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Abstract

Raven’s Progressive Matrices (Raven, Raven, & Court, 1998)
is one of the most prevalent assays of fluid intelligence; how-
ever, most theoretical accounts of Raven’s focus on producing
models which can generate the correct answer but do not fit hu-
man performance data. We provide a computational-level the-
ory which interprets rule induction in Raven’s as Bayesian in-
ference. The model computes the posterior probability of each
rule in the set of possible rule hypotheses based on whether
those rules could have generated the features of the objects in
the matrix and the prior probability of each rule. Based on fits
to both correct and incorrect response options across both the
Standard and Advanced Progressive Matrices, we propose sev-
eral novel mechanisms that may drive responding to Raven’s
items.
Keywords: Rule induction, Bayesian inference, Raven’s Pro-
gressive Matrices

Introduction
Raven’s Progressive Matrices (Raven et al., 1998; Raven’s
from here on) is one of the most widely used assays of fluid
intelligence, and much attention has focused on the under-
lying elemental cognitive processes. Raven’s has arguably
gathered more attention in the cognitive literature than any
other psychometric measure of fluid intelligence, largely be-
cause it is an induction task par excellence that can be mod-
eled computationally (see e.g., Carpenter, Just, & Shell, 1990;
Verguts, De Boeck, & Maris, 2000). For example, Carpenter
et al. (1990) presented a production-system model of Raven’s
to support a two-factor theory of Raven’s with working mem-
ory capacity (WMC) as the first factor and a second factor
related to the ability to abstract relations. This latter ability
has been associated with several attributes including rule gen-
eration speed (Verguts & De Boeck, 2002), inference speed
(Rasmussen & Eliasmith, 2011), and analogical comparison
(Lovett, Forbus, & Usher, 2010; McGreggor, Kunda, & Goel,
2010).

These extant models of Raven’s have focused on cognitive
processes and mechanisms that underlie the inference of rules
from the objects in the matrix. Further insight can be gained
by exploring a computational-level analysis (Marr, 1982). As
performance in Raven’s relies primarily on rule induction, the
task is conducive to instantiation within a Bayesian frame-
work. For instance, Bayesian models of rule induction have

been successfully applied to similar tasks, such as numerical
sequence prediction (i.e., which number follows in the se-
quence: 1, 2, 3, 5, 7, 11?; Austerweil & Griffiths, 2011) and
rule-based categorization (Goodman, Tenenbaum, Feldman,
& Griffiths, 2008). Examining Raven’s within the context
of a Bayesian model allows exploration of questions about
what people’s priors (or in non-Bayesian terms, inductive bi-
ases) might be like for rules of the variety used in the Raven’s
test. Finally, the Bayesian formalism provides an extensible
framework for using standard extensions to Bayesian models
to capture other, more process-based interpretations of fac-
tors known to be relevant to performance on Raven’s, such as
memory and learning.

Here we present a Bayesian model of Raven’s which in-
terprets rule induction as Bayesian inference in which a set
of rules with some prior probability are evaluated based on
their ability to have plausibly generated the features of the
items shown in the matrix. Rules are then sampled based on
their posterior probability and Bayesian model averaging is
used to predict which answers are most likely given the pos-
terior distribution. Unlike extant models, which examine how
successful the model is at predicting correct responses (e.g.,
Carpenter et al., 1990; Lovett et al., 2010; McGreggor et al.,
2010), our model also makes predictions about the proportion
of responses involving the various incorrect options.

Bayesian Model of Raven’s
Solving a Raven’s problem can be conceptualized as a three-
stage process involving feature extraction, rule-inference and
prediction.1 As illustrated in Figure 1, Raven’s items have the
following composition:

O11 O12 O13
O21 O22 O23
O31 O32 ?

