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Abstract

In many learning or inference tasks human behavior approximates that of a Bayesian ideal

observer, suggesting that, at some level, cognition can be described as Bayesian inference.

However, a number of findings have highlighted an intriguing mismatch between human behav-

ior and standard assumptions about optimality: People often appear to make decisions based on

just one or a few samples from the appropriate posterior probability distribution, rather than

using the full distribution. Although sampling-based approximations are a common way to

implement Bayesian inference, the very limited numbers of samples often used by humans

seem insufficient to approximate the required probability distributions very accurately. Here, we

consider this discrepancy in the broader framework of statistical decision theory, and ask: If

people are making decisions based on samples—but as samples are costly—how many samples

should people use to optimize their total expected or worst-case reward over a large number of

decisions? We find that under reasonable assumptions about the time costs of sampling, making

many quick but locally suboptimal decisions based on very few samples may be the globally

optimal strategy over long periods. These results help to reconcile a large body of work show-

ing sampling-based or probability matching behavior with the hypothesis that human cognition

can be understood in Bayesian terms, and they suggest promising future directions for studies

of resource-constrained cognition.
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1. Introduction

Across a wide range of learning, inference, and decision tasks, it has become increas-

ingly common to analyze human behavior through the lens of optimal Bayesian models

(in perception: Knill & Richards, 1996; motor control: Maloney, Trommershauser, &

Landy, 2007; language: Chater & Manning, 2006; decision making: McKenzie, 1994;

causal judgments: Griffiths & Tenenbaum, 2005; and concept learning: Goodman, Tenen-

baum, Feldman, & Griffiths, 2008). However, despite the many observed parallels, the

argument for understanding human cognition as a form of Bayesian inference remains far

from complete. This study addresses two challenges. First, although human behavior often

appears to be optimal when averaged over multiple trials and participants, it may not look

that way within individual trials or participants. There will always be variance across tri-

als and participants in any behavioral experiment, but the micro-level variation observed

in many studies comparing human behavior with Bayesian models is not simply random

noise around the model predictions. What kind of online processing is going on inside

individual participants’ minds that can appear so different at the local scale but approxi-

mate optimal behavior when averaged over many participants or many trials? Second,

although ideal Bayesian computations are algorithmically straightforward in most small

laboratory tasks, they are intractable for large-scale problems such as those that people

face in the real world, or those that most Bayesian machine learning and artificial intelli-

gence systems focus on. If human cognition is to be understood as a kind of Bayesian

inference, we need an account of how the mind rapidly and effectively approximates

these intractable calculations in the course of online processing.

Here, we argue that both of these challenges can be resolved by viewing cognitive pro-

cessing in terms of stochastic sampling algorithms for approximate Bayesian inference,

and analyzing the cost–benefit trade-off underlying the question of “How much to think?”

Standard analyses of decision making as Bayesian inference assume that people should

seek to maximize the expected utility (or minimize the expected cost) of their actions,

relative to their posterior distribution over hypotheses. We show that in many settings,

this ideal behavior can be approximated by an agent who considers only a small number

of samples from the Bayesian posterior, and that the time cost to obtain more than a few

samples outweighs the expected gain in decision accuracy they would provide. Hence,

human cognition may approximate globally optimal behavior by making a sequence of

noisy, locally suboptimal decisions—much as we see when we look closely at individual

experimental participants and trials.

This first challenge—accounting for behavior within individual participants and trials—
arises from the observation that while average behavior matches the ideal Bayesian agent,

this is not true of individual trials and participants. Average judgments match the average

of the Bayesian posterior distribution, but individual responses arise from the full range

of the distribution with frequency proportional to the posterior probability. In the next

section we will discuss two specific cases of this phenomenon in category learning

(Goodman et al., 2008) and prediction (Griffiths & Tenenbaum, 2006), but such

“sampling” behavior on individual trials appears to be ubiquitous. Sampling-based
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generalization has been found in word learning (Xu & Tenenbaum, 2007) and causal

learning tasks (Sobel, Tenenbaum, & Gopnik, 2004; Xu & Tenenbaum, 2007), in both

adults and children (Denison, Bonawitz, Gopnik, & Griffiths, 2013). Furthermore, studies

in which individuals must produce more than one judgment on a given task have found

that multiple guesses from one individual have independent errors, like independent sam-

ples from a probability distribution, in estimates of esoteric quantities in the world (Vul

& Pashler, 2008), guesses about cued visual items (Vul, Hanus, & Kanwisher, 2009), and

in illusory conjunctions in visual attention tasks (Vul & Rich, 2010). More broadly, mod-

els of category learning (Sanborn & Griffiths, 2008; Sanborn, Griffiths, & Navarro,

2006), change detection (Brown & Steyvers, 2008), associative learning (Daw & Cour-

ville, 2008), and language learning (Xu & Tenenbaum, 2007) have explicitly or implicitly

relied on a sampling process like probability matching (Herrnstein, 1961), soft-max deci-

sion policies (Sutter & Barlo, 1998), or Luces choice rules (Luce, 1959) to link the ideal

Bayesian posterior to participants’ responses, indicating that in many cases when Bayes-

ian models predict human behavior, they do so through the assumption that people sam-

ple instead of computing the response that will maximize expected utility under the full

posterior distribution. Because the resulting variation in judgments across participants and

trials suggests that each individual is guessing based on only a small number of samples,

it might seem that it is a mistake to describe such behavior in terms of ideal Bayesian

observers (Mozer, Pashler, & Homaei, 2008).

The second challenge—that Bayesian inference is intractable—arises from the diffi-

culty of scaling probabilistic models to real-world problems. For problems involving

discrete hypotheses about the processes that could have produced observed data, the

computational cost of Bayesian inference increases linearly with the number of hypoth-

eses considered. However, the number of hypotheses (possible generative processes)

increases rapidly in common settings with combinatorial structure. For example, the

number of causal structures relating a set of variables increases exponentially in the

number of variables (with over 3 million possible structures for just six variables), and

the number of clusterings of a set of objects increases similarly sharply (with over

100,000 partitions of just 10 objects). In other cases, possible generative processes are

drawn from infinite discrete hypothesis spaces (such as when parsing with a recursive

grammar), or continuous hypothesis spaces where there is no direct way to calculate

the integrals required for Bayesian inference. The high computational cost that results

from using probabilistic models has led computer scientists and statisticians to explore

a variety of approximate algorithms, with exact computations being the exception rather

than the rule in implementations of Bayesian inference (Gelman, Carlin, Stern, &

Rubin, 2004).

Within cognitive science, these challenges are considered serious enough to question

the whole program of Bayesian cognitive modeling. Mozer et al. (2008) argued that

although many samples may adequately approximate Bayesian inference, behavior based

on only a few samples is fundamentally inconsistent with the hypothesis that human

cognition is Bayesian:
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If our investigations had found that. . . some sample-based model required, say, 20

samples per individual to match the data, we would not have considered the sampling

account to be a qualitatively different story than the Bayesian account. However, when

two samples per individual accounts for the data, our sense is that the [sample-based]

and Bayesian accounts have to be viewed as qualitatively distinct. (p. 1146)

This perspective is consistent with commonly held heuristics in Bayesian statistics and

artificial intelligence, where practitioners use hundreds or thousands of samples to approxi-

mate the relevant posterior distributions. For instance, Gelman et al. (2004) write that

although 100 samples are often sufficient for reasonable posterior inference, 2,500 or more

may often be required to avoid discounting rare events. Similarly, Gamerman and Lopes

(2006) estimate that to obtain a 95% confidence interval with sufficient precision requires

600, or even 3,746, independent samples. Altogether, it is clear that just one or a few sam-

ples are far from sufficient to form an adequate approximation to the posterior distribution;

therefore, if people make decisions with such poor approximations of the posterior, is it

fruitful to describe their behavior as rational statistical inference? Others highlight the sec-

ond challenge and argue that cognition cannot be Bayesian inference because exact Bayes-

ian calculations are computationally intractable (Kwisthout, Wareham, & van Rooij, 2011),

so the brain must rely on computationally efficient heuristics rather than Bayesian calcula-

tions (e.g., Gigerenzer, 2008). Kwisthout et al. (2011) argue that because Bayesian calcula-

tions are intractable, and even adequate approximate inference for these problems is

computationally prohibitive, the enterprise of Bayesian modeling cannot ignore the algo-

rithmic level of description. Similarly, Jones and Love (2011) stress the importance of inte-

grating the computational and algorithmic levels of description for a cognitively and

neurally plausible account of human cognition. Addressing these challenges is thus an

important step toward addressing the psychological and empirical plausibility of probabilis-

tic models as a framework for describing, modeling, and understanding human cognition.

In this study we will argue that acting based on a few samples can be easily reconciled

with optimal Bayesian inference and may be the method by which people approximate

otherwise intractable Bayesian calculations. Our argument has three central claims. First,

that probability matching behavior can be understood in terms of sensible sampling-based

approaches to approximating intractable inference problems of the kind used in Bayesian

statistics and computer science. Second, that very few samples from the Bayesian posterior

are often sufficient to obtain approximate predictions that are almost as good as predictions

computed using the full posterior. And third, that under conservative assumptions about

how much time it might cost to produce a sample from the posterior, making predictions

based on very few samples (even just one) can actually be the globally optimal strategy.

