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Abstract

Collecting cognitive science data using games has the potential
to be a powerful tool for recruiting participants and increasing
their motivation. However, designing games that provide use-
ful data is a difficult task that often requires significant trial and
error. In this work, we consider how to apply ideas from op-
timal experiment design to designing games for cognitive sci-
ence experiments. We use Markov decision processes to model
players’ actions within a game, and then make inferences about
the parameters of a cognitive model from these actions. We
present a general framework for finding games with high ex-
pected information gain based on this approach. We apply this
framework to Boolean concept learning, inferring the difficulty
of Boolean concepts from participants’ behavior. We show that
using games with higher expected information gain allows us
to make this inference more efficiently.
Keywords: optimal experiment design; Markov decision pro-
cess; computer games; concept learning

Introduction
Computer games have become increasingly popular tools for
gathering psychological data and for educational purposes
(e.g., Michael & Chen, 2005; Von Ahn, 2006; Siorpaes &
Hepp, 2008; Klopfer, 2008), providing a way to recruit large
numbers of motivated participants. However, creating games
that actually result in useful data requires significant engi-
neering, normally based on trial and error. In this paper we
propose a method for automating the process of designing
games, using ideas from optimal experiment design.

The key problem in designing games for cognitive science
research is finding a game that provides as much informa-
tion as possible about the research question being addressed.
For traditional experiments, the field of optimal experiment
design seeks to choose the design that will give the most in-
formation about the dependent variable (Atkinson, Donev, &
Tobias, 2007). We adapt this method to identify the game
that will give the most information about the parameters of a
cognitive model. By automating the process of game design,
we limit the trial and error necessary to find a game that will
provide useful data, while still reaping the benefits of using
games rather than traditional experiments.

Adapting optimal experiment design methods to game
design requires predicting people’s behavior within games,
which may differ from behavior in traditional experiments.
For instance, in a categorization experiment a participant’s re-
sponse to a stimulus may roughly correspond to whether she
believes the stimulus is in the category. However, in a game
this relationship is complicated by competing incentives. For
example, available actions in a game may be contingent on

the success of previous actions, leading to complex strate-
gies. We propose using Markov decision processes (MDPs)
to predict people’s actions in games. MDPs incorporate the
current and future benefit of an action, and thus allow us to
take into account the incentive structures and rules of a partic-
ular game. By combining MDPs with ideas from optimal ex-
periment design, we create a framework for finding the game
that will provide the highest expected information gain.

The plan of the paper is as follows. The next section pro-
vides background on optimal experiment design and MDPs.
We then show how to combine these ideas in a framework
for optimal game design. The remainder of the paper ap-
plies this general framework to the specific case of learning
Boolean concepts, illustrating the benefits of optimal game
design. We introduce a novel concept learning game, and
use our approach to optimize the game parameters. Two be-
havioral experiments show that our optimized game results in
more efficient estimation of the difficulty of learning different
kinds of Boolean concepts, and that the actual amount of in-
formation obtained from players is positively correlated with
the expected information gain of the game.

Background
The optimal game design framework we propose relies on
ideas from Bayesian experiment design and Markov decision
processes, which we will introduce in turn.

Bayesian Experiment Design
Bayesian experiment design, a subfield of optimal experiment
design, seeks to choose the experiment that will maximize the
expected information gain about a parameter θ (Atkinson et
al., 2007; Chaloner & Verdinelli, 1995). In cognitive science,
this procedure and its variations have been used to design
more informative experiments that allow for clearer discrimi-
nation between alternative hypotheses (Myung & Pitt, 2009).
Throughout this paper, let ξ be an experiment (or game) de-
sign and y be the data collected in the experiment. Then the
Bayesian experimental design procedure is as follows:

maximize U(ξ) =
Z

p(y|ξ)U(y,ξ)dy

where p(y|ξ) =
Z

p(y|ξ,θ)p(θ)dθ

and U(y,ξ) =
Z

(H(p(θ|y,ξ))−H(p(θ)))dθ, (1)

where H(p) is the Shannon entropy of a probability distri-
bution p, defined as H(p) =

R
p(x) log(p(x))dx. Thus, the



procedure maximizes the expected utility of an experiment ξ,
defined as the information gain over all outcomes y weighted
by their probabilities p(y|ξ) under the current prior.