(1)

where Oi j is the object in the ith row and jth column. As-
suming the features of each object are extracted successfully,

1In the present model, we follow Carpenter et al. (1990) by hand-
coding the features of the items. Several methods for extracting the
features of Raven’s items have been proposed (Lovett et al., 2010;
McGreggor et al., 2010; Rasmussen & Eliasmith, 2011).
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Figure 1: Two examples of matrices like those in the Raven’s
test. A: Example of an item containing a pairwise incremental
rule, a constant rule and a permutation rule. B: Example of
an item containing a constant rule and an XOR rule.

such that each object can be decomposed into N features,
Oi j =

{
f i j
1 , ..., f i j

N

}
, then the goal is to infer the rule that

generated the features of the last object in each row and col-
umn from the features of the first two objects in each row
and column. By design, the rules that are applied to gener-
ate O13 from O11 and O12 are the same as the rules used to
generate O23 from O21 and O22. We refer to the set of rules
that apply to each row G, where G = {g1, ...,gM} is a collec-
tion of M rules for each feature. The third object in a row
is assumed to have been generated by applying these rules
to the features of the first two objects: O13 = G(O11,O12)
and O23 = G(O21,O22). We assume a separate set of rules,
H, may apply to each of the features of the objects within
a column, O31 = H (O11,O21) and O32 = H (O12,O22). The
column rules and the row rules may be different; however,
because O33 can be predicted using either the rows or the
columns, we restrict the following analysis to the row rules,
G, but it also applies comparably to the column rules, H.

We assume that infering a rule which generated a feature of
the third object in a row or column can be conceptualized as
finding the posterior probability of each possible rule applied
to that feature:

p(g| f ) = p( f |g) p(g)
M
∑

i=1
p( f |gi) p(gi)

(2)

where p( f |g) is the likelihood of generating feature, f , given
the rule, g.

Likelihood
In Raven’s, all of the rules apply to individual features (which
may be discrete or continuous valued; e.g., the three dots in
Figure 1, panel A); hence, within a row, the likelihood will
have a value of 0 or 1 depending on whether or not the rule
successfully produces the features of the third object from the
features of the first two objects in that row. To allow for mis-
calculations in the evaluation of a rule, we set the likelihood

equal to ε whenever the rule could not have generated the fea-
tures of O13 and (1−ε) whenever a rule could have generated
the features of O13, where ε is a small number (ε = .01 in our
simulations below). We make the further assumption that a
rule may work within neither, only one, or both of the rows
(or columns), in which case the probability of generating a
feature given a rule across both rows is the product of the
probabilities from each row separately:

p( f |g) =

 (1− ε)2 if the rule works for both rows
ε(1− ε) if the rule works for only one row

ε2 if the rule works for neither row
(3)

Priors over rules
Carpenter et al.’s (1990) analysis of Raven’s identified a tax-
onomy of rules used to create the Raven’s problems. These
rule types can be classified as involving transformations (e.g.,
a quantitative pairwise increment or decrement of a feature
from one object in the matrix to the next, or a permuta-
tion of objects within a row or column), rules requiring logi-
cal operations (e.g., AND conjunctions, OR disjunctions and
exclusive-or, XOR, relations between features; Matzen et al.,
2010) and a constant rule in which features are maintained
unchanged across items.2 To provide a concrete example,
Figure 1 presents two sample Raven’s-like problems. The
matrix in panel A contains a pairwise incremental rule (i.e.,
the dots increase across items from left to right) and a permu-
tation rule (i.e,. objects with 1, 2 and 3 triangles are permuted
across rows and columns). The matrix in panel B contains a
constant rule (i.e., the center dot appears in all items) and an
XOR rule (i.e., features which appear in the first two objects
do not appear in the third object and features which appear
only in one of the first two objects also appear in the third
object). Participants must infer these rules from the objects
in the matrix and select the missing lower right object in each
matrix from the set of possible response options below each
matrix.