2. Ideal aggregates from sampling behavior by individuals

We will begin by describing two characteristic cases that best highlight the apparent sam-

pling phenomenon. Goodman et al. (2008) studied performance in classic categorization

602 E. Vul et al. / Cognitive Science 38 (2014)



tasks, in which participants learn to discriminate two categories (A and B) by studying ex-

emplars of each category, and are then asked to generalize the learned rules by categorizing

new transfer items. Goodman et al. (2008) showed that the proportion of participants who

classify transfer items as belonging to one of the trained categories fits almost perfectly with

the probabilistic predictions of a Bayesian rule-learning model (Fig. 1-top). This model con-

siders all possible logical rules for classification (expressed as disjunctions of conjunctions

(A)

(B)

Fig. 1. (Top) From Goodman et al. (2008): Average human categorization performance (y-axis; proportion
categorized as group A) is almost perfectly predicted by the categorization probabilities from an ideal Bayes-

ian model (x-axis) that makes categorization predictions by integrating over the complete posterior probability

distribution over categorization rules. Each point corresponds to previously seen objects from categories A

and B (A* and B*, respectively) and new transfer items (T*). (Bottom) A different picture emerges from the

generalization patterns over seven test stimuli (x-axis; ‘AAAAAAB,’ for instance, corresponds to categorizing

the first six test stimuli as category A, and the seventh as category B). The histogram of participants’ general-

ization (white bars) does not match this ideal observer (gray bars). Instead, these patterns reflect much greater

correlation of beliefs from one test probe to the next, consistent with individual participants adopting one or

a few rules in proportion to their posterior probability, and making many generalization responses accordingly

(black bars). Bayesian behavior emerges only on average, while individual participants seem to behave based

on just a few samples from the posterior.
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of Boolean features), computes a posterior probability for each rule given the training data,

and then computes the probability that any item is a positive instance by averaging the deci-

sions of all possible rules weighted by their posterior probabilities. Do individual partici-

pants compute this same average over all possible rules in their heads on any one trial? Not

in this task. Goodman et al. (2008) analyzed the generalization patterns of more than 100

individual participants reported by Nosofsky, Palmeri, and McKinley (1994) and found that

the response patterns across seven test exemplars were only poorly predicted by the Bayes-

ian ideal, even allowing for random response noise on each trial. Rather than averaging over

all rules, these generalization patterns were consistent with each participant classifying test

items using only one or a few rules, although the rules considered vary across observers in

proportion to the appropriate posterior probabilities (Fig. 1-bottom). Thus, it seems that

individual human learners are somehow drawing one or a few samples from the posterior

distribution over a complex hypothesis space of categorization rules, and the aggregate

behavior that is consistent with integrating over the full posterior distribution emerges only

in the average over many learners.

Such probability matching behavior can also be seen when individuals make predic-

tions from their own knowledge of the world. Griffiths and Tenenbaum (2006) studied

participants’ predictions about every day events, such as how long a cake will bake

given that it has been in the oven for 45 min. By varying the time cutoff (e.g.,

45 min) they showed that the median participants’ judgments closely match the poster-

ior medians of an optimal Bayesian predictor that knows the complete real-world distri-

bution over these durations for a number of different event classes (cake baking times,

movie run times, poem lengths, etc). However, again, it was not the case that individ-

ual participants made judgments in line with the average predictions: The variation in

judgments across participants suggests that each individual is guessing based on only a

small number of instances considered with probability proportional to the Bayesian pos-

terior (Mozer et al., 2008). Moreover, the quantile–quantile comparison of the distribu-

tion of participants’ responses and the Bayesian posterior distribution shows a near-

perfect match, indicating that participants’ guesses do not correspond to the single opti-

mal choice under the full posterior (perturbed by random response noise), but instead

correspond to samples from the posterior (for further details see Lewandowsky, Grif-

fiths, & Kalish, 2009)). Fig. 2 shows the comparison of median human judgments with

Bayesian posterior medians, along with the full quantile–quantile plots relating human

and model predictions for seven different classes of everyday events, and an aggregate

plot combining these data. Although there are some deviations in specific cases—such

as a tendency to produce tighter predictions than the posterior for human life spans—
the aggregate results show a close match between the two probability distributions, con-

sistent with the idea that people are making predictions by sampling from the posterior

distribution.

What mechanisms operating in individual participants would produce ideal Bayesian

behavior in the aggregate via individual trials that appear to be probability matched to

the posterior?
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3. Approximating Bayesian inference by sampling

Bayesian probability theory prescribes a normative method for combining prior knowl-

edge with observed data and making inferences about the world. However, the claim that

human cognition can be described as Bayesian inference does not imply that people are

doing exact Bayesian inference. Exact Bayesian inference amounts to fully enumerating

hypothesis spaces every time beliefs are updated with new data. This is computationally

intractable in any large-scale application, so inference must be approximate. As noted

earlier, this is the case in Bayesian artificial intelligence and statistics, and is even more

relevant to solving the kinds of problems we associate with human cognition, where the

real-world inferences are vastly more complex and responses are time sensitive.

Fig. 2. Data from Griffiths and Tenenbaum (2006) showing optimal predictions for everyday quantities.

(Left, top row) The real empirical distributions of quantities across a number of domains; from left to right:

movie grosses, poem lengths, time served in the U.S. House of Representatives, the reigns of Egyptian pha-

raohs, human life spans, movie runtimes, and the time to bake a cake. (Left, middle row) When participants

are asked to predict the total quantity based on a partial observation (e.g., what is the total baking time of a

cake given that it has been baking for 45 min?), they make predictions that appear to match the Bayesian ideal

observer that knows the real-world distribution. Thus, it would appear that in all these domains, people know

and integrate over the full prior distribution of, for example, cake baking times when making one prediction.

(Left, bottom row) However, the quantile–quantile plots comparing the distributions of human predictions with

the corresponding posterior distributions reveal a different story. For each prediction, the quantiles of human

response distributions were computed and then compared with the corresponding posterior distribution pro-

duced by using Bayesian inference with the appropriate prior (to produce each plot, quantiles were averaged

across five predictions for each phenomenon). A match between the Bayesian posterior distribution and the

distribution of people’s responses corresponds to data points following along a diagonal line in these plots—
where the quantiles of the two distributions are in direct correspondence. (Right) The correspondence between

the posterior predictive and human responses is most pronounced when considering the quantile–quantile plot

that reflects an aggregate over all seven individual quantities. Thus, people make guesses with frequency that

matches the posterior probability of that answer, rather than maximizing and choosing the most likely alterna-

tive. This indicates that although participants know the distribution of cake baking times (as evidenced by the

quantile–quantile match), they do not produce the optimal Bayesian response by integrating over this whole

distribution, but instead respond based on only a small number of sampled baking times.
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The need to approximate Bayesian inference leaves two important questions. For artifi-

cial intelligence and statistics: What kinds of approximation methods work best for

Bayesian inference? For cognitive science and psychology: What kinds of approximation

methods does the human mind use? In the tradition of rational analysis (Anderson, 1991),

or analysis of cognition at Marr’s (1982) computational level, one strategy for answering

the psychological question begins with good answers to the engineering question. Thus,

we will explore the hypothesis that the human mind approximates Bayesian inference

with some version of the algorithmic strategies that have proven best in artificial intelli-

gence and statistics, on the grounds of computational efficiency and accuracy.

In artificial intelligence and statistics, one of the most common methods for implement-

ing Bayesian inference is with sample-based approximations. Inference by sampling rests

on the ability to draw samples from an otherwise intractable probability distribution—that

is, to arrive at a set of hypotheses which are distributed according to the target distribu-

tion, by using a simple algorithm (such as Markov Chain Monte Carlo [MCMC]; Robert

& Casella, 2004; or particle filtering; Doucet, De Freitas, & Gordon, 2001). Samples may

then be used to approximate expectations and predictions with respect to the target proba-

bility distribution, and as the number of samples grows, these approximations approach the

exact quantities.1 Sampling methods are typically used because they are applicable to a large

range of computational models, are robust to increasing dimensionality, and degrade grace-

fully when computational resources limit the number of samples that can be drawn.

Computer scientists and statisticians use a wide range of sampling algorithms. Some of

these algorithms have plausible cognitive interpretations, and specific algorithms have been

proposed to account for aspects of human behavior (Brown & Steyvers, 2008; Gershman,

Vul, & Tenenbaum, 2012; Levy, Reali, & Griffiths, 2009; Sanborn et al., 2006; Shi, Griffiths,

Feldman, & Sanborn, 2010). For our purposes, we need only assume that a person has the

ability to draw samples from the hypothesis space according to the posterior probability dis-

tribution. Thus, it is reasonable to suppose that people can approximate Bayesian inference

via a sampling algorithm, and evidence that humans make decisions by sampling is not in

conflict with the hypothesis that the computations they are carrying out are Bayesian.

However, using an approximation algorithm can often result in strong deviations from

exact Bayesian inference. In particular, poor approximations can be produced when the

number of samples is small. Recent empirical results suggest that if people are sampling

from the posterior distribution, they base their decisions on very few samples (Goodman

et al., 2008; Mozer et al., 2008; Vul & Pashler, 2008)—so few that any claims of conver-

gence to the real probability distribution do not hold. Algorithms using only a few sam-

ples will have properties quite different from full Bayesian integration. This leaves us

with the question: How bad are decisions based on few samples?

4. Two-alternative decisions

To address the quality of decisions based on few samples, we will consider

performance of an ideal Bayesian agent (maximizing expected utility under the full
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posterior distribution over hypotheses) and a sample-based agent (maximizing

expected utility under a small set of sampled hypotheses). We will start with the

common scenario of choosing between two alternatives. Many experimental tasks in

psychology are a variant of this problem: Given everything observed, make a two-

alternative forced-choice (2AFC) response. Moreover, real-world tasks often collapse

onto such simple 2AFC decisions; for instance, we must decide whether to drive to

the airport via the bridge or the tunnel, depending on which route is likely to have

least traffic. Although this decision will be informed by prior experiences that pro-

duced intricate cognitive representations of possible traffic flow, at the moment of

decision these complex representations collapse onto a prediction about a binary vari-

able: Is it best to turn left or right?

