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Abstract
Best examples of categories lie at the heart of two major de-
bates in cognitive science, one concerning universal focal col-
ors across languages, and the other concerning the role of rep-
resentativeness in inference. Here we link these two debates.
We show that best examples of named color categories across
110 languages are well-predicted by a rational model of repre-
sentativeness, and that this model outperforms several natural
competitors. We conclude that categorization in the contested
semantic domain of color may be governed by general princi-
ples that apply more broadly in cognition, and that these prin-
ciples clarify the interplay of universal and language-specific
forces in color naming.
Keywords: Language and perception; semantic universals;
color naming; representativeness; Bayesian inference.

Introduction
Do the world’s languages reflect a universal repertoire of cog-
nitive and perceptual categories? Or do different languages
partition the experienced world in fundamentally different
ways? These questions have been pursued in depth in the do-
main of color naming and cognition (e.g. Berlin & Kay, 1969;
Kay & McDaniel, 1978; Lindsey & Brown, 2006; Rober-
son, Davidoff, Davies, & Shapiro, 2005; Roberson, Davies,
& Davidoff, 2000), and current findings suggest an inter-
estingly mixed picture. There are clear universal tendencies
of color naming across languages, but there is also substan-
tial cross-language variation (e.g. Regier, Kay, & Khetarpal,
2007), more than is suggested by traditional universalist ac-
counts. At the center of this debate is the disputed role of
focal colors, or the best examples of named color categories.

It has long been claimed that color naming across lan-
guages is constrained by six universal privileged points, or
foci, in color space, corresponding to the best examples of
what would be described in English as white, black, red, yel-
low, green, and blue. This view has received empirical sup-
port: the best examples of color terms across languages tend
to cluster near these six points (Berlin & Kay, 1969; Regier,
Kay, & Cook, 2005), and these colors have also been found
to be cognitively privileged (Heider, 1972; but see Roberson
et al., 2000). A natural and influential proposal (Kay & Mc-
Daniel, 1978) is that these privileged colors constitute a uni-
versal foundation for color naming, such that languages dif-
fer in their color naming systems primarily by grouping these
universal foci together into categories in different ways.

Roberson et al. (2000) advanced a diametrically opposed
view of color naming, and of the role of best examples in it.

They argued that color categories are not defined around uni-
versal foci, but are instead defined at their boundaries by local
linguistic convention, which varies across languages. They
proposed: “Once a category has been delineated at the bound-
aries, exposure to exemplars may lead to the abstraction of a
central tendency so that observers behave as if their categories
have prototypes” (p. 395). On this view, best examples do not
reflect a universal cognitive or perceptual substrate, but are
merely an after-effect of category construction by language:
best examples are derived from language-specific boundaries,
rather than boundaries from universal best examples.

A proposal by Jameson and D’Andrade (1997) has the po-
tential to reconcile these two opposed stances. This proposal
holds that there are genuine universals of color naming, but
they do not stem from a small set of focal colors. Instead,
universals of color naming may stem from irregularities in the
overall shape of perceptual color space, which is partitioned
into categories by language in a near-optimally informative
way. This proposal has been shown to explain universal ten-
dencies in the boundaries of color categories (Regier et al.,
2007). However it has not yet provided an account of best
examples of these categories, which lie at the heart of the de-
bate.

Here, we address this open issue, completing the reconcil-
iation of the two standardly opposed views. We suggest that
best examples are largely universal (in line with the universal-
foci view), but nonetheless derived from category boundaries
(in line with the relativist view). Specifically, given the in-
dependent explanation of category boundaries in terms of the
shape of color space, we propose that universal tendencies of
best examples are derived from those of boundaries, rather
than the other way around as has been traditionally assumed.
Moreover, we propose that best examples are derived from
category boundaries in an optimal manner, echoing the opti-
mal or near-optimal partition of color space into categories.
To pursue this idea, we draw on previous work on a rational
model of representativeness, and ask whether the best exam-
ples of color categories can be well-predicted as those colors
that are most representative of a given category.

The remainder of the paper proceeds as follows. In the
next section, we discuss the previous work on representative-
ness on which we draw, and contrast it with other approaches
to that problem. We then describe the color naming data we
consider, and a set of competing models that predict the foci



of color categories from the extensions of those categories.
We first test these models broadly against data from 110 lan-
guages, and then test them in a targeted fashion against the
data of a language with an unusual color naming system. In
both cases, we find that the rational model of representative-
ness provides a good fit to the empirical data, and outperforms
competing models. We close by discussing the implications
of our findings.