In total we used eight different rules derived from the tax-
onomy presented in Carpenter et al. (1990; see also, Matzen
et al., 2010) and further analyses: 1) constant, 2) increment
or 3) decrement, 4) permutation, 5) logical AND (i.e., main-
tain common features and delete unique features between ob-
jects), 6) logical OR (i.e., maintain unique features between
objects), 7) logical XOR (see Figure 1, panel B), and 8) a
Distribution of 2 rule. 3

2Carpenter et al. (1990) refers to permutation rules as Distribu-
tion of 3 rules because the feature values appear once in the three
objects within a row or column and to XOR rules as Distribution
of 2 rules because the feature only appears in two of the three ob-
jects. Carpenter also refers to logical OR rules as addition and logi-
cal AND rules as subtraction.

3Six items that were generated using idiosyncratic rules were re-
moved from the 72 Raven’s Standard Progressive Matrices (RSPM)
and Advanced Progressive Matrices (RAPM) items that we tested.
We included the Distribution of 2 rule in our set because there are
two items in the RAPM set which use a Distribution of 2 rule that is
inconsistent with an XOR rule.



We tested three prior distributions on rules. First, we as-
sumed that each rule had an equal prior probability (i.e., a
uniform prior probability). Vodegel Matzen, van der Molen,
and Dudink (1994) conducted a study using single rule ma-
trices and found there was a clear order of rule difficulty, in
which the easiest was constant in a row, followed by quanti-
tative pairwise progression, permutation and logical rule op-
erations, which were the most difficult. To capture this order
of difficulty we developed a second prior which assumed that
the probability of a rule was proportional to the ease with
which that rule could be generated (e.g., the complexity of
the rules, which is related to the mental effort necessary to
infer and use a rule). For this prior (hereafter referred to as
the Carpenter prior), we used the frequency with which each
rule occured in Carpenter et al.’s (1990) analysis as a proxy
for the ease with which each rule could be generated and set
the prior probabilities to be proportional to the presentation
frequency. Finally, we assumed that the prior may be related
to the accuracy with which items containing those rules could
be solved. Again, the probabilities are also related to the ease
or complexity with which a rule can be generated, but for this
prior, we use the relationship between each rule and accuracy
on items generated using that rule as a proxy for complexity.
To compute this accuracy-based prior, we fit a logistic regres-
sion model using the rule profile of each item as the predictor
variables (i.e., for each item, i, and for each rule, j, we set an
indicator equal to 1 if item i was generated using rule j and to
0, otherwise) and the proportion correct for each item as the
dependent variable. We then transformed the resulting expo-
nentiated regression weights such that they ranged between
0 and 1 and summed to 1 across all of the rules. The actual
probabilities for each of these priors are listed in Table 1.

Table 1: Prior probabilities for each rule.
Rule Uniform Carpenter Accuracy-based
Constant .125 .194 .150
Increment .125 .223 .185
Decrement .125 .223 .141
Permuation .125 .058 .116
Logical AND .125 .039 .167
Logical OR .125 .058 .119
Logical XOR .125 .165 .119
Distribution of 2 .125 .039 .081

Predicting the response from the posterior
The perceptual complexity of the objects affects how easily
rule inferences can be generated (Primi, 2001). For example,
Meo, Roberts, and Marucci (2007) showed that performance
was significantly worse when features within items were dif-
ficult to identify. We incorporate this finding into the current
model by assuming that the response is based on the similar-
ity between response options and objects predicted from the
rules in the posterior, and for items which have features which
are difficult to extract, the similarity does not need to be very
high in order for the response options to match the object in
the posterior.

Once the posterior probability of each rule is computed for
each feature using Equation 2, we compute the missing ob-
jects as follows: For a given row rule, Gm, we predict the
features of O33 by applying the rule to to the features O31 and
O32. That is, Ô33 = Gm (O31,O32). Response proportions are
determined by computing the relative similarity of each re-
sponse option, Rk to each object in the predictive posterior by
s{Ô33,Rk} = exp

(
−c×d{Ô33,Rk}

)
, where d{Ô33,Rk} is the Eu-

clidean distance between Rk and Ô33 (i.e., the square root of
the summed squared differences between the features of Ô33
and Rk) and c is a parameter which determines the steepness
of the similarity gradient.