4.1. Bayesian and sample-based agents

Statistical decision theory (Berger, 1985) prescribes how information and beliefs about

the world and possible rewards should be combined to define a probability distribution

over possible payoffs for each available action (Kording, 2007; Maloney, 2002; Yuille &

B€ulthoff, 1996). An agent trying to maximize payoffs over many decisions should use

these normative rules to determine the expected payoff of each action, and choose the

action with the greatest expected payoff. Thus, the standard for decisions in statistical

decision theory is to choose the action (A*) that will maximize expected utility (U(A; S))
of taking an action under the posterior distribution over possible current world states (S)
given observed data (D):

A� ¼ argmax
A

X
S

UðA; SÞPðSjDÞ: ð1Þ

To choose an action, the only property of world states we care about is the

expected utility of possible actions given that state. Thus, if there are two possible

actions (A1 and A2) and one action is “correct” for each world state (that is, there are

two possible values for U(A; S) and only one action for each state receives the higher

value), then we may collapse the state space onto a binary alternative: Is A1 correct

or A2?
2 Under this projection the posterior distribution becomes a Bernoulli distribu-

tion, where the posterior probability that A1 is correct is p—this quantity fully param-

eterizes the problem, with respect to the 2AFC task. The ideal Bayesian agent who

maximizes expected utility will then choose the action which is most likely to be

correct (the maximum a posteriori, MAP, action, and will be correct p proportion of

the time). (In what follows we assume p is between 0.5 and 1, without loss of

generality.)

A sample-based agent samples possible world states (Sn) from the posterior distribu-

tion, uses those samples to estimate the expected utility of each action, and makes a deci-

sion based on that estimate:
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A� ¼ argmax
A

Xk
i¼1

UðA; SiÞ

Si�PðSjDÞ:
ð2Þ

Under the assumption that the utility has two values (“correct”/“incorrect”), the sample-

based agent will thus choose the action which is most frequently correct in the set of

sampled world states. In other words, the sample-based agent chooses the action which

was best more than half of the time in the set of samples. As these samples favor the cor-

rect action with probability p, we can use the Binomial distribution to calculate the prob-

ability with which a given action appears more favorable (based on the set of k samples).

Thus, a sample-based agent drawing k samples will choose action A1 with probability:

q ¼ 1�HCDF bk
2
c; p; k

� �
; ð3Þ

where ΘCDF is the binomial cumulative density function describing the probability that

fewer than half (bk
2
c) of k samples will suggest that the correct action is the best one,

given that the posterior probability of the correct action is equal to p over the set of all

possible samples. Thus, q is the probability that the majority of samples will point to the

correct (MAP) action.3 Therefore, the sample-based agent will be right with probability

qp + (1 � q)(1 � p).
Here, we discuss a sample-based agent specifying an a priori decision policy as a fixed

number of samples, but other decision policies are possible. Particularly, it is worth con-

sidering (a) a sequential probability ratio test (SPRT) policy (Wald, 1947) that specifies a

threshold amount of evidence required to make a choice (and can make a choice after a

variable number of samples), and (b) an accumulator policy (following Vickers, 1979)

that draws samples until a threshold number of them favor one of the two options. We

will consider these policies in a later section (and in detail in Appendix A), but critically,

the same conclusions are reached for all three decision policies for a sample-based agent.

As such, we focus on a fixed-k (number of samples) policy, as it most clearly shows our

primary conclusion: that very few samples are necessary.

4.2. Good decisions from few samples

So, how much worse will such 2AFC decisions be if they are based on a few samples

rather than an inference computed by using the full posterior distribution? Bernoulli esti-

mated that more than 25,000 samples are required for “moral certainty” about the true

probability of a two-alternative event (Stigler, 1986).4 Although Bernoulli’s calculations

were based on different derivations than those which are now accepted (Stigler, 1986), it

is undeniable that inference based on a small number of samples differs from the exact

Bayesian solution and will contain greater errors, but how bad are the decisions based on

this inference?
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Making a decision based on a limited number of samples is analogous to predicting

the outcome of a single flip of a bent coin after flipping it a few times to gather informa-

tion about its bias. In Fig. 3 we plot the difference in error rates between the sample-

based and optimal agents as a function of the underlying probability (p) and number of

samples (k). When p is near 0.5, there is no use in obtaining any samples because a per-

fectly informed decision will be as likely to be correct as a random guess; this is the case

of a fair coin, even if we flip it many times to make sure of this fact, our prediction about

the next coin flip will not be improved. When p is near 1, the first sample will indicate

the (nearly, deterministically correct) answer, so there is much to be gained from one

sample but subsequent samples are of little use; this is the case of a perfectly biased coin

that always lands on heads—one flip yields all the information needed to inform a predic-

tion. Most of the benefit of large numbers of samples occurs in interim probability values

(around 0.7)—where the coin is substantially, but incompletely biased.

As the sample-based agent does not know what the true probability p may be for a

particular decision, we can consider the scenarios such an agent should expect: the aver-

age scenario (expectation over p) and the worst-case scenario (maximization of the loss

over p). These are displayed in Fig. 4A assuming a uniform probability distribution over p.
The deviation from optimal performance decreases to negligible levels with very few

samples, suggesting that the sample-based agent need not have more than a few samples

to approximate ideal performance. We can go further to assess just how much is gained

(in terms of decreased error rate) from an additional sample (Fig. 4B). Again, the vast

majority of accuracy is gained with the first sample, and subsequent samples do very little

to improve performance. Thus, even though few samples will not provide a very accurate

Fig. 3. Increased error rate for the sample-based agent over the optimal agent as a function of the probabil-

ity that the first action is correct and the number of samples drawn for a decision (decisions based on zero

sample not shown).
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estimate of p—definitely not sufficient for “moral certainty”—they are sufficient to
choose an action: We do not need moral certainty to act near optimally.

4.3. How many samples for a decision?

If people do make inferences based on samples—but as samples are costly—how many

samples should people use before making a decision? For instance, how many possible

arrangements of traffic across the city should we consider before deciding whether to turn

left for the tunnel or right for the bridge? Considering one such possibility requires con-

certed thought and effort—it seems obvious that we should not pause at the intersection

for several hours and enumerate all the possibilities. It also seems likely that we should

not just turn left or right at random without any consideration. Therefore, how many sam-

ples should we take: How many times should we flip our bent coin to estimate its bias

before making a guess about the outcome of the next flip? In other words, how hard

should we think?

Determining an optimal answer to this meta-cognitive problem requires that we specify

how much a sample may “cost.” To be conservative (and for the sake of simplicity), we

will assume that a sample can only cost time—it takes some amount of time to conjure

up an alternate outcome, predict its value, and update a decision variable. Samples may

have additional costs, not just time, but effort, metabolic costs, etc. (see Discussion).

However, any additional costs will favor fewer samples, so for parsimony here we assume

that additional samples pay only an opportunity cost of time.

If a given sample is free (costs 0 time), then we should take infinitely many samples,

and make the best decision possible every time. If a sample costs 1 unit of time, and the

action time (the time that it would take us to act once we have chosen to do so) is also 1

unit of time, then we should take zero samples; that is, we should guess randomly. To

make this peculiar result intuitive, let us be concrete: If we have 100 s, and the action

time is fixed to be 1 s, then we can make 100 random decisions, which will be right 50%

of the time, thus giving us an expected reward of $50 (assuming correct choices pay $1,

(A) (B)

Fig. 4. Increased error rate for the sample-based agent in 2AFC decisions marginalizing over the Bernoulli

probability (assuming a uniform distribution over p). (A) The maximum and expected increase in error for

the sample-based agent compared with the optimal agent as a function of number of samples (see text). (B)

Expected and maximum gain in accuracy from an additional sample as a function of the number of samples

already obtained.
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and incorrect choices are not penalized). If taking a single sample to improve our deci-

sion will cost an additional second per decision, then if we take one sample per decision,

each decision will take 2 s, and we could make at most 50 of them. It is impossible for

the expected reward from this strategy to be greater than guessing randomly, as even if

100% of the decisions are correct, only $50 will be gained. Moreover, as 100% accuracy

based on one sample is extremely unlikely (this could only arise in a completely deter-

ministic prediction task), substantially less reward should be expected. Thus, if obtaining

a sample takes as long as the action, and we do not get punished for an incorrect answer,

we should draw zero samples per decision and make as many random decisions as we

can. More generally, we can parameterize how much a sample “costs” as the ratio

between the time required to make an action and the time required to obtain one sample

(action/sample ratio)—intuitively, a measure of how many samples it would take to dou-

ble the time spent on a decision compared with making the decision using no samples.

The expected accuracy for a sample-based agent (previous section) gives us the

expected utility per decision as a function of k (the number of samples) and p (the proba-

bility that the first action is correct; Fig. 6A), and the utility function. We consider two

utility functions for the 2AFC case: no punishment—correct: gain 1; incorrect: lose 0;

and symmetric—correct: gain 1; incorrect: lose 1. These two extremes are limits on the

circumstances for which making a choice is always preferable to stalling,5 and all other

payoffs with positive expected return will fall somewhere between these bounds. Given

one particular action/sample time ratio, we can compute the number of decisions made

per unit time (Fig. 5B). Multiplying these two functions together yields the expected util-

ity per unit time (Fig. 5C).

As p is unknown to the agent, an ideal k must be chosen by taking the expectation

over p. This marginalization (assuming a uniform distribution over p) for many different

action/sample time ratios is displayed in Fig. 6. It is clear that as samples become

cheaper, one is best advised to take more of them—converging to the limit of infinitely

many samples when the samples are free (the action/sample time ratio is infinity).