Representativeness
Why do people believe that the sequence of coin flips
HHTHT (where H=heads, T=tails) is more likely than the se-
quence HHHHH to be produced by a fair coin? Using simple
probability theory, it is easy to show that the two sequences
are in fact equally likely. Cognitive psychologists have pro-
posed that people use a heuristic of “representativeness” in-
stead of performing probabilistic computations in such sce-
narios (Kahneman & Tversky, 1972). We might then ex-
plain why people believe HHTHT is more likely than HH-
HHH to be produced by a fair coin by arguing that the former
is more representative of the output produced by a fair coin
than the latter. If this heuristic is a correct account of such
inferences, how do we define it? Numerous proposals have
been made, connecting representativeness to existing quanti-
ties such as similarity (Kahneman & Tversky, 1972), and like-
lihood (Gigerenzer, 1996). Tenenbaum and Griffiths (2001)
took a different approach to this question, providing a ratio-
nal analysis (Anderson, 1990) of representativeness by try-
ing to identify the problem that such a quantity solves. They
noted that one sense of representativeness is being a good ex-
ample of a concept, and showed how this could be quantified
in the context of Bayesian inference.

Formally, given some observed data d and a set of of hypo-
thetical sources, H , we assume that a learner uses Bayesian
inference to infer which h ∈H generated d. Tenenbaum and
Griffiths (2001) defined the representativeness of d for hy-
pothesis h to be the evidence that d provides in favor of a
specific h relative to its alternatives:

R(d,h) = log
p(d|h)

∑h′ 6=h p(d|h′)p(h′)
(1)

where p(h′) in the denominator is the prior distribution on hy-
potheses, re-normalized over h′ 6= h. This measure was shown
to outperform similarity and likelihood in predicting human
representativeness judgments for a number of simple stimuli.
We propose this measure can also be used to determine focal
colors from the set of colors named with a particular color
term - that is, the extension of that named color category.

Representativeness and color foci
Evaluating formal models of representativeness as an ac-
count of color foci requires a good source of color naming
data. The data we considered were those of the World Color
Survey (WCS), which collected color naming data from na-
tive speakers of 110 unwritten languages worldwide (Cook,

Figure 1: The WCS stimulus array. The rows correspond
to 10 levels of Munsell value (lightness), and the columns
correspond to 40 equally spaced Munsell hues. The color in
each cell corresponds approximately to the maximum avail-
able Munsell chroma for that hue-value combination.

Kay, & Regier, 2005). Participants in the WCS were shown
each of the 330 color chips from the stimulus array in Fig-
ure 1, and were asked to name each chip with a color term
from their native language; we refer to the resulting data
as “naming data”. Afterwards, participants were asked to
pick out those cells in the stimulus array that were the best
examples (foci) of each color term they used; we refer to
these as “focus data”. The WCS dataset is available at
http://www.icsi.berkeley.edu/wcs/data.html.

We applied Tenenbaum and Griffiths’ (2001) representa-
tiveness model, and a set of natural competitor models, to
the problem of predicting best examples of color categories
from the extension of those categories. Thus, the models we
consider are different formalizations of our central proposal
that best examples may be derived from category boundaries.
Following Kay and Regier (2003), we represented each color
in the stimulus array as a point in 3-dimensional CIELAB
color space. For short distances at least, Euclidean distance
between two colors in CIELAB is roughly proportional to
the perceptual dissimilarity of those colors. For each named
color category used by each speaker in each language of the
WCS, we modeled that category as a 3-dimensional Gaussian
distribution in CIELAB space, and estimated the parameters
of that distribution using a normal-inverse-Wishart prior, a
standard estimation method for multivariate Gaussian distri-
butions of unknown mean and unknown variance (Gelman,
Carlin, Stern, & Rubin, 2004). Specifically, given a set of M
chips xi in color category t we obtain the estimates:

µt =
1
M

M

∑
i

xi

Σt =
SSt +λ0

nt +ν0

where SSt is the sum of squares for category t: ∑
M
i (xi −

µt)(xi− µt)
ᵀ, nt is the number of chips in category t for the

current speaker, and λ0 and ν0 are the parameters of the prior.
λ0 was set by taking an empirical estimate of the variance
in CIELAB coordinates over all chips in the stimulus array,
and ν0 was set to 1. We chose this Bayesian formulation of
parameter estimation over standard Maximum Likelihood Es-



timation (MLE) since MLE will result in singular covariance
matrices for color categories containing few color chips.