Similarities are weighted by their probability in the pre-
dictive posterior and normalized across response options to
determine the probability that the model chooses each re-
sponse option (see e.g., Rasmussen & Eliasmith, 2011). In
our baseline model, we set c equal to 10 which results in
strong responding to the response options which are repre-
sented most strongly in the posterior because the similarity
gradient is quite steep when c >> 1; however, preliminary
examination of the model fits to some items suggested that
human responses were influenced by the similarity of some
distractors to the correct response. For these items, we set c
equal to 1, which implies a shallow similarity gradient and
greater confusability between similar response options; we
exhaustively tested each item to determine whether lowering
c improved the fit for that item. We refer to this version of the
model as the Baseline + similarity model. In this model, 20
of the 66 items had a lower c value than the other items (i.e.,
for these items, c = 1).

Initial inspection of the model predictions additionally re-
vealed a propensity for subjects not to choose response op-
tions which also appear as items in the matrix. To handle
this, we introduced a heuristic into the model such that all ob-
jects that appeared in the matrix were removed from the pos-
terior predictive distribution and from the response set before
computing the response proportions. Through exhaustively
testing each item, we determined that this heuristic improved
the model’s predictions for 52 of the 66 items. We refer to
this version of the model as the Baseline + heuristic model.
We additionally tested a full model which incorporated both
similarity-based responding and the response heuristic.

Table 2: Chi-square values for the fit to choice probabili-
ties for Raven’s Standard Progressive Matrices and Advanced
Progressive Matrices. The model that provides the best fit to
the data for each prior is shown in bold.

Model Uniform Carpenter Accuracy-based
Baseline Model 43603 37363 40699
Baseline + Heuristic 32642 32816 32871
Baseline + Similarity 23385 13884 19948
Full Model 11761 12258 9010
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Figure 2: Baseline model and full model fits to proportion
correct data from RSPM and RAPM (Little, Lewandowsky &
Craig, 2012). Model predictions are shown by the black dots,
the observed data are shown by the solid black line.

Comparing the model to human performance
Descriptive statistics and accuracy data for the Raven’s data
were previously reported in Little, Lewandowsky, and Craig
(2012); here, we are primarily concerned with how often each
response option was chosen for each item. (Note that we have
removed omissions from this data and look at the distribution
of responses across the response options only for participants
who actually gave a response). We fit the four versions of the
model using the three different prior distributions to the re-
sponse proportions from the RSPM and RAPM. Chi-square
fit statistics are shown in Table 2. Based on these fit val-
ues, it is evident that adding similarity-based responding im-
proves the fit over adding the response heuristic to the base-
line model. Adding both modifications results in a substan-
tial improvement when a uniform or an accuracy-based prior
is used and a marginal improvement when the prior based
on Carpenter’s analysis is used. The overall best fit is found
when the full model is used with an accuracy-based prior;
consequently, we now focus on this model’s predictions.

Figure 2 shows the accuracy predictions for the baseline
and full models for the RSPM items (reordered according to
accuracy rate observed in Little et al., 2012) and the RAPM
items. The baseline model clearly predicts the correct an-
swer for most of the Raven’s items; however, this model over-
predicts the propensity with which people choose the correct
item for both RSPM and RAPM. By contrast, for the RSPM
items, the full model accurately predicts the decrease in ac-
curacy across the items. For the RAPM items, the full model
predicts the decrease in accuracy for the hardest Raven’s
items, but still overpredicts the proportion correct for items
in the middle difficulty range.