(A) (B) (C)

Fig. 5. Expected utility per decision, the number of decisions that can be made per unit time, and the

expected rate of return (utility per unit time) as a function of the probability that the first action is correct

and the number of samples (with an example action/sample cost ratio of 232, arbitrarily chosen from one of

the logarithmically spaced cost ratios we evaluated).
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In Fig. 7 we plot the optimal number of samples as a function of the action/sample

time ratio. Remarkably, for ratios less than 10, one is best advised to make decisions

based on only one sample if the utility function is symmetric. Moreover, with no punish-

ment for incorrect answers, the action/sample time ratio must be 2 or greater before tak-

ing any samples becomes a prudent course of action. Thus, under a wide range of

assumptions about how much it costs to think, making guesses based on very few sam-

ples (e.g., one) is the best course of action: Making many locally suboptimal decisions

quickly is the globally optimal strategy.

4.4. Optimal SPRT and accumulator decision policies for 2AFC

We have argued that the sample-based agent specifying a fixed number of samples a

priori should, across a very wide range of sample costs, use just a few samples. Although

Fig. 6. Expected utility per decision (averaging over a uniform prior on p), number of decisions per unit

time, and expected utility per unit time (rate of return) as a function of the number of samples and action/

sample cost ratios. Action/sample cost ratios are logarithmically spaced between 1 (red) and 1,000 (yellow).

In the last graph, the circles indicate the optimal number of samples at that action/sample cost ratio. (The

utility function used here is +1 for a correct choice and 0 for incorrect.)

Fig. 7. The optimal number of samples as a function of the action/sample time-cost ratio for each of two

utility functions (symmetric—correct: +1, incorrect: �1; and no punishment for incorrect answers—correct:

+1, incorrect: 0).
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this fixed-k policy highlights our claim that few samples are necessary, it is clearly not

an ideal policy: If the agent decides to take five samples, and the first three all favor

action A (aaa), there is no need to take another two samples; while if the first three are

mixed (aab), then one or two further sample are worthwhile. Does our conclusion—that

the optimal number of samples is very low—hold with decision policies that can choose

to stop sampling more efficiently? We consider two-alternate decision policies for a sam-

ple-based agent: a SPRT policy (Wald, 1947), and an accumulator policy (Vickers, 1979)

(illustrated in Fig. 8). We find that optimal stopping thresholds for these more efficient

decision policies yield nearly identical expected numbers of samples per decision, and

expected rates of return as a simple fixed-k policy.

The SPRT policy (Wald, 1947) specifies a threshold for the amount of evidence

required to make a choice, and it draws samples until that threshold is reached. Formally,

the SPRT agent calculates dk = x1 � x2: the difference in number of samples favoring

choices A1 and A2. When jdkj reaches threshold T (i.e., when dk reaches T or �T), the
SPRT agent chooses the corresponding action. Thus, SPRT will choose action A1 with

probability q ¼ pT

pTþð1�pÞT (Navarro, 2007), after a variable number of samples k (where

Fig. 8. Illustration of different decision policies for a sample-based agent. The accumulation of samples to

support a 2AFC decision can be illustrated as a random walk in two dimensions: number of samples in sup-

port of each of the two alternatives. Each sample amounts to a step either rightward, or upward (the black

dashed line shows one such possible random walk). (Left) Different decision policies draw stopping thresh-

olds at different orientations in this plot. The fixed-k decision policy (red) amounts to picking a diagonal line

corresponding to a constant number of samples. The SPRT policy thresholds (green) are pairs of orthogonal

diagonals at an equal distance from the identity line (corresponding to different amounts of evidence in favor

of an action). The accumulator policy (blue) chooses thresholds that correspond to a constant number of sam-

ples in favor of either action. (Right) Optimal thresholds for the three decision policies for two action/sample

time ratios (solid lines: 78; dashed lines: 112; for the accumulator policy, both of these ratios yielded the

same threshold T = 3). The diagonal double lines indicate the expected number of samples per decision for

accumulator and SPRT policies.
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k ≥ T and k has the same parity as T). The SPRT policy is optimal in the sense that it

will attain a desired level of confidence faster than other possible policies.

The accumulator policy (Vickers, 1979) specifies a threshold on the number of samples

obtained in favor of one of the two options. Formally, under the accumulator policy, the

agent obtains samples until either x1 or x2 (the number of samples in favor of A1 and A2,

respectively) reaches T, and then chooses the corresponding action. The accumulator pol-

icy guarantees neither a particular level of confidence, nor a fixed number of samples, but

it does offer a more efficient policy than specifying a fixed number of samples. Requiring

a fixed number of k samples for the fixed-k policy effectively specifies an Accumulator

policy threshold T = ⌈k/2⌉ samples in favor of any one action (where ⌈X⌉ denotes round-

ing X up to the nearest integer). The corresponding accumulator policy will take at most

k samples, but it could reach a decision in as few as ⌈k/2⌉ samples, thus achieving the

same end with fewer samples on easy trials (where p is close to 1).

We calculated optimal thresholds to maximize expected rate of return for SPRT and

accumulator decision policies for various time costs of samples given that the sampling

agent has a uniform prior over p (see Appendix A for calculations). Fig. 9 shows a com-

parison of the optimal thresholds, expected number of samples, and expected rate of

return for the fixed-k, SPRT, and accumulator policies. There is very little variation in

expected number of samples and rates of return across policies, and regardless of what

decision policy the sample-based agent uses, the expected number of samples under the

optimal threshold is very low: For the no punishment utility function, expected numbers

of samples are 0 or 1 for action/sample time ratios below 25.

Our further analyses (of nAFC and continuous decision) will consider only the fixed-k
policy because the fixed-k policy highlights our central point—that the optimal sampling

agent uses very few samples—and this finding holds across other decision policies.

5. N-alternative decisions

So far we have only considered two-alternative decisions: In such cases, no matter

how high dimensional the state of the world may be, the decision collapses onto one bin-

ary variable. It is likely that our analysis would produce different results when more than

two alternatives are available (and thus, more information is required to choose among

them). Therefore, we now ask the same questions of N-alternative forced-choice tasks,

where N is 4, 8, 16, and 32: How bad are choices among many alternatives if such deci-

sions are based on few samples? And how many samples should we use when we are

faced with such a decision?

On the assumption that the utility functions for such N-AFC decisions are that one and

only one of the N alternatives is “correct” and the others are “incorrect,” the optimal

agent (who knows the multinomial distribution describing the probability that any one

choice is “correct”) will always choose the alternative that has the highest probability

(MAP), and the agent will be right with that probability—maxp; thus, the performance of

the optimal agent only depends on maxp. The sample-based agent, just as in the 2AFC
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case, will choose the alternative that was “correct” under the most samples. Therefore,

we show the inflation of error rates for the sample-based agent over the optimal agent as

a function of the number of samples and the maximum probability of the multinomial

(A)

(B)

(C)

(D)

(E)

Fig. 9. Optimal fixed-k (red), SPRT (green), and accumulator (blue) policies as a function of action/sample

time ratio for two utility functions: no punishment (solid; correct: +1; incorrect: 0), and symmetric (dashed;

correct: +1; incorrect: �1). (A) Expected number of samples per decision under the optimal threshold (mar-

ginalizing over a uniform distribution on p): regardless of the decision policy, when samples are costly, the

optimal threshold yields very few samples per decision. (B) Expected rate of return per unit time under the

optimal threshold: of course, a no punishment utility function offers higher rates of return; rates of return

increase as samples become cheaper; and policies that use samples more efficiently (like SPRT) show a slight

advantage over fixed-k. (C) Difference in the expected number of samples per decision compared with the

fixed-k policy: Although they use very different stopping criteria, optimal SPRT and accumulator policies

end up using roughly the same number of samples at a given action/sample time ratio as the fixed-k policy—
sometimes lower, sometimes higher. (D) Expected gain in rate of return over the fixed-k policy (as a percent-

age): Although they use roughly the same number of samples as the fixed-k policy, SPRT and accumulator

decision policies are more efficient and thus can attain higher rates of return when samples are relatively

cheap; however, none of these policies dominates the others, as there exists an action/sample time ratio and

utility function under which each policy is optimal. (E) The optimal thresholds T for SPRT and accumulator

policies (note that the optimal fixed-k thresholds are shown in plot (A)).
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(Fig. 10). Just as in the 2AFC case, the optimal agent has the greatest advantage in prob-

lems of “interim” difficulty—when the maximum probability is neither too close to

chance (where the sample-based agent and the optimal agent must both resort to random

guessing) nor too close to certainty (when one sample will be sufficient for perfect accu-

racy for the sample-based agent). Again, just as in the 2AFC case, the advantage of many

samples decreases quickly.

Once again, the relevant question is as follows: How much worse should the sample-

based agent expect to fair, given that probabilities are unknown. Thus, we again margin-

alize over possible probability distributions over alternatives, assuming a uniform prior

over multinomial distributions (a Dirichlet distribution with a = 1), and obtain the

expected additional error for the sample-based agent over the optimal agent as a function

of the number of samples (Fig. 11A). And again, just as in the 2AFC case, we see that

the expected additional error decreases quickly (albeit faster for choices with fewer alter-

natives).

Finally, we ask: How many samples should the sample-based observer take when faced

with a choice among many alternatives? We take the same analysis strategy as in the

2AFC case: We assume that a given sample costs time, and thus slows down the deci-

sion, and that a rational sample-based agent is trying to maximize expected rate of return.

As such, we can multiply the expected utility (here, we consider only the “no punish-

ment” utility function6) by the number of decisions made per unit time, for each number

of samples obtained. This interim calculation is shown in Fig. 11B.

Fig. 10. Increased error rate for the sample-based agent over the optimal agent as a function of the number

of alternatives in the decision (different panels), the number of samples, and the probability of the highest

probability alternative. These values were produced by numerical simulation.