With an estimate of the distribution characterizing the cate-
gory named by color term t, we can now adopt the representa-
tiveness measure given in Equation 1 to determine how good
an example each color chip x is of a color term t. Substituting
x in for the observed data d and t for hypothesis h we obtain
the expression:

R(x, t) =
p(x|t)

∑t ′ 6=t p(x|t ′)p(t ′)
(2)

where p(x|t) is computed from the density function of
the estimated Gaussian described above and the priors
p(t ′) are proportional to nt ′ , the number of chips in named
color category t ′. We test this Bayesian measure against
the alternative proposals of representativeness mentioned
above (Gigerenzer, 1996; Kahneman & Tversky, 1972): a
likelihood model and two similarity models (a prototype
model and an exemplar model). In addition, we explore a
model that selects as the focus for category t that chip in
the extension of t that has the highest chroma. Chroma, or
saturation, corresponds loosely to how colorful or “un-gray”
a given color is, and in exploring this model we follow the
suggestion (Jameson & D’Andrade, 1997; Regier et al.,
2007) that focal colors tend to be those with high chroma.
We note that each of these models captures some variant of
the category central tendency idea promoted by Roberson
et al. (2000), as described above. We present the details of
the competing models below. As with the representativeness
model, for a given color x and color term t, each model
assigns a score indicating how good x is as an example of t.

Likelihood model. In this model, the goodness score of color
x as an example of color category t is given by the density
function of the Gaussian distribution that was fit to the nam-
ing data for t. Thus,

L(x, t) = p(x|t) (3)

Note that this model is similar to the representativeness
model, but without the denominator which captures competi-
tion among categories in that model.

Prototype model. In this model we define the focus, or pro-
totype, of color category t to be the mean µt of the distribution
characterizing t. The score for this measure then becomes the
similarity of x to that prototype:

P(x, t) = exp{−dist(x,µt)} (4)

where dist(·, ·) is the Euclidean distance between two colors
in CIELAB color space.

Exemplar model. We define the exemplar model using a
scoring metric similar to that in the prototype model, except
rather than computing the similarity of color x to a single pro-
totype, we compute its similarity to each color chip that falls

in the extension of category t, and sum the results. This simi-
larity measure is thus computed as

E(x, t) = ∑
x j∈Xt

exp{−λ dist(x,x j)} (5)

where Xt is the set of color chips that fall in the extension of
category t, dist(·, ·) is is the Euclidean distance between two
colors in CIELAB space, and λ is a free parameter. For the
results presented below, λ was set to the value that yielded
the best performance overall, which was 0.25.

Chroma model. The score for this model is computed sim-
ilarly to that for the prototype model, but rather than com-
puting the similarity of color x to the mean of a distribution
characterizing category t, we compute its similarity to that
color chip ct which has the highest chroma (saturation) value
within the extension of category t. The chroma values for
each chip in the stimulus array are provided with the WCS
data. Thus we compute

C(x, t) = exp{−dist(x,ct)} (6)

where dist(·, ·) is the Euclidean distance between two colors
in CIELAB space, and ct is the chip within the extension of
t that has the highest chroma value. In the case of ties for
ct - that is, several chips with the same maximum value for
chroma - we randomly select a chip from the set of ties.

Predicting foci from category extensions
We assessed these models as follows. For each speaker of
each language in the WCS, we first considered that speaker’s
naming data, and modeled the categories in those data as a
set of Gaussians in the manner described above. Then, for
each such category, we determined how representative of that
category each of the 330 chips in the stimulus array is, ac-
cording to each model. This yielded, for each model, a rank-
ing of chips in the array by predicted representativeness, and
we then compared this model prediction with empirical focus
data from the WCS. In the following sections we present both
qualitative and quantitative evaluations of the models.