Markov Decision Processes
The Bayesian experiment design procedure uses p(θ|y,ξ) to
calculate the information gain from an experiment. This
quantity represents the impact that the data y collected from
experiment ξ have on the parameter θ. In a game, the data y
are a series of actions, and to calculate p(θ|y,ξ), we must in-
terpret how θ affects those actions. Via Bayes’ rule, we know
p(θ|y,ξ) ∝ p(y|θ,ξ)p(θ). We thus want to calculate p(y|θ,ξ),
the probability of taking actions y given a particular value
for θ and a game ξ. To do so, we turn to Markov decision
processes (MDPs), which provide a natural way to model se-
quential actions. MDPs and reinforcement learning have been
used previously in game design for predicting player actions
and adapting game difficulty (Erev & Roth, 1998; Andrade,
Ramalho, Santana, & Corruble, 2005; Tan & Cheng, 2009).

MDPs describe the relation between an agent’s actions and
the state of the world and provide a framework for defining
the value of taking one action versus another (see Sutton &
Barto, 1998). Formally, an MDP is a tuple 〈S,A,T,R,γ〉,
where S is the set of possible states and A is the set of ac-
tions that the agent may take. The transition model T gives
the probability p(s′|s,a) that the state will change to s′ given
that the current state is s and the agent takes action a. The
reward model R(s,a,s′) describes the probability of receiving
a reward r ∈ R given that action a is taken in state s and the
resulting state is s′. Finally, the discount factor γ represents
the relative value of immediate versus future rewards. The
value of taking action a in state s is defined as the expected
sum of discounted rewards and is known as the Q-value:

Q(s,a) = ∑
s′

p(s′|s,a)

(
R(s,a,s′)+ γ ∑

a′∈A
p(a′|s′)Q(s′,a′)

)
,

(2)
where p(a′|s′) is the probability that an agent will take action
a′ in state s′ and is defined by the agent’s policy π. We assume
that people’s actions can be modeled as a Boltzmann policy,
as in Baker, Saxe, and Tenenbaum (2009):

p(a|s) ∝ exp(βQ(s,a)), (3)

where higher values of β mean the agent is more likely to
choose the best action, while β = 0 results in random actions.

Optimal Game Design
We can now define a procedure for optimal game design,
identifying the game with maximum expected information
gain for θ. We assume there is an existing game design with
parameters to adjust, corresponding to point values, locations
of items, or any other factor that can be varied. To apply
Bayesian experiment design to choosing a game, we define
the utility of a game ξ as the expectation of information gain
over the true value of θ and the actions chosen by the players:

U(ξ) = Ep(θ,a)[H(p(θ))−H(p(θ|a,ξ))], (4)

where a is the set of action vectors for all players. The ex-
pectation is approximated by sampling θ from the prior p(θ),
and then simulating players’ actions given θ by calculating
the Q-values for the MDP and sampling from Equation 3.

The remaining quantity in Equation 4 is p(θ|a,ξ). Intu-
itively, this quantity connects actions taken in the game with
the parameter of the cognitive model that we seek to infer,
θ. For a game to yield useful information, it must be the case
that people will take different actions for different values of θ.
Concretely, we expect that players’ beliefs about the reward
model and the transition model may differ based on θ. For
instance, in a categorization task with two objects A and B, θ

might determine the probability that A is a positive instance
and B is a negative instance of the category. If taking a par-
ticular action leads to positive rewards only when a positive
instance is observed, then we would expect that the value of
θ is large if many players take that action when observing A.