616 E. Vul et al. / Cognitive Science 38 (2014)



From the calculation in Fig. 11B, we can then plot the optimal number of samples

given a particular sample cost, for decisions with different numbers of alternatives. This

is displayed in Fig. 11C. Just as in the 2AFC case, a large regime of possible sample

costs result in 1 as the optimal number of samples. However, the more alternatives there

are, the faster the optimal number of samples rises as a function of decreasing sample

cost, reaching an optimal calculation of as many as 75 samples within our tested range.

Nonetheless, again, we see that in a large range of possible sample costs, making very

(A)

(C)

(B)

Fig. 11. (A) Expected increased error rate for the sample-based agent over the optimal agent as a function

of the number of alternatives in the decision (different lines) and the number of samples (horizontal axis).

(B) Expected rate of return for the sample-based agent as a function of number of alternatives in a decision

(different panels), the number of samples used per decision (horizontal axis), and the action/sample cost ratio

(different lines). (C) Optimal number of samples for the sample-based agent as a function of the action/sam-

ple cost ratio (horizontal axis) and the number of alternatives in the decision being made (different lines). All

these plots marginalize over possible multinomial probability distributions describing which alternative is cor-

rect, using a uniform Dirichlet prior.
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quick, suboptimal decisions is the best policy, even when choosing among as many as 32

alternatives.

These results dovetail with the literature on the Hick–Hyman law (Hick, 1952; Hyman,

1953), which describes the near-ubiquitous log-linear relationship between the number of

alternatives (n) in a decision problem, and the average response time on the problem as

RT = a + b log 2(n + 1), where a is the fixed time of a movement. Previous work has

shown that an agent making nAFC decisions based on racing diffusion/accumulator models,

who adjusts thresholds to reach constant high accuracy rates, will exhibit Hick’s law reac-

tion times (Usher, Olami, & McClelland, 2002), and that this feature arises from basic statis-

tical requirements for obtaining sufficient information to attain a certain level of accuracy as

the number of alternatives increases (Usher & McClelland, 2001). Our result shows that the

Hick–Hyman relationship falls out of our analyses as the optimal policy, without presuming

a requirement to maintain constant accuracy (Fig. 12). Indeed, as the number of alternatives

increases, the optimal sample-based policy shows a marked drop in accuracy (while the

number of samples increased proportionally to log (n)). This is exactly the behavior that

real subjects exhibit when their response times and accuracies are not constrained by the

experiment (Brown, Steyvers, & Wagenmakers, 2009). Thus, the number of samples a sam-

ple-based agent should take before reaching a decision for nAFC tasks, given a fixed action/

Fig. 12. Hick’s law from a sample-based agent. (Left) Optimal number of samples (vertical axis) for the

sample-based agent as a function of the number of alternatives ( log2(n + 1), horizontal axis) and the cost

per sample (different lines). (Right) Expected accuracy given the optimal number of samples. The optimal

sample-based agent shows linear scaling of response times with the logarithm of the number of alternatives,

while allowing accuracy to drop as the number of alternatives increases (as people do; Brown et al., 2009).
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sample cost ratio follows the Hick–Hyman law. On our analysis, the slope, b, of this linear
relationship is determined by the time cost, or difficulty, of obtaining a single sample for the

decision, or as intuitively described by Hick (1952), the inverse of the processing speed.

6. Continuous decisions

Thus far we have shown that for choices among 2, 4, 8, 16, and 32 alternatives, a sample-

based agent is often best advised to make decisions based on very few samples—thus, it

should not be surprising that people are often observed to make decisions as though they are

taking only a few samples in such scenarios. However, many human actions are defined over

continuous variables: where to move an arm, how long to wait for a tardy friend, etc. These

are all “continuous” decisions, rather than choices among discrete alternatives. These sce-

narios never have a single, explicitly correct answer, but rather, are often rewarded for preci-

sion—the closer to the optimal answer, the higher the reward. We will now consider actions

defined by continuous variables, and again ask: How bad are decisions based on few sam-

ples, and how many samples should a sample-based agent use?

Just as in the binomial (2AFC) and multinomial (nAFC) cases, we assume that for

continuous choices the “correct” answer on a given trial is drawn from the posterior

probability distribution that the optimal observer has access to (and which the sample-

based agent is approximating with samples). For simplicity, we will assume that here this

posterior probability distribution takes the form of a Gaussian with standard deviation rP.

6.1. Making continuously valued decisions

Determining choices among a set of discrete alternatives under a correct/incorrect pay-

off scheme for optimal and sample-based observers was straightforward: choose the alter-

native with highest probability (or the most samples). However, when choosing along a

continuous dimension, this formalization no longer makes sense. The task would be hope-

less if the reward structure were a delta function—that is, if only one of infinitely many

continuously varying possibilities was deemed “correct” and rewarded.

Therefore, instead of structuring rewards as a delta function, it is common practice to

define a reward function for continuous decisions that decreases as a function of distance

from the correct answer. For instance, the target for archery competitions is composed of

many concentric circles and archers attempt to get an arrow as close as possible to the

center because the inner circles are worth more points. Typical reward functions for such

games are different from the loss functions considered in statistics, which are commonly

unbounded (for instance, L2: loss that increases with the square of the distance from the

target): ranging from zero for a perfect answer to infinite loss. However, in the games we

consider, and arguably in the real world, the loss function drops off until it reaches some

bound—if one were to miss the archery target altogether, one gets zero points, regardless

of how badly the target was missed. A variant of such a utility function has been charac-

terized mathematically as a “maximum local mass” loss function: essentially, a utility

E. Vul et al. / Cognitive Science 38 (2014) 619



function that is shaped like a Gaussian probability distribution peaking at the correct

answer and dropping off to zero with distance (Brainard & Freeman, 1997). Thus, for con-

tinuous choice decisions we use the maximum local mass utility function, which captures

the idea that there is one best answer and many equally wrong answers, but also avoids

the impossible pitfalls of assuming a delta function as the utility structure of the task.

Given the maximum local mass utility function, the optimal observer should choose the

mean of the Gaussian probability distribution describing her uncertainty; and the sample-

based agent should choose the mean of the obtained set of samples (this holds in so far as

the utility function and posterior are unidimensional, unimodal, and symmetric; for multi-

dimensional problems, see Brainard & Freeman, 1997 for approximation algorithms).

6.2. How many samples should the sample-based agent use?

Error rates as quantified by the squared distance from the target are quite meaningless, as

these do not take into account a meaningful utility function.7 Thus, we skip directly to an

analysis of how many samples will maximize the rate of return for the sample-based agent.

The optimal number of samples for a continuous decision will depend on two factors

we had not previously considered. First, the breadth of the distribution predicting the

target location, parameterized by its standard deviation, rP. Second, the breadth of the

utility function, parameterized also by its standard deviation rU: how close to the target

center does our response have to be to be rewarded. The optimal number of samples turns

out to be a function of the ratio between these two standard deviations.

When rP is much larger than rU, then no matter how many samples we take (to obtain

an accurate estimate of the mean of the predictive distribution) our prediction will still be

so uncertain that the correct answer is unlikely to be close enough to the mean to be

rewarded. Asking how many samples we should take in this case is like asking, “How

carefully should we aim when throwing a crumpled piece of paper from the Empire State

building into a trash can on the ground?” Obviously, we should not aim very carefully

because no matter how carefully we aim our success will be left to chance. For exactly

the same reasons, in such circumstances we should make decisions based on very few

samples, as additional samples will be of no use.

When rU is much larger than rP, then it also does not make sense to take many sam-

ples. When this is the case, if we take one, or infinitely many samples, our guess is still

guaranteed to be near the peak of the utility function, and we will obtain similar rewards.

This case is analogous to throwing a piece of crumpled paper into a large trash can situ-

ated an inch under your hand; in this case, it makes no sense to spend time aiming

because there simply is no way you could miss.

However, in an intermediate range, when the relationship between rU and rP is just

right, then we should obtain many samples to improve performance. This is the scenario

when we must throw our paper ball into a trash can from across the room—it is doable,

but it is not so easy that we should not aim—it is just the right level of difficulty. In this

case we would spend the time to take careful aim and delicately arc the toss. Similarly,

in this case, we should take many samples when trying to make a decision.
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Fig. 13 shows the optimal number of samples as a function of sample cost and the log

of the ratio between rU and rP. We see exactly the effects described above—at interim

ratios, when samples are cheap enough, we should take many of them (within our tested

range, as many as 70). However, when decisions are too hard, or too easy, or the sample

cost is not low (when it would take at most 10 samples to double our time per decision),

we are best off taking just one sample, and making a guess accordingly. Thus, again,

when making continuous decisions, it seems that often the best course of action is to

make many quick, imperfect decisions to maximize long-run rewards.8

7. Strategic adjustment of sampling precision

Thus far, we have shown that under some assumptions, in cases when people try to

maximize their expected rate of return, making decisions based on very few samples is

actually optimal. However, based on our analysis, we expect that people would use more

samples for decision that have higher stakes or are allotted more time—do people make

these predicted, optimal adjustments?

A large prior literature on “probability matching” (Herrnstein, 1961; Vulkan, 2000) has

studied a very similar phenomenon in a simpler task. In probability matching, participants

predict the outcome of a trial based on the relative frequencies with which that outcome has

been observed in the past. Thus, participants have direct evidence of the probability that

Fig. 13. Optimal number of samples for a sample-based agent as a function of the time cost of each addi-

tional sample and the ratio of the breadths of the utility function and of the posterior predictive distribution.