Distribution of foci
A simple means of assessing the models is to generate pre-
dicted focal choices from each model’s ranking of chips, and
to then compare those predicted focal choices with the actual
focus data of the WCS. Some speakers in the WCS provided
more than one focus (best example) for some categories; if a
speaker provided n foci for a given category, we selected the
n top-ranked chips as a given model’s predicted focal choices
for that category and speaker. In this manner we obtained,
for each model, one predicted focal choice for each empir-
ical focal choice in the data. We then counted the number
of times each of the 330 color chips in the stimulus array
was selected as a focal choice, yielding a distribution of fo-
cal choices over the stimulus array. We then compared the



empirical distribution of foci across the array with the distri-
bution predicted by each of the models. Following Regier et
al.’s (2005) empirical analysis of WCS focus data, we plot-
ted these distributions over the chromatic portion of the array,
where the 2-dimensional layout makes contours easily inter-
pretable. Accordingly, we did not plot the focal choices for
the terms a speaker used to name A0 and J0, corresponding
to English focal white and black. The resulting contour plots,
of the empirical WCS focus distribution and the five models’
predicted focus distributions, are shown in Figure 2.

The empirical distribution is shown in panel (a), and repli-
cates the findings of Regier et al. (2005). The distribution
predicted by the Bayesian representativeness model (panel b)
matches this empirical distribution qualitatively fairly well.
Moreover, at least on informal inspection, the Bayesian
model appears to approximate the empirical distribution more
closely than do the competing models. The chroma model
(panel f) at first appears to also approximate the empirical dis-
tribution fairly well, but closer inspection reveals that several
of the peaks of the model distribution do not align correctly
with those of the empirical distribution.

This qualitative assessment is reinforced by a quantitative
one. The Jensen-Shannon divergence (JSD) is a measure of
the dissimilarity between two probability distributions, P and
Q, defined as

JSD(P||Q) =
1
2

KL(P||M)+
1
2

KL(Q||M) (7)

where M = 1
2 (P + Q), and KL(·) is the more commonly-

known Kullback-Leibler divergence. JSD is closely related
to Kullback-Leibler divergence, with the important difference
that JSD is always a finite value, ranging from a value of 0
when the two distributions are identical, to a value of 1 when
they are maximally different.

We computed the JSD between the WCS empirical focus
distribution (normalized so that it may be considered a prob-
ability distribution, taken to be P in Equation 7), and each of
the model distributions (similarly normalized, taken to be Q
in Equation 7). The results are shown below in Table 1. The
Bayesian model outperforms the other models, diverging less
from the empirical distribution than its competitors.

Rank position of foci
Each model produces as output a ranking of the stimulus
chips, where rank is assigned in descending order. Thus, an-
other natural way to assess the models is to note the position
of the true empirical focal choice in this ranked list. For ex-
ample, if a model correctly ranked the true focal chip as the
single most representative example of a given color category,
it would receive a score of 1/330. As noted previously, some-
times a speaker provided multiple foci for a given color term.
To accommodate this we averaged the positional ranking of
each focus empirically provided and took the resulting quan-
tity as the model performance for a given color term. In turn,
we averaged this performance over the number of color terms
a speaker used, then averaged over the number of speakers in
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Figure 2: Contour plots of the focus distributions in (a) the
WCS, and as predicted by (b) the representativeness model,
(c) the likelihood model, (d) the prototype model, (e) the ex-
emplar model, and (f) the chroma model. Each contour line
corresponds to 100 focal choices.

a language, and finally computed an average overall model
performance for all 110 WCS languages. The average rank
position of empirical WCS foci for each model is presented
in Table 2.

As before, we find that the Bayesian measure of repre-
sentativeness outperforms the other models, ranking the true



Table 1: Divergence between empirical WCS focus distribu-
tion and model prediction

Model Jensen-Shannon Divergence
Bayesian 0.0368
Likelihood 0.1977
Prototype 0.1750
Exemplar 0.1760
Chroma 0.1698

Table 2: Average rank position of empirical WCS foci for
each model

Model Average Rank Position
Bayesian 0.1026
Likelihood 0.1381
Prototype 0.1559
Exemplar 0.1457
Chroma 0.2306

foci within the top 11% of chips on average. In comparison,
the likelihood model, which has the second highest average,
ranks the true foci in the top 14% of chips on average. It is
noteworthy that the chroma model, which captures the nat-
ural idea that best examples correspond to chroma maxima,
performs most poorly, ranking the true foci only within the
top 24% of chips.

A final test: Karajá
So far, we have suggested that color foci may be derived from
category boundaries as representative members of a category
- and we have shown that this idea accounts well for universal
tendencies in focal colors. Thus, foci may inherit their univer-
sal tendencies from category boundaries, rather than project-
ing their universal tendencies to those boundaries. Note, how-
ever, that the demonstrations we have seen so far do not dis-
criminate between these two hypotheses. For languages with
common color-naming systems, the two hypotheses make the
same prediction: foci should tend to fall in the canonical po-
sitions shown in Figure 2(a). This is predicted on the tradi-
tional universal-foci account, because these are the proposed
locations of the universal foci. Roughly the same outcome is
predicted by our account, as seen in Figure 2(b).