The process of inferring θ from actions assumes that each
θ corresponds to a particular MDP. If this is the case, we can
calculate a distribution over values of θ based on the observed
sequences of actions a of all players in the game ξ:

p(θ|a,ξ) ∝ p(θ)p(a|θ,ξ) (5)
= p(θ)p(a|MDPθ,ξ) (6)

= p(θ)∏
i

p(ai|MDPθ,ξ), (7)

where ai is the vector of actions taken by player i and MDPθ

is the MDP derived for the game based on the parameter θ.
Calculating this distribution can be done exactly if there is a
fixed set of possible θ or by using Markov chain Monte Carlo
(MCMC) methods if the set of θ is large or infinite (see Gilks,
Richardson, & Spiegelhalter, 1996).

Now that we have defined p(θ|a,ξ), we can use this to
find the utility of a game. Equation 4 shows that this cal-
culation follows simply if we can calculate the entropy of the
inferred distribution. In the case of a fixed set of possible
θ, H(p(θ|a,ξ)) can be calculated directly. If MCMC is used,
one must first infer a known distribution from the samples and
then take the entropy of that distribution. For example, if θ is
a multinomial and p(θ) is a Dirichlet distribution, one might
infer the most likely Dirichlet distribution from the samples
and find the entropy of that distribution.

We have now shown how to (approximately) calculate
U(ξ). To complete the procedure for optimal game design,
any optimization algorithm that can search through the space
of games is sufficient. Maximizing over possible games is
unlikely to have a closed form solution, but stochastic search
methods can be used to find an approximate solution to the
maximum utility game. For example, one might use simu-
lated annealing (Kirkpatrick, Gelatt, & Vecchi, 1983). This
method allows optimization of both discrete and continuous
parameters, where neighboring states of current game are
formed by perturbations of the parameters to be optimized.
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Figure 1: Boolean concept structures. In each structure, eight
objects differing in three binary dimensions are grouped into
two categories of four elements. Each object is represented as
a corner of a cube based on its combination of features, and
the objects chosen for one category in each problem type are
represented by dots.

Optimal Games for Boolean Concept Learning
We have described a general framework for automatically
finding games that are potentially highly informative about
model parameters. To test this framework, we applied it to a
particular question: What is the relative difficulty of various
Boolean concept structures? This question has been studied
in past work (e.g, Shepard, Hovland, & Jenkins, 1961; Grif-
fiths, Christian, & Kalish, 2008), so we can compare our re-
sults to those produced using more traditional methods. We
first describe Boolean concept learning, and then turn to the
game we created and the application of optimal game design.

Boolean Concepts
In Boolean concept learning, one must learn how to catego-
rize objects that differ along several binary dimensions. We
focus on the Boolean concepts explored in Shepard et al.
(1961). In these concepts, there are three feature dimensions,
resulting in 23 possible objects, and each concept contains
four objects. This results in a total of 70 concepts with six
distinct structures, as shown in Figure 1. Shepard et al. (1961)
found that the six concept structures differed in learning dif-
ficulty, with a partial ordering from easiest to most difficult
of I > II > {III, IV,V} > VI. Similar results were observed
in later work (Nosofsky, Gluck, Palmeri, McKinley, & Glau-
thier, 1994; Feldman, 2000) although the position of Type VI
in the ordering can vary (Griffiths et al., 2008).

To model learning of Boolean concepts, we assume learn-
ers’ beliefs about the correct concept h can be captured by
Bayes’ rule (Griffiths et al., 2008):

p(h|d) ∝ p(h)p(d|h) (8)

= p(h) ∏
d∈d

p(d|h), (9)

where each d ∈ d is an observed stimulus and its classifi-
cation, and observations are independent given the category.

The likelihood p(d|h) is then a simple indicator function:

p(d|h) ∝

{
1 if h ` d
0 otherwise , (10)

where h ` d if the stimulus classification represented by d
matches the classification of that stimulus in hypothesis h.
We seek to infer the prior p(h), which represents the diffi-
culty of learning different concepts and thus gives an implicit
ordering on structure difficulty. In our earlier terminology, θ

is a prior distribution on concepts p(h). For simplicity, we as-
sume all concepts with the same structure have the same prior
probability, so θ is a 6-dimensional multinomial.