There is a narrow range when the continuous decision is just difficult enough so as to warrant taking multiple

samples (as many as 40 or 60 when samples are very quick, requiring 1,000 or 10,000 to halve the rate of

decision). However, when samples are costly (requiring fewer than 10 to halve the decision rate), or in the

infinitely wide range of decisions where the intrinsic uncertainty of the task is mismatched to the reward

structure, making decisions based on just one sample is optimal.
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lever A or lever B should be pulled, but they do not seem to maximize; instead, they “proba-

bility match” and choose levers with a frequency proportional to the probability of reward.

On our account, this literal “probability matching” behavior amounts to making decisions

based on one sample, whereas decisions based on more samples would correspond to Luces

choice decisions (Luce, 1959) with an exponent greater than 1.

As probability matching contains a large body of experimental work, we can use this

literature for a preliminary evaluation of a key question: Do people adjust the number of

samples they use as key parameters of the decision process change? Shanks, Tunney, and

McCarthy (2002) concluded that this is the case from a finding indicating that people

tend to adopt an ideal maximizing strategy as more training and reward are provided. We

can further test the effect of higher stakes on the apparent number of samples used to

make a decision in a more graded fashion within the set of experimental findings

reviewed by Vulkan (2000). Specifically, we computed the average stakes of the deci-

sions and an estimate of the number of samples participants used to make those decisions

for each of the studies reviewed in Vulkan (2000).

We measure the stakes of decisions as the difference in expected reward (in cents)

between a probability matching decision and a maximizing decision. These studies vary

in the probability of the alternative most likely to be “correct,” p, the reward for a correct

response, u(+), and the utility for an incorrect response, u(�). The expected maximizing
reward for these studies is thus U* = pu(+) + (1 � p)u(�), and the expected probability
matching reward is Um = (p2 + (1 � p)2)u(+) + 2p(1 � p)u(�). The quantity we are inter-

ested in—what we refer to as the stakes of the decision—is the advantage of maximizing

over probability matching, or Ud = U* � Um: For studies where this number is higher,

there is more to be gained by taking more samples.

The Luces choice rule describes the relationship between the probabilities of reward

associated with various actions and the frequency with which agents choose these alterna-

tives (see Eq. 4; Luce, 1959). If the frequency with which participants choose the option

most likely to contain the reward is ps, and the probability that the most likely option is

rewarded is pe, then the Luces choice odds ratio can be described as

pe
1� pe

� �L

¼ ps
1� ps

; ð4Þ

where L is the Luces choice exponent. Solving for L, we get:

L ¼ log
ps

1� ps

� �
= log

pe
1� pe

� �
: ð5Þ

With this expression we can measure the Luces choice exponent, L. On the assumption

that agents make decisions by sampling, the Luces choice exponent yields a proxy for the

number of samples used in a decision. If the agent uses a SPRT decision policy (see

Appendix A), the Luces choice exponent corresponds to the SPRT threshold, and the

expected number of samples per decision for that threshold is given by Feller (1966) as
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E½k� ¼ L

1� 2p
� 2L

1� 2p

1� ð1� p=pÞT
1� ð1� pÞ=pÞ2T : ð6Þ

Thus, we computed the stakes and a proxy for the number of samples used in each of

the 25 studies reviewed by Vulkan (2000) that tested probability matching with utility

functions defined in terms of correct and incorrect answers, and we can assess how the

effective number of samples per decision (E½k�) varies as a function of the stakes of a

decision (Ud). We measure the correlation between the logarithms of these two quantities9

in Fig. 14. Our prediction is that when the stakes are higher (that is, when the difference

in expected rewards between the maximizing and probability matching response strategies

is large), participants would use more samples for each decision, and thus would show a

higher Luces choice exponent. This is precisely what we find—the stakes and the effec-

tive number of samples are positively correlated: r(25) = .61, p = .0013, 95% confidence

interval on the correlation coefficient: (.28, .81). Thus, despite all the other variation

across studies, laboratories, and so on, when stakes are higher, people are closer to maxi-

mizing—they seem to use more samples per decision when it matters more. We suspect

that using rational algorithmic analyses of meta-cognitive decisions in this manner may

be a fruitful way to systematically derive satisficing heuristics—decision policies that,

although explicitly suboptimal, yield near-optimal behavior under cognitive processing

constraints, thus offering a formal approach to “bounded rationality” (Simon, 1956).

Fig. 14. Effective number of samples (based on the Luces choice exponent evident in human choices) as a

function of the reward structure (the expected reward from maximizing decisions minus the expected reward

(in U.S. cents) from probability matching decisions. Because both quantities are bounded at 0, we plot their

logarithms against each other. Each data point corresponds to one study as surveyed by Vulkan (2000)—
despite all the extraneous variation between studies, there is a significant correlation: r(25) = .61,p = .0013.
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8. Discussion

We began with the observation that, on average, people tend to act consistently with

ideal Bayesian inference, integrating information to optimally build models of the world;

however, locally, they appear to be systematically suboptimal, acting based on a very

limited number of samples. This has been used to argue that people are not exactly

Bayesian (Mozer et al., 2008). Instead, we have argued that sample-based approximations

are a powerful method for implementing approximate Bayesian inference. Although with

few samples, sample-based inferences will deviate from exact Bayesian inference, we

showed that for choices among 2, 4, 8, 16, and 32 discrete alternatives and for unidimen-

sional continuous choices, a decision based on a very small set of samples is nearly as

good as an optimal decision based on a full probability distribution. Moreover, we

showed that given reasonable assumptions about the time it takes to produce an exact

sample, a policy of making decisions based on very few samples (even just one) is glob-

ally optimal, maximizing long-run utility for choices among discrete alternatives as well

as choices along continuous variables. Furthermore, our analysis predicts that when the

stakes are higher, participants should use more samples for a decision, and we found

evidence of such optimal meta-cognition in a meta-analysis of the probability matching

literature.

8.1. Related arguments

Other authors have invoked various kinds of sampling as a way to explain human deci-

sion making. Stewart, Chater, and Brown (2006) suggested that a policy of making deci-

sions through binary preference judgments among alternatives sampled from memory can

account for an assortment of human judgment and decision-making errors. Schneider,

Oppenheimer, and Detre (2007) suggest that votes from sampled orientations in multi-

dimensional preference space can account for violations of coherent normative utility

judgments. A promising direction for future research would be to relate models like these,

based on samples drawn from memory or over preferences, to models like those we have

described in our study, in which samples are drawn from probability distributions reflect-

ing ideal inferences about the world.

Another related argument comes from proponents of “bounded rationality” (Gigeren-

zer, 2008; Simon, 1956): Given cognitive limitations, strict optimization is impractical if

not impossible, and instead people may adopt heuristics that are sufficient for good per-

formance. On this view, people do not optimize their behavior given the presented reward

structure, but instead they “satisfice” to make approximate decisions that respect cognitive

constraints. Making decisions based on one or just a few samples is an example of such a

satisficing heuristic—although under such a decision policy the agent does not optimize

any one decision, the policy yields behavior that is actually optimal in the context of the

limitations of the agent. We are optimistic that by explicitly considering meta-cognitive
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optimization, one might find such heuristics that are not optimally rational, but are opti-

mal under the constraints of bounded rationality.

8.2. Internal samples versus external information gathering and decisions from
experience

It is important to distinguish between internal sampling from the posterior, and external

sampling of data from the world. Formalizing external information gathering as sampling

data from the world is a useful tool for analyzing how much information people gather

from the world before making a decision. In contrast, internal sampling, as we have

described here, is a strategy for approximate inference and a candidate general description

of effortful “thought” to solve a problem, with the goal of asking how much do people

“think” before making a decision. Although these accounts intend to explain different

bodies of work, they share a close formal relationship, so similar optimality consider-

ations ought to apply.

Whether or not people are exactly optimal, one thing is clear: When sampling data

from the world, people are inclined to gather little evidence, and make decisions quickly,

rather than spend a lot of time “sampling” evidence (Hertwig & Erev, 2009; Hertwig &

Pleskac, 2010). Thus, it seems that whether decisions are being informed by external

information gathering or internal deliberation, the trade-off between making quick, less-

informed decisions and slow, more informed decisions is similar. In both cases, people

seem to choose a globally optimal policy of using few samples to make quick decisions.

8.3. Optimality in sequential sampling models

Sequential sampling models (Ratcliff & Smith, 2004) based on the SPRT (Wald,

1947), drift diffusion (Gold & Shadlen, 2000; Ratcliff, 1978), or accumulators (Brown &

Heathcote, 2008; Vickers, 1979) have been applied not only to sampling data from the

environment but also to more internal processes, such as memory (e.g., Ratcliff, 1978).

Although these models have not been formulated as an approximate inference strategy for

carrying out Bayesian inference, they share a number of similarities without analysis (as

described in Figs. 8 and 9 and Appendix A).

Models based on the SPRT are optimal in that they can achieve a given level of confi-

dence using the least amount of data—in other words, using fewest samples. Sequential

sampling models have mostly focused on characterizing the diffusion/accumulation pro-

cess that best captures human response time distributions. Our analysis focuses on the

choice of optimal thresholds for such models (see also Bogacz, 2007), and the effective

number of samples that they use under an optimal policy. While the emphasis of our

study differs from that of the bulk of the sequential sampling literature, our results are

fundamentally consistent with those modeling approaches. Indeed, when using sequential

sampling models to describe how people gather information about the world, it has been

suggested that people adopt nearly optimal decision criteria (so as to maximize the rate

of return Bogacz, 2007; Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006; Gold &
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Shadlen, 2002)—decision criteria that amount to using very few samples, and making

many quick, locally suboptimal decisions.

8.4. What is a sample?

What is a sample as we consider it, and what does it take to produce such a sample?