In a final investigation, then, we attempt to discriminate be-
tween these two hypotheses. The hypotheses diverge in their
predictions for languages with color categories that have un-
usual extensions. If foci are a universal groundwork for color
naming, then in such unusual cases, foci will fall in the uni-
versal (canonical) positions, despite the non-canonicality of
the category boundaries. In contrast, our account predicts
that in such cases, foci should follow the category bound-
aries, and fall in non-canonical positions. We test these pre-
dictions against a language that is known (Regier, Kay, &
Khetarpal, 2009) to have color categories with unusual ex-
tensions: Karajá, a language of Brazil.
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Figure 3: Naming data for the Karajá language, overlaid with
contour plots of three different focus distributions: the em-
pirical focus distribution for all languages in the WCS (up-
per panel), the empirical focus distribution for Karajá itself
(middle panel), and the focus distribution predicted by the
Bayesian model of representativeness (lower panel).

Figure 3 presents WCS color naming data for Karajá. Here,
chips displayed in the same color were named with the same
color term by a plurality of participants. These modal naming
maps are overlaid with three different focus distributions: the
full empirical focus distribution of the WCS (upper panel),
the empirical focus distribution from Karajá only (middle
panel), and the focus distribution for Karajá predicted by the
Bayesian representativeness model (lower panel). The dif-
ference between the focus distributions in the top two panels
is clearly seen, demonstrating that the foci of Karajá follow
the language’s color boundaries and are not in line with the
universal foci found across the WCS. Additionally, the fo-
cus predictions from the Bayesian model of representative-
ness follow the empirical Karajá focus distribution relatively
closely. As before, these qualitative results are confirmed by
a quantitative analysis that measures the Jensen-Shannon di-
vergence between the empirical Karajá focus distribution and
the distribution predicted by each of the models. As can be
seen in Table 3 below, the Bayesian model outperforms the
other models on Karajá considered by itself, not just on the
entire WCS dataset. We also examined the rank position of
the empirical Karajá foci in the ranking produced by each
model, and by this measure as well, the Bayesian model fits
the data more closely than the competitors, as shown in Table
4 below.

In sum, when boundaries fall in non-canonical positions,



Table 3: Divergence between empirical Karajá focus distri-
bution and model prediction

Model Jensen-Shannon Divergence
Bayesian 0.3272
Likelihood 0.4430
Prototype 0.5524
Exemplar 0.5137
Chroma 0.5848

Table 4: Average rank position of empirical Karajá foci for
each model

Model Average Rank Position
Bayesian 0.2064
Likelihood 0.2298
Prototype 0.2877
Exemplar 0.3023
Chroma 0.3199

foci do as well - suggesting that foci may in fact be derived
from boundaries. This conclusion is reinforced by the ob-
servation that the Bayesian representativeness model predicts
foci from boundaries fairly well in this non-canonical case, as
well as more generally across the WCS.

Conclusion
Focal colors, or best examples of color terms, lie at the center
of the debate over color naming. These foci have traditionally
been viewed either as the underlying source of color naming
universals, or as derived from category boundaries that vary
with local linguistic convention. In contrast, we have argued
for a novel account of this disputed construct, in which focal
colors show strong universal tendencies, but are nonetheless
derived from category boundaries, as the most representative
members of categories. In support of this proposal, we have
shown that an existing Bayesian model of representativeness
can predict the distribution of focal colors in the world’s lan-
guages, from category extensions. This account synthesizes
traditionally opposed views of color naming (Kay & Mc-
Daniel, 1978; Roberson et al., 2000), and accounts for data
that challenge the traditional views.

Our proposal also coheres naturally with a recent theoreti-
cal account that explains universal tendencies in color naming
in terms of optimally informative partitions of an irregularly
shaped perceptual color space (Jameson & D’Andrade, 1997;
Regier et al., 2007). Significantly, that view explains univer-
sal tendencies in color category boundaries without reference
to a small set of focal colors, and it leaves the nature of focal
colors unexplained. Our proposal fills that gap. Taken to-
gether, the two proposals suggest a single overall account of
color naming: foci are optimally representative members of
categories that are defined at their boundaries - and the bound-
aries themselves result from near-optimally informative par-
titions of color space.
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