Corridor Challenge
To teach people Boolean concepts we created the game Cor-
ridor Challenge, which requires learning Boolean concepts to
achieve a high score. Corridor Challenge places the player in
a corridor of islands, some of which contain a treasure chest,
joined by bridges (Figure 2).1 The islands form a linear chain
and the bridges can be crossed only once, so players cannot
return to previous chests. Some chests contain treasure, while
others contain traps; opening a chest with treasure increases
the player’s score and energy, while opening a chest with a
trap decreases these values. Each chest has a symbol indi-
cating whether it is a trap; symbols differ along three binary
dimensions and are categorized as a trap based on one of the
Boolean concepts. Players are shown a record of the symbols
from opened chests and their meanings (see the right hand
side of Figure 2). Players are told to earn the highest score
possible without running out of energy, which is depleted by
moving to a new island or opening a trapped chest. When a
player runs out of energy, the level is lost and she cannot ex-
plore the rest of the level; surviving a level earns the player
250 points. Corridor Challenge games may consist of several
levels. Each level is a new corridor with different chests, but
the same symbols are used and they retain the same meaning
as on the previous level. At the start of each level, the player’s
energy is restored, but points are retained from level to level.

Optimizing Corridor Challenge
Applying optimal game design to Corridor Challenge re-
quires specifying the parameters to optimize in the search
for the optimal game, formulating the game as an MDP, and
specifying the model for how the player’s prior on concepts
(θ) relates to the MDP parameters. The structure of Corridor
Challenge allows for many variants that may differ in the ex-
pected information gain. To maximize expected information
gain while keeping playing time relatively constant we lim-
ited the game to two levels, with five islands per level. We
then used optimal game design to select the number of points
gained for opening a treasure chest, points lost for opening
a trap chest, the energy lost when moving, the symbols that

1Corridor Challenge uses freely available graphics from
http://www.lostgarden.com/2007/05/dancs-miraculously
-flexible-game.html



Figure 2: Corridor Challenge game UI (Level one of the ran-
dom game in Experiment 1). In this screenshot, the player
has opened the first chest and moved to the second island.

appeared on the chests, and the Boolean concept used to cate-
gorize the chests. For simplicity, we assumed that the number
of points gained (or lost) for a particular action is equal to the
amount of energy gained (or lost) for that particular action.

Given particular specifications for these variants of the
game, we can define an MDP. Note that we define the MDP
based on a player’s beliefs, since these govern the player’s ac-
tions, and these beliefs do not include knowledge of the true
concept that governs the classification of the symbols:
States: The state is represented by the player’s energy, her
current level and position in the level, and the symbols on all
chests in the current level.
Actions: The player can open the current chest (if there is
one) or move to the next island.
Transition model: The player transitions to a new state based
on opening a chest or moving to a new island. In both cases,
the symbols on the chests stay the same, with the current sym-
bol removed if the player opens the chest. If a player chooses
to move, she knows what state will result: her position will
move forward one space and her energy will be depleted by
a known constant. If the result is negative energy, then the
game transitions to a loss state. However, if a player opens
a chest, her beliefs about what state will occur next is depen-
dent on p(h|d), her beliefs about the true concept given the
data d she has observed so far. The player will gain energy if
the symbol x on the current chest is in the concept. Taking an
expectation over possible concepts h, this probability is

p(x in concept) = ∑
h

I(h ` x)p(h|d), (11)

where I(h ` x) = 1 if x is in the concept h and 0 otherwise.
The probability of decreased energy is (1− p(x in concept)).
Based on the Bayesian model presented above, the player’s
current beliefs p(h|d) are dependent on the prior probabil-
ity distribution over concepts. Thus, the transition model as-
sumed by the player is dependent on the parameter θ that we

would like to estimate, which is this prior distribution.
Reward model: When the player moves from one island to
another, the reward model specifies R(s,a,s′) = 0, and when
the player opens a chest, R(s,a,s′) is a fixed positive number
of points with probability p(x in concept) and a fixed negative
number of points with probability (1− p(x in concept)).