There are two important points to be made here. First, to pre-empt an objection from

experts in sampling who know that one typically needs many samples for inference, we

want to clarify that a sample, as we consider it, is an exact, independent sample—that is,

a sample from the actual posterior probability distribution. Various approximate sampling

schemes, such as Gibbs sampling (Geman & Geman, 1984), MCMC (Robert & Casella,

2004), importance sampling (Srinivasan, 2002), or particle filters (Doucet et al., 2001),

produce correlated samples. For instance, to produce an exact sample from a MCMC

algorithm one must run the algorithm for a fairly long “burn-in” period—in effect, what

we consider one sample would require many MCMC iterations—and even after the burn-

in period, subsequent samples are still correlated. All these approximate sampling meth-

ods are associated with schemes for estimating the effective sample size. In MCMC, this

amounts to the auto-correlation of the sampling chain; in importance sampling and parti-

cle filters, this is computed from the variance of the importance weights. We expect that

these schemes for estimating the effective sample size will yield numbers that can link

these more sophisticated sampling algorithms to the analyses we present in this study.

Indeed, recent arguments suggest that when there is a cost to each MCMC sample, very

few samples (yielding correlation and bias) are optimal (Lieder, Griffiths, & Goodman,

2012).

Second, where does deductive, procedural thought come into play if we cast thinking in

terms of sampling? Here, we want to clarify that the process for producing one exact sample

from a complex, structured model of the world will often require much deductive, proce-

dural calculation. Thus, although we cast the output of this processing as a “sample,” the

processing itself will often contain many deterministic calculations. For these reasons—that

a sample is actually the output of potentially very complicated calculations—we believe that

the process of producing one such exact sample is likely to be a rather slow process.

8.5. Sample cost

How much might a sample “cost”? In our analyses the relevant measure of sample cost

in multiple-trial experiments is the ratio between the time it takes to make an action and

go on to the next trial and the time required to draw a sample to inform a decision about

that action—a measure of how much a sample will slow down the rate of decision mak-

ing. Ratios near 10 seem quite reasonable: Most experimental trials last a few seconds,

and it can arguably cost a few hundred milliseconds to consider a hypothesis. This is

speculation; however, it seems to us that in most experimental tasks, the benefits gained

from a better decision are relatively small compared with the costs of spending a very

long time thinking. So, if thinking amounts to sampling possible alternatives before
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making a decision, it should not be surprising that people regularly seem to use so few

samples.

For the sake of parsimony we have only focused on the time cost of samples, and we

have assumed that each sample is an exact sample from the appropriate posterior. How-

ever, these assumptions may not be valid, people may (and are even likely to) face costs

over and above opportunity, to generating a sample, for instance, energy, metabolism, or

even “effort.”

Moreover, the value of a sample may be substantially smaller than we estimated: The

world changes, and our model of the world may be only approximate. If the world

changes while we sample for a decision (again, on the assumption that obtaining a sample

takes some time), then not only do additional samples slow the rate of decision making

but they also render the eventual decision progressively less matched to the ongoing state

of the world. Furthermore, even if the world does not change, but we assume that our

model of the world is not perfectly calibrated, then the asymptotic performance (achieved

with infinitely many samples) will be worse than we assumed. Insofar as either of these

conditions applies, the value of a sample for a decision will be substantially lower than

we had assumed in our calculations.

We have ignored these considerations from this article because both greater costs and

smaller gains from a sample would produce incentives to use fewer samples for a deci-

sion. As we have argued that using just a few samples for each of many decisions may

be an optimal policy, this conclusion holds with even more strength if the expected gains

from a sample are lower.

8.6. Reusing samples for multiple decisions

Thus far, we have considered scenarios where a sample-based agent takes a new set of

samples for each decision being made. This makes sense in many laboratory tasks where

each trial involves a new set of information on which to base a decision; however, many

real-world tasks require making many decisions based on the same information. In these

scenarios, it makes sense for an agent to cache and reuse samples for several decisions.

When samples correspond to a more abstract hypothesis space (e.g., a general categoriza-

tion rule), those samples offer greater opportunities for reuse, whereas specific samples

(e.g., a particular world state or action) cannot be reused. Thus, when more abstract

hypothesis spaces are considered, the time cost per sample is effectively reused because

many more decisions can use each sample obtained. We imagine that in such cases peo-

ple would use more samples than they would if only one choice was contingent on their

deliberation. Such scenarios result in an inherent difficulty in measuring how many sam-

ples went into a decision, and whether people are indeed sampling from the appropriate

posterior.

First, if people reuse samples across a number of decisions, then their decisions will

be correlated, and will reflect a narrower range of alternatives than sampling from the

appropriate posterior will predict. This dependency sometimes yields crucial evidence

that people are using a few samples for a decision, as in Goodman et al. (2008), where
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generalization behavior across multiple trials is most consistent with just a few sampled

rules being reused on every trial (see Fig. 1). However, sometimes this dependency will

yield ambiguities about whether individual participants make judgments based on the

full posterior by reusing a few samples, or whether individual participants have large

idiosyncratic biases about the posterior in question (in the limiting case, basing predic-

tions of cake baking times based on only a few experienced cakes; Mozer et al., 2008).

This phenomenon can be well illustrated by human judgments of the prices of individ-

ual goods: We asked people to make several estimates about the price of product cate-

gories (e.g., a diamond ring); while the across-subject dispersion in mean estimates

tracked the dispersion of prices in the real world (estimated from Google products), the

dispersion of guesses within an individual was substantially lower (Fig. 15). In such

data, it is impossible to assess whether individual participants simply produce correlated

guesses because they are reusing samples or because they have biased, impoverished

beliefs.

There is some reason to suspect that in many cases these correlations arise from partic-

ipants reusing samples, or obtaining correlated samples, rather than from individual

Fig. 15. Human judgments of prices of various products—each participant made multiple guesses about the

price of a product category (e.g., diamond rings; snowboards, etc.). For each product we plot the within-sub-

ject dispersion of the price setting (gray; the average within-subject standard deviation) and the across-subject

dispersion (black; standard deviation across subjects of the average guessed price for each participant).

Although both within- and across-subject dispersion are well correlated with the empirical dispersion of prod-

uct prices, within-subject dispersion is objectively much smaller than the empirical dispersion, whereas

across-subject dispersion tracks empirical dispersion more closely. These results could be attributed either to

systematic reuse of sampled prices by individuals across multiple trials, or to systematic biases in beliefs

across participants (or some combination). We argue based on other work that systematic reuse of samples is

likely to play a larger role.
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biases. First, correlations between two guesses from one individual decrease as more time

passes between guesses (Vul & Pashler, 2008), suggesting that individual biases dissipate

as participants forget their previous estimates or samples. Second, even when an addi-

tional guess about the same problem is obtained without an additional delay, the two

guesses are less correlated for individuals with lower working memory capacity, suggest-

ing that the dependency between multiple guesses does not arise from individual biases,

but from an ability to remember and reuse multiple samples across decisions (Hourihan

& Benjamin, 2010). Finally, when task constraints prevent participants from reusing sam-

ples across multiple guesses, those guesses appear to be independently sampled from an

identical distribution (Vul et al., 2009). Together, these results suggest that stable individ-

ual variability across judgments arises not from idiosyncratic deviations in the posterior,

but from systematic reuse or correlation of samples from the posterior across a number of

trials, when such reuse is possible.

8.7. Assumption of a uniform prior over p

Our analyses, particularly in the alternate forced-choice domains, have assumed that the

sample-based agent assumes an uninformative prior about the problem—that is, the sample-

based agent assumes a uniform prior over p in the Bernoulli case. On this assumption, our

calculations of the optimal number of samples seem most robust and general; however, the

optimal number of samples will vary if the structure of the problem confers a more informa-

tive prior. If we assume that we are in a nearly deterministic setting where p tends to

extreme values (0 or 1), then the optimal number of samples will change: These cases guar-

antee that the first sample will be informative and the second sample will be redundant. On

the other hand, if we assume we are dealing with a very random, unconstrained problem,

where p tends to be around 0.5, then we know that all samples will be uninformative. If we

think that p tends to be around 0.7—a regime where more samples payoff—then we would

assume that we should use more samples. As assumptions about p will vary, the shape of

the optimal number of samples as a function of sample cost will vary; however, only under

very constrained conditions will the optimal number of samples be much higher than our

analyses have described.

8.8. Black Swans and variable utility functions

What happens with variable utility functions? In our analysis we have assumed that utility

functions are constant in nAFC decisions—one reward is assigned for a “correct” answer,

and another for an “incorrect” answer. This assumption holds for the bulk of psychological

experiments, and even for most methods of evaluating machine learning algorithms; how-

ever, it does not apply universally in the real world, where some outcomes are better than

other positive outcomes. Although little about our results will change when such variation

in utilities is small, it poses an interesting problem when this variation is large.

Take, for instance, the game of “Russian roulette,” in which one bullet is placed within

a six-shot revolver, and the drum is randomly spun; the player then aims the revolver at
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his or her head and pulls the trigger. In this game, there is a five in six chance that the

current chamber does not contain the bullet, and pulling the trigger will cause no harm,

and will confer a slight reward (the game is said to have been played by 19th-century

Russian military officers to demonstrate their bravado to others). However, there is a one

in six chance that the chamber does contain the bullet, in which case the loss is cata-

strophic (death). In these cases, and others, the sample-based agent that relies on few

samples might not consider the state of the world in which the bullet is in the current

chamber. Thus, the agent will not consider the relatively low probability of an extreme

outcome. This is referred to as the “Black Swan” problem (Taleb, 2008): Ignoring very

important but low probability events leads to substantial biases and irrationalities, which

Taleb (2008) argues exist in finance.

