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Abstract

In the real world causal variables do not come pre-identified
or occur in isolation, but instead are imbedded within a con-
tinuous temporal stream of events. A challenge faced by both
human learners and machine learning algorithms is identifying
subsequences that correspond to the appropriate variables for
causal inference. A specific instance of this problem is action
segmentation: dividing a sequence of observed behavior into
meaningful actions, and determining which of those actions
lead to effects in the world. Here we present two experiments
investigating human action segmentation and causal inference,
as well as a Bayesian analysis of how statistical and causal
cues to segmentation should optimally be combined. We find
that both adults and our model are sensitive to statistical regu-
larities and causal structure in continuous action, and are able
to combine these sources of information in order to correctly
infer both causal relationships and segmentation boundaries.
Keywords: Statistical learning; Causal inference; Action
segmentation; Rational analysis; Bayesian inference

Introduction
Human social reasoning ability depends on understanding the
relationship between actions, goals and outcomes. Learners
must take a continuous stream of observed behavior and
divide it into distinct meaningful actions. Determining which
subsequences go together, and what outcomes they produce,
is also an important instance of the more general problem of
causal variable discovery (a similar problem – determining
how spatially distributed observations should be encoded
as variables – is discussed by Goodman, Mansinghka, &
Tenenbaum, 2007). Prior research has shown that adults are
able to segment videos of common everyday behaviors into
coherent actions, corresponding to the goals and intentions
underlying the actor’s behavior (for a recent review see
Kurby & Zacks, 2008), and that even young infants are sen-
sitive to the boundaries between intentional action segments
(Baldwin, Baird, Saylor, & Clark, 2001; Saylor, Baldwin,
Baird, & LaBounty, 2007). However, little is yet known
about both the types of information people use to detect the
boundaries between actions, and the computations that allow
us to predict and extract individual actions.

One potentially important source of information is statis-
tical regularities in the action stream. There is now a large
body of evidence suggesting that both infants and adults can
use statistical patterns in spoken language to help solve the
related problem of segmenting words from continuous speech
(for a partial review, see Gómez & Gerken, 2000). Recently,
Baldwin, Andersson, Saffran, and Meyer (2008) demon-
strated that a similar sensitivity to statistical regularities in

continuous action sequences may play an important role in
action processing. However, a key difference between action
segmentation and word segmentation is that intentional
actions usually have effects in the world. In fact, many of the
causal relationships we experience result from our own and
others’ actions, suggesting that understanding action may
bootstrap learning about causation, and vice versa. Though
recent work has demonstrated that both children and adults
can infer causal relationships from conditional probabilities
(Gopnik et al., 2004; Griffiths & Tenenbaum, 2005), the
extent to which action understanding and causal learning
mechanisms inform each other has yet to be explored. Here
we present a combination of experimental and computational
approaches investigating how the ability to segment action
and to infer its causal structure functions and develops.

We first introduce a Bayesian analysis of action segmenta-
tion and causal inference, which provides an account of how
statistical and causal cues to segmentation should optimally
be combined. Next, we present two experiments investigating
how people use statistical and causal cues to action structure.
Our first experiment demonstrates that adults are able to
segment out statistically determined actions, and experience
them as coherent, meaningful and most importantly, causal
sequences. Our second experiment shows that adults are able
to extract the correct causal variables from within a longer
action sequence, and that they find causal sequences to be
more coherent and meaningful than other sequences with
equivalent statistical structure. Finally, we look at the action
segmentations and causal structures our Bayesian rational
model predicts, when given the same experimental stimuli as
our human participants. We conclude by discussing our re-
sults in the context of broader work, as well as its implications
for more generalized human statistical learning abilities.

Bayesian Analysis of Action Segmentation
We created a Bayesian rational learner model that jointly in-
fers action segmentation and causal structure, using statistical
regularities and temporal cues to causal relationships in an ac-
tion stream. This model provides us with a way to begin char-
acterizing both the kinds of information available in the action
stream, and what an optimal computational level solution to
these inference problems might look like. To the extent that
our model accurately reflects human performance, it provides
additional support for the idea that people may similarly be



combining statistical and causal cues in their own inference.
We adapted the nonparametric Bayesian word segmenta-

tion model first used by Goldwater, Griffiths, and Johnson
(2006) to the action domain, and also extended this model
to incorporate causal information. Like the original word
segmentation model, our model is based on a Dirichlet pro-
cess (Ferguson, 1973), with actions composed of individual
small motion elements taking the place of words composed
of phonemes. In addition, we incorporated cause and effect
information into the generative model, allowing some actions
to be probabilistic causes. We describe this model in more
detail in the following sections.