Figure 3 shows the (log transformed) predictions of the
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Figure 3: Predicted (full model) and observed response pro-
portions for all response options from RSPM and RAPM. The
dotted line surrounds options for which the model predicts
near zero response proportions.

full model (with an accuracy-based prior) across all of the
response options against the observed response proportions.4

For a large proportion of response options, the model predicts
the observed proportions correctly; however, the model also
erroneously predicts a large number of response options near
0 (predicted log proportion less than -6). These items are
also the items for which the model overpredicts the correct
response in Figure 2. Examination of the response profiles
for individual items reveals that for many items this overpre-
diction is not detrimental to the qualitative pattern of results
(see Figure 4). One possible explanation for the discrepant re-
sults is that people are guessing the answer with some small
probablity which would reduce the accuracy for some of the
items and increase the proportion of false alarms to some of
the distractors.

Discussion
This paper has defined a Bayesian model of Raven’s Progres-
sive Matrices that provides an account of Raven’s based on
the idea that people infer rules by computing the posterior
probability of those rules and using the rules to generate plau-
sible responses. We considered three priors and two ways
in which the model could be modified to accomodate human
performance. Ultimately, a model incorporating an accuracy-
based prior and both modifications provided the best fit to the
data.

The success of the accuracy-based prior suggests that
rules vary in how they contribute to accurate performance in
Raven’s. This relationship may reflect sensitivity to differing
levels of complexity between the rules, and one way to handle
this prior in a more principled way is to instantiate the rules

4Proportions equal to 0 or 1 were corrected by setting these pro-
portions equal to 1/(4N) or [N− (1/(4N))]/N, respectively.
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Figure 4: Model prediction profiles for a selection of items.
Items SPM C12 (i.e. Standard Progressive Matrices item 12
from Set C) and APM II13 illustrate cases in which the model
predicts response probabilities of 0 for responses that people
occassionally select. Items SPM E12 and APM II25 illus-
trate two examples in which the model makes incorrect pre-
dictions. For item APM II36, the item with the highest er-
ror rate from either test, the model predicts that the correct
response (option 2) should be selected most frequently, but
humans prefer options 1 and 8.

using a common language with a formal definition of com-
plexity, such as first-order logic (cf. Goodman et al., 2008).

The better fit produced by the similarity-based prediction
modification suggests that people vary in how responses are
generated to different Raven’s items. For instance, for some
items, responses are generated by comparing each response
option to the possibilities in the predictive posterior; for these
items, small differences in features of the response options
do not result in a large difference in response prediction. For
other items, the response must match the objects in the predic-
tive posterior exactly. An aim for future research would be to
identify what makes a feature hard to identify. This would al-
low appropriate a priori specification of the similarity-based
prediction rather than the post-hoc approach adopted here. Fi-
nally, the heuristic mechanism suggests that people limit their
responding to only the plausible response alternatives reject-
ing alternatives which are implausible because they duplicate
items which appear as objects in the matrix.

One of the advantages of formulating a Bayesian model
of this task is that we can make use of recent work that
has explored how Bayesian models can be extended to cap-

ture different aspects of human cognition. One important as-
pect of performance on Raven’s is that differences in WMC
correlate highly with accuracy. Furthermore, the correlation
with WMC increases as the items become more difficult (if
the overall correlation between Raven’s and WMC is large
enough; Little et al., 2012). The model does not currently in-
corporate WMC; however, one possibility for extending the
model is to represent the hypothesis space as a sampling dis-
tribution from the prior using importance sampling.

In an importance sampling scheme (Shi, Griffiths, Feld-
man, & Sanborn, 2010) samples from the prior are weighted
by their likelihood to approximate the posterior distribution;
more samples lead to a better approximation of the poste-
rior. Differences in WMC could be modelled by varying the
number of samples with high WMC participants having more
samples from the prior. With more samples, the model is
more likely to generate the correct answer. This idea is rem-
iniscent of the difference between Carpenter et al.’s (1990)
FAIRRAVEN and BETTERRAVEN models. The BETTER-
RAVEN model was given access to more rules than the FAIR-
RAVEN model and consquently was able to mimic the per-
formance of participants with highly accurate Raven’s per-
formance and, by implication, higher WMC.