By using the MDP framework and assuming that the player
updates her beliefs after seeing information, we ignore the
value of information in understanding people’s decisions; that
is, we assume people make decisions based on their current
information and do not consider the effect that information
gained now will have on their future decisions.

Experiment 1: Inferring Difficulty
To test our framework, we first used the optimal game de-
sign procedure to find a version of Corridor Challenge with
high expected information gain, and then ran an experiment
in which players played the optimized game or a randomly
chosen game with lower expected information gain.

Search Methods
We used simulated annealing to search for the best design for
Corridor Challenge (Kirkpatrick et al., 1983). The expected
information gain of a game was approximated by sampling 35
possible θ vectors uniformly at random (reflecting a uniform
prior on θ), simulating the actions of n = 25 players in the
game, and using the simulated data to infer p(θ|ξ,a). We ap-
proximated p(θ|ξ,a) using the Metropolis-Hastings MCMC
algorithm (Gilks et al., 1996), with a Dirichlet proposal dis-
tribution centered at the current state. The parameter β for the
Boltzmann policy was set to 1.

To execute the search, we parallelized simulated anneal-
ing by using several independent search threads. Every five
iterations, the search threads pooled their current states, and
each thread selected one of these states to continue searching
from, with new starting states chosen probabilistically such
that states with high information gain were more likely to be
chosen. Each search state is a game, and the next state was
found by selecting a parameter of the current game to per-
turb. If the selected parameter was real-valued, a new value
was chosen by sampling from a Gaussian with small variance
and mean equal to the current value; if the selected parameter
was discrete, a new value was selected uniformly at random.

Search Results
The stochastic search found games with significantly higher
information gain than the initial games, regardless of start-
ing point. This demonstrates that the evaluation and search
procedure may be able to eliminate some trial and error in
designing games for experiments. Qualitatively, games with
high information gain tended to have a low risk of running
out of energy, at least within the first few moves, and a di-
verse set of stimuli on the chests. These games also generally
had positive rewards with larger magnitudes than the negative
rewards. The game with the highest information gain used a
true concept of Type II, although several games with similarly
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Figure 3: Results of Experiment 1, in the form of posterior distributions on concept difficulty from participants’ responses
in (a) the optimized game and (b) the random game; red lines indicate the mean of each distribution. Each panel shows the
distribution over the inferred difficulty of a concept with the given structure (Types I-VI), as reflected by its prior probability in
the Bayesian model. Concepts with higher prior probability are easier to learn. Note the logarithmic scale.

high information gain had true concepts with different struc-
tures. While the information gain found for any given game is
approximate, since we estimated the expectation over possi-
ble priors with only 35 samples, this was sufficient to separate
poor games from relatively good games; we explore this rela-
tionship further in Experiment 2.

Experiment Methods
Participants. A total of 50 participants were recruited online
and received a small amount of money for their time.
Stimuli. Participants played Corridor Challenge with param-
eters set based either on an optimized game (expected infor-
mation gain of 3.4 bits) or on a random game (expected in-
formation gain of 0.6 bits). The symbols differed along the
dimensions of shape, color, and pattern.
Procedure. Half of the participants were randomly assigned
to each game design, and played the game in a web browser.
The participants were shown text describing the structure of
the game, and then played several practice games to familiar-
ize them with interface. The first practice game simply had
chests labeled “Good” and “Bad”; the next three games used
Boolean concepts of increasing difficulty based on previous
work. All practice games used different symbols from one an-
other and from the final game. Practice games used the point
and energy values from the game chosen for their condition
(i.e., the random game or the game found by the search) in or-
der to make players aware of these values, but the symbols in
the practice games were identical across conditions. The final
game differed by condition. After completing the final game,
participants were asked to rate how fun and how difficult the
game was, both on 7-point Likert scales. Additionally, they
were shown the stimuli and categorization information that
they observed during the final game, and asked to classify the
remaining stimuli from the game that were not observed.

