm

im
ÞÞ:

In settings with multiple relations we introduce a parame-
ter matrix gj for each relation Rj. Given this generative
model, we aim to discover the category assignments fzjg
and the parameters fgjg with maximum posterior proba-
bility given the data (Eq. (2)).

To discover the relational system that best explains a gi-
ven data set, we initially integrate out the parameter
matrices fgjg and search for the category assignments with
maximum posterior probability. Once the category assign-
ments are known it is simple to compute the most likely
matrices fgjg given these assignments and the original
data. For simplicity, we describe our search algorithm for
the case when there is a single binary relation R defined
over a single type T . The techniques we describe extend
naturally to situations where there are multiple types
and relations. Since we use conjugate priors (i.e. Beta pri-
ors) on the entries in g, it is simple to compute
PðRjzÞ ¼

R
PðRjg; zÞpðgÞdg:

pðRjz;gÞ ¼
Y

A;B2N
gðA;BÞmðA;BÞð1� gðA;BÞÞ �mðA;BÞ ð8Þ

pðRjzÞ ¼
Y

A;B2N

BðmðA; BÞ þ a; �mðA; BÞ þ bÞ
Bða; bÞ ; ð9Þ

where mðA;BÞ is the number of pairs ði; jÞ where i 2 A and
j 2 B and Rði; jÞ ¼ 1; �mðA;BÞ is the number of these pairs
where Rði; jÞ ¼ 0, and Bð�; �Þ is the Beta function. If some en-
tries in R are missing at random, we can ignore them and
maintain counts mðA;BÞ and �mðA; BÞ over only the observed
values.

Since we integrate out g, inference can be carried out
using Markov chain Monte Carlo methods to sample from
the posterior on category assignments PðzjRÞ / PðRjzÞPðzÞ
(Jain & Neal, 2004; Kemp, Griffiths, & Tenenbaum, 2004)
or by searching for the mode of this distribution. For most
applications in this paper (Figs. 7–9 and 11) we are inter-
ested only in the relational system that best explains the
available data, and we search for the maximum a posteriori
partition z using hill-climbing with restarts. We find that
this algorithm works well when the partition used to ini-
tialize each restart contains only one category.
Table A1
Details of the analyses reported in this paper. We used hill climbing to find the b
Monte Carlo methods to generate model predictions about our two experimen
hyperparameters for each MCMC simulation were set to 1.

Dataset Algorithm Iterations

Biological Hill-climbing 3000
UMLS Hill-climbing 3000
Alyawarra Hill-climbing 3000
Experiments 1 and 2 MCMC 2000
Our hill-climbing algorithm uses operations that move
an object from one cluster to another, split a cluster, or
merge two clusters. The goal of our model can be under-
stood intuitively by representing the relation R as an adja-
cency matrix (Fig. 3). Our search procedure tries to shuffle
the rows and columns of this matrix so that it assumes a
clean block structure. The same idea applies to relations
with more than two dimensions: Fig. 5b shows a ternary
relation, and here the aim is to shuffle the dimensions so
that the matrix takes on a three dimensional block struc-
ture. Fig. 5c shows two relations involving two types each.
The goal is again to create matrices with clean block struc-
tures, but now the partition for T1 must be the same wher-
ever this type appears.

When searching for the partition that maximizes PðzjRÞ,
we avoid free parameters by learning the hyperparameters
c and a for each data set (recall that we set b ¼ a). We use
an exponential prior with parameter 1 on c, and an impro-
per prior pðaÞ / a�5

2 . There is a separate hyperparameter c
for each type of entities, and we assume that all of these
variables are independent. The hyperparameters discov-
ered are shown in Table A1. The a values chosen by the
model are smaller for the UMLS data and for the Alyawarra
data than the biological data, indicating that these first two
data sets have a cleaner block structure than the biological
data. The c values chosen are largest for types that are or-
ganized into a relatively large number of categories. For in-
stance, the 85 features in the biological data are organized
into 34 categories, and the c value for this type is corre-
spondingly high.