An alternative account of the relationship between WMC
and Raven’s is that higher WMC permits faster learning of
what rules are likely to be necessary (Verguts & De Boeck,
2002). In support of this account, Carlstedt, Gustafsson,
and Ullstadius (2000) found that WMC was correlated more
strongly with homogenous intelligence test items (which all
required the same rule to solve) than with heterogenous in-
telligence test items. Presumably, learning the relevant rule
is easier for homogenous test items than for heterogenous
items. In other related tasks, such as rule-based catego-
rization, WMC is known to be correlated with learning rate
(Lewandowsky, 2011; Sewell & Lewandowsky, in press). By
this account, the rules at the end of the test are more diagnos-
tic because they have had more time to be learned, thereby
leading to greater divergence between low and high ability in-
dividuals. Learning in the Bayesian model of Raven’s could
be instantiated by using a special case of importance sampling
known as particle filter sampling (Doucet, Freitas, & Gordon,
2001; Sanborn, Griffiths, & Navarro, 2010). In a particle fil-
ter model, a set of particles representing possible rules are
drawn in proportion to their prior probabilities. As one pro-
gresses through the Raven’s items, probabilities are updated
in proportion to the success of each rule. Particles represent-
ing rules are maintained if they work, but are replaced with
new samples from the prior if they do not. Again, higher
WMC could be modelled using a larger number of samples.
A particle filter model of Raven’s would consider both Car-
penter et al.’s (1990) and Verguts and De Boeck’s (2002) ac-
counts to be correct. That is, higher WMC allows for access
to more rules by virtue of allowing more samples from the
prior; higher WMC also allows for faster learning by allowing
a larger number of particles to be updated from trial to trial.



Consequently, a particle filter model of WMC and Raven’s
provides a synthesis of these two approaches.

A limitation of Carpenter et al. (1990) and of our own work
is that the inputs to the model are hand-coded (Lovett et al.,
2010). Hand-coding ignores potentially important spatial rep-
resentations between objects. Furthermore, Carpenter et al.
(1990) did not model the process of rule discovery, but in-
stead fixed the set of rules that were available to the model.
The second criticism is less problematic because the rule set
is comprehensive, covering the set of rules necessary to han-
dle most of the items; rule discovery is couched in terms of
updating the prior probability of each of the rules based on
how well those rules work to explain the observed features.5

Our Bayesian model is susceptible to the first criticism; how-
ever, in the present case, we argue that the model provides
a good first step toward understanding how the features are
used once they are extracted. It is possible that the feature ex-
traction process might be modeled by introducing a prior over
features (such as the Indian Buffet process prior, Austerweil
& Griffiths, 2010; Griffiths & Ghahramani, 2011). We leave
this as a prospect for future development.

Acknowledgments This work was supported by an ARC
Discovery Project Grant DP120103888 and an Australian
Professorial Fellowship to the second author.

References
Austerweil, J. L., & Griffiths, T. L. (2010). Learning invari-

ant features using the transformed Indian Buffet process.
Advances in Neural Information Processing Systems, 23.

Austerweil, J. L., & Griffiths, T. L. (2011). Seeking confir-
mation is rational for deterministic hypotheses. Cognitive
Science, 35, 499-526.

Carlstedt, B., Gustafsson, J.-E., & Ullstadius, E. (2000). Item
squencing effects on the measurement of fluid intelligence.
Intelligence, 28, 145-160.

Carpenter, P. A., Just, M. A., & Shell, P. (1990). What one
intelligence test measures: A theoretical account of the pro-
cessing in the Raven Progressive Matrices test. Psycholog-
ical Review, 97, 404-431.