One possible method that sample-based agents may adopt to avoid the Black Swan

problem is increasing the sampling rate of high-stakes scenarios. For instance, instead of

sampling from just the posterior probability distribution over possible world states, one

might weight the samples by the variance of possible outcomes in that state. Using this

modified sampling strategy, world states in which decisions are particularly high stakes

will be over-represented relative to their probability but will allow the agent to compute

the expected utility of a particular action in a more useful manner. Such a sampling

scheme predicts some forms of availability effects (Tversky & Kahneman, 1974)—mental

over-representation of the possibility of events with extreme outcomes. It will be an inter-

esting direction for future research to assess how availability may be used to overcome

the Black Swan problem for sample-based agents and whether this sampling strategy

underlies human decision-making biases.

8.9. Limitations

We should emphasize that we are not arguing that all human actions and decisions are

based on very few samples. The evidence for sampling-based decisions arises in high-level

cognition when people make a decision or a choice based on what they think is likely to be

true (Which example is in the concept? How long will this event last? How many airports

are there in the United States?). In other situations people appear to integrate over the pos-

terior, or to take many more samples, such as when people make graded inductive judg-

ments (How similar is A to B? How likely is it that X has property P given that Y does?

How likely do you think that F causes G?). Moreover, in low-level sensory and motor tasks,

decisions often seem to be much closer to ideal Bayesian performance, rather than decisions

based on few samples, as seen in cognition (Trommershauser, Maloney, & Landy, 2003,

although see Battaglia & Schrater, 2007). It is interesting to consider why there may be a

difference between these sorts of decisions and tasks.

8.10. Conclusion

Under reasonable discrete and continuous choice scenarios, people are best advised to

make decisions based on few samples. This captures a very sensible intuition: When we are
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deciding whether to turn left or right at an intersection, we should not enumerate every pos-

sible map of the world. We do not need “moral certainty” about the probability that left or

right will lead to the fastest route to our destination—we just need to make a decision. We

must implicitly weigh the benefits of improving our decision by thinking for a longer period

of time against the cost of spending more time and effort deliberating. Intuition suggests

that we do this in the real world: We think harder before deciding whether to go north or

south on an interstate (where a wrong decision can lead to a detour of many miles), than

when we are looking for a house (where the wrong decision will have minimal cost).

Indeed, empirical evidence confirms this: when the stakes are high, people start maximizing

instead of “probability matching” (Shanks et al., 2002), and we show that they do so in a

graded fashion as stakes increase. Nonetheless, it seems that in simple circumstances, delib-

erating is rarely the prudent course of action—for the most part, making quick, locally sub-

optimal, decisions is the globally optimal policy: one (or a few) and done.
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Notes

1. The Monte Carlo theorem states that the expectation over a probability distribution

can be approximated from samples:

EPðSÞ½f ðSÞ� ’ 1

k

Xk
i¼1

f ðSiÞ; whenSi�PðSÞ: ð7Þ

2. The analysis becomes more subtle when the utility structure is more complex. We

return to this point later.

3. With an even number of samples, there is the possibility of a tie, which this equa-

tion does not handle. A more general equation for q is as follows:
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q ¼ Pk
x¼0 CðxÞ � Hðx; p; kÞ where x is the number of samples favoring the opti-

mal choice; C(x) is the choice function (0 when x < 0.5*k, 1 when x > 0.4*k, and
0.5 when x = 0.5*k); and Θ() is the Binomial probability mass function. This more

general equation appropriately handles ties, but it yields the same answer for odd

numbers of samples as the simpler equation in the main text. Critically, using this

more general formulation does not change any of our results—even numbers of

samples are never optimal; thus, we only consider odd numbers of samples here

and use the simple equation.

4. Bernoulli considered moral certainty to be at least 1,000:1 odds that the true ratio

will be within 1
50

of the measured ratio.

5. As an example, consider a situation with a payoff structure outside these bounds,

where a correct answer yields a gain of 1, and an incorrect answer yields a loss of

�2. In this case, if p is between 0.5 and 2
3
, the expected return per choice is nega-

tive, even for the ideal observer; thus, the ideal observer would try to minimize the

number of choices made per unit time—the ideal observer should stall.

6. With punishment for an incorrect decision among many alternatives, in many situa-

tions the expected reward may be negative, rather than positive, in which case the

optimal agent will try to minimize the number of decisions made per second—we

avoid this degenerate scenario by not considering punishment.

7. Squared distance is relevant for an L2 loss function, but such loss functions are

rarely (if ever) relevant for real-world decisions.

8. Here, we consider an infinite possible range of the continuous decision variable—
for our purposes, what is required is that the range of the variable is considerably

larger than rU and rP. In cases where the range is close to either of these standard

deviations, optimal policies will employ fewer samples (perhaps 0).

9. We used logarithms because both quantities are effectively bounded at zero and are

not normally distributed otherwise.

10. In practice, the approximation

E½U=tjT; c� ¼
Z 1

0:5

dpPðpÞ E½UjT ; p�
E½kjT ; p�=cþ 1

ð8Þ

yields very similar answers, and identical optimal thresholds within the set of cs we
considered.
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Appendix A: SPRT and accumulator agents for 2AFC decisions

A.1. Optimal thresholds for an SPRT policy

Under the sequential probability ratio test (SPRT) policy (Wald, 1947), the sample-

based agent calculates dk = x1 � x2: The difference in number of samples favoring

choice A1 and A2, and choose the corresponding action when jdkj reaches threshold

T. SPRT will choose action A1 with probability
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qT ; p ¼ pT

pT þ ð1� pÞT ð9Þ

after a variable number of samples k, yielding probability of correct choice

w
ðþÞ
T ; pþ ¼ pqT; p þ ð1 � pÞð1 � qT; pÞ. The expected utility per decision is thus

E½UjT; p� ¼ ðwðþÞ
T ; pÞuðþÞ þ ð1� w

ðþÞ
T; pÞuð�Þ; ð10Þ

where u(+) is the reward for a correct answer and u(�) is the reward (more likely punish-

ment) for an incorrect answer.

The probability distribution of the number of samples (k) for an SPRT policy to reach

a decision given threshold T and p is given by (Feller, 1966, ch. XIV, eq. 5.7):

PðkjT ; pÞ ¼ 2k

2T

� �
p
k�T
2 ð1� pÞkþT

2

X2T�1

v¼1

cos
vp
2T

� �k�1

sin
vp
2T

� �
sin

Tvp
2T

� �
ð11Þ

for all k that are of the same parity as T and k ≥ T (otherwise, PðkjT ; pÞ ¼ 0);

Pðk ¼ 1jT ¼ 1; pÞ ¼ 1, and Pðk ¼ 0jT ¼ 0; pÞ ¼ 1. The average number of samples

can be calculated more easily via (Feller, 1966, ch. XIV, eq. 3.4):

E½kjT ; p� ¼ T

1� 2p
� 2T

1� 2p

� � 1� 1�p
p

� �T

1� 1�p
p

� �2T
: ð12Þ

The expected rate of return (in arbitrary time units) for a particular threshold (T) given
a utility function (specifying u(+) and u(�)) and a prior on p (PðpÞ), and an action/sample

cost ratio (c) is

E½U=tjT ; c� ¼
Z 1

0:5

dpPðpÞ
X1
x¼0

E½UjT ; p�
ð2xþ TÞ=cþ 1

Pð2xþ TjT; pÞ ð13Þ

(note that we need only integrate over p 2 [0.5,1.0] due to symmetry).10 Thus, the opti-

mal threshold (T�
c ) that maximizes the rate of return for a given action/sample time cost

(c) is

T�
c ¼ argmax

T
E½U=tjT ; c�: ð14Þ

The optimal thresholds, expected rates of return (E½U=tjT�
c ; c�) and expected number of

samples per decision (E½kjT�
C; c� ¼

R 1

0:5 dpPðpÞE½kjT�
c ; p�) are shown in Fig. 9.
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A.2. Optimal thresholds for an accumulator policy

Under the accumulator policy (Vickers, 1979), a sample-based agent obtains samples

until either x1 or x2 (the number of samples in favor of A1 and A2, respectively) reaches

T, and then chooses the corresponding action. The accumulator policy guarantees neither

a fixed level of confidence per threshold nor a fixed number of samples. The probability

distribution of the number of samples (k) before a decision is made under an accumulator

policy with threshold T and probability p is

PðkjT ; pÞ ¼ k
T

� �
� k � 1

T

� �� �
pTð1� pÞk�T þ ð1� pÞTpk�T
h i

; ð15Þ

for T ≤ k < 2T, where
n
m

� �
is the binomial coefficient, defined to be 0 when n < m.

The probability of choosing option A1 given T, p, and k is

qk;T ;p ¼ pTð1� pÞk�T

pTð1� pÞk�T þ ð1� pÞTpk�T
ð16Þ

for k ≥ T > 0, and qk,T,p = 0.5 if T = 0. From this we can calculate the probability of cor-

rect choice as: w
ðþÞ
k; T ; pþ ¼ pqk; T ; p þ ð1 � pÞð1 � qk; T ; pÞ, and the expected utility per

decision as E½Ujk;T ; p� ¼ ðwðþÞ
k; T ; pÞuðþÞ þ ð1� w

ðþÞ
k; T; pÞuð�Þ.

The expected rate of return is therefore

E½U=tjT ; c� ¼
Z 1

0:5

PðpÞdp
X2T�1

k¼T

E½Ujk;T ; p�
k=cþ 1

PðkjT ; pÞ: ð17Þ

Yielding the optimal accumulator threshold T�
c ¼ argmaxT E½U=tjT; c�. The optimal

thresholds, expected rates of return (E½U=tjT�
c ; c�), and expected number of samples per

decision (E½kjT�
C; c� ¼

R 1

0:5 PðpÞdp
P2T�1

k¼T kPðkjT ; pÞ) are shown in Fig. 9.
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