So far we have seen how the category assignments z can
be discovered given the raw data in R. Given z, it is
straightforward to recover the matrix g which specifies
how the categories in z relate to each other. The maximum
a posteriori value of gðA;BÞ given z and R is
mðA;BÞ þ a
�mðA; BÞ þmðA;BÞ þ aþ b

; ð10Þ
where mðA;BÞ and �mðA;BÞ are defined as for Eq. (9).
Our approach to the problem of theory acquisition can

now be sharply formulated. A theory is a pair T ¼ ðz;gÞ,
and the theory that best accounts for the observed data
is the theory that maximizes pðTjRÞ. Our approach to the
problem of theory use can be similarly formulated. Sup-
pose that the data R include missing entries. A theory T
makes predictions about the values of these missing en-
tries: for example, if Rði; jÞ is unobserved,
est relational system for each of the first three data sets, and Markov chain
ts. Hyperparameters for the first three data sets were learned, and the

a c

0.35 Animals: 3.0 Features: 10.4
0.01 Entities: 2.7 Predicates: 6.5
0.04 People: 3.2 Kin terms: 8.1
1 Objects: 1



Table B1
Glosses given by Denham (2001) for the 26 kinship terms in Fig. 11.
F = father, M = mother, B = brother, Z = sister, S = son, D = daughter,
H = husband, W = wife, E = elder, Y = younger, fs = female speaker,
ms = male speaker. For example, Adiadya refers to a classificatory younger
brother (YB) or younger sister (YZ).

Abmarliya MB, SWB (ms)
Aburliya FM/FMB, FMBSD/FMBSS, ZSS/ZSD (ms), SS/SD (fs)
Adardiya MF/MFZ, DS/DD, BDS/BDD (fs)
Adiadya YB/YZ
Adniadya MBS
Agniya F
Aidmeniya MMBSS/MMBSD, ZDS/ZDD (ms), DS/DD (fs)
Aiyenga ‘‘Myself”
Aleriya S/D (ms), BS/BD (fs)
Algyeliya FZD/MBD
Amaidya M, SW (ms)
Amburniya WB/ZH
Andungiya HZ/BW (fs)
Aneriya BWM/DHZ (fs)
Angeliya FZS/MBS
Agenduriya ZS/ZD (ms), rare term for biological sister’s child
Anguriya EZ
Anowadya W/MMBDD (ms), H/MFZDS (fs)
Anyaina MM/MMB, MMBSS/MMBSD, ZDS/ZDD (ms), DS/DD

(fs)
Arengiya FF/FFZ, SS/SD (ms), BSS/BSD (fs)
Awaadya EB
Aweniya FZ, FMZD
Gnaldena YZ, rare term for biological younger sister
Muriya MMBD/MMBS, WM/WMB (ms), ZDH/ZDHZ (ms)
Umbaidya S/D (fs), ZS/ZD (ms), FMBS/FMBD
Undyaidya WZ (ms), rare term used as reciprocal for Amburniya
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PðRði; jÞ ¼ 1jT;RÞ ¼ PðRði; jÞ ¼ 1jTÞ ð11Þ

¼ mðzi; zjÞ þ a
�mðzi; zjÞ þmðzi; zjÞ þ aþ b

: ð12Þ

Instead of committing to a single theory and using it to
predict unobserved relationships, a fully Bayesian learner
should consider the predictions of all possible theories,
weighting each one by its posterior probability:

PðRði; jÞ ¼ 1jRÞ ¼
Z

PðRði; jÞ ¼ 1jTÞpðTjRÞdT: ð13Þ

The model predictions in Figs. 14, 15 and 17 were com-
puted by sampling from the posterior PðzjRÞ and using
these samples to approximate Eq. (13). We ran a separate
simulation for each test in each phase of each experiment.
Each simulation included 2000 iterations, of which 200
were discarded as burn-in, and both hyperparameters (a
and c) were set to 1. The source code for our model is avail-
able at www.charleskemp.com, and the details in Table A1
should allow our results to be reproduced.

Appendix B. Alyawarra Kinship terms

See Table B1.
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