Doucet, A., Freitas, N. de, & Gordon, N. (2001). Sequential
monte carlo methods in practice. New York, NY: Springer.

Goodman, N. D., Tenenbaum, J. B., Feldman, J., & Griffiths,
T. L. (2008). A rational analysis of rule-based concept
learning. Cognitive Science, 32, 108-154.

Griffiths, T. L., & Ghahramani, Z. (2011). The Indian Buffet
process: An introduction and review. Journal of Machine
Learning Research, 12, 1185-1224.

Lewandowsky, S. (2011). Working memory capacity and cat-
egorization: Individual differences and modeling. Journal
of Experimental Psychology: Learning, Memory and Cog-
nition, 37, 720-738.

Little, D. R., Lewandowsky, S., & Craig, S. (2012). Working

5We also tested a model with an expanded set of logical rules
(e.g., NAND, NOR, etc) but this made no difference to the qualita-
tive pattern of model fits.

memory capacity and fluid abilities: The more difficult the
item, the more more is better. Manuscript submitted for
publication.

Lovett, A., Forbus, K., & Usher, J. (2010). A structure-
mapping mode of Raven’s Progressive Matrices. In
S. Ohlsson & R. Catrambone (Eds.), Proceedings of the
32nd Annual Conference of the Cognitive Science Society.
Austin, TX: Cognitive Science Society.

Marr, D. (1982). Vision. New York: W. H. Freeman and
Company.

Matzen, L. E., Benz, Z. O., Dixon, K. R., Posey, J., Kroger,
J. K., & Speed, A. E. (2010). Recreating Raven’s: Soft-
ware for systematically generating large numbers of Raven-
like matrix problems with normed properties. Behavior Re-
search Methods, 42, 525-541.

McGreggor, K., Kunda, M., & Goel, A. (2010). A fractal
analogy approach to the Raven’s test of intelligence. In
AAAI workshops at the 24th AAAI conference on Artificial
Intelligence (p. 69-75). Atlanta, GA: Association for the
Advancement of Artificial Intelligence.

Meo, M., Roberts, M. J., & Marucci, F. S. (2007). Element
salience as a predictor of item difficulty for Raven’s Pro-
gressive Matrices. Intelligence, 35, 359-368.

Primi, R. (2001). Complexity of geometric inductive reason-
ing tasks: Contribution to the understanding of fluid intel-
ligence. Intelligence, 30, 41-70.

Rasmussen, D., & Eliasmith, C. (2011). A neural model of
rule generation in inductive reasoning. Topics in Cognitive
Science, 3, 140-153.

Raven, J., Raven, J. C., & Court, J. H. (1998). Manual for
Raven’s Progressive Matrices and vocabulary scales. Sec-
tion 4: The Advanced Progressive Matrices. Oxford, UK:
Oxford University Press.

Sanborn, A. N., Griffiths, T. L., & Navarro, D. J. (2010).
Rational approximations to rational model: Alternative al-
gorithms for category learning. Psychological Review, 117,
1144-1167.

Sewell, D. K., & Lewandowsky, S. (in press). Attention and
working memory capacity: Insights from blocking, high-
lighting and knowledge restructuring. Journal of Experi-
mental Psychology: General.

Shi, L., Griffiths, T. L., Feldman, N. H., & Sanborn, A. N.
(2010). Exemplar models as a mechanism for performing
bayesian inference. Psychonomic Bulletin & Review, 17,
443-464.

Verguts, T., & De Boeck, P. (2002). The induction of solution
rules in Raven’s Progressive Matrices. Journal of Cognitive
Psychology, 14, 521-547.

Verguts, T., De Boeck, P., & Maris, E. (2000). Generation
speed in Raven’s Progressive Matrices test. Intelligence,
27, 329-345.

Vodegel Matzen, L. B. L., van der Molen, M. W., & Dudink,
A. C. M. (1994). Error analysis of Raven test performance.
Personality and Individual Differences, 16, 433-445.