Results
Figure 3 shows the inferred distribution over the prior prob-
ability of each concept (θi) based on participants’ actions

for the optimized game and the random game; if a concept
has higher prior probability, it will be easier to learn. These
distributions were obtained via MCMC using a Metropolis-
Hastings algorithm on both the prior and the noise parame-
ter β. Results show samples generated from five chains with
100,000 samples each; the first 10% of samples from each
chain were removed for burn-in.

Qualitatively, the distributions inferred from the optimized
game appear more tightly concentrated than those from the
random game; this is confirmed by the actual information
gain, which was 3.30 bits for the optimized game and 1.62
bits for the random game. This implies that we could halve
the number of participants by running the optimized game.

For both games, the ordering of the mean prior probabili-
ties of each type, shown by red lines in Figure 3, is the same
as that found in previous work, except for Type VI. Our in-
ferred distributions for Type VI placed significant probability
on many values, suggesting that we simply did not gain much
information about its actual difficulty. We do infer that Type
VI is easier than Types III, IV, or V, which has a precedent in
the results of Griffiths et al. (2008).

Experiment 2: Estimating Information Gain
To verify the relationship between actual and expected in-
formation gain, we conducted a second experiment in which
players played games with a range of information gains. In
order to isolate the impact of the symbols on the chests and
the true concept we fixed the point structures to those found
for the optimized game in Experiment 1 and conducted new
searches over the remaining variables. We then selected
games from the search paths that had varying expected infor-
mation gains, demonstrating that even without changing the
incentive structure a range of information gains was possible.

Methods
Participants. A total of 175 participants were recruited on-
line and received the same payment as in Experiment 1.
Stimuli. Participants played one of seven new games.
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Figure 4: Results of Experiment 2, showing expected versus
actual information gains (r = 0.72). Each circle represents a
game, and the least-squares regression line is shown.

Procedure. Procedure matched Experiment 1.

Results
We compared the actual and expected information gains for
the seven new games and the optimized game from Experi-
ment 1, all of which used the same point structure. As shown
in Figure 4, we found that expected and actual information
gain were positively correlated (r(6) = 0.72, p < 0.05). This
demonstrates that the design of the game does influence how
much information we can infer from human players’ actions,
and that this gain is predicted by our estimates.

Conclusion
We have presented a general framework for the optimal de-
sign of games for cognitive science experiments that adapts
ideas from Bayesian experiment design. Our methodology
hinges on using Markov decision processes to infer cogni-
tively relevant information from players’ actions. By com-
bining this model with a stochastic search method, we were
able to find appreciably more informative games for Boolean
concept learning. Our experimental results demonstrate that
using this framework to infer concept difficulty gives simi-
lar results to prior work, and that the expected information
gain of a game predicts the actual information gain when the
game is played by real players. One of the chief advantages of
this framework is its applicability to a wide variety of scenar-
ios, from creating other types of games that examine different
psychological questions to designing optimally informative
assessments within educational software.

There are a number of ways in which this initial test of
a framework for designing games could be expanded. In
this work, we ignored the value of information for compu-
tational tractability. However, people may consider how their
future knowledge will be affected by their current actions,
leading to deviations from our model’s predictions; compar-

ing the fit of a partially observable Markov decision process
model to the fit of an MDP model would help to determine
whether this is an issue. In the optimal game design proce-
dure, one might also want to explore other metrics than en-
tropy for measuring a game’s expected utility. For instance,
one might use a loss metric that considers the distance of
samples from the true value of θ. Finally, it would be in-
teresting to explore whether there are advantages beyond mo-
tivation for using games rather than traditional experiments.
While there remain many areas for future exploration, this
work gives a starting point for designing highly informative
games and gives experimental support that these games can
provide meaningful data for cognitive science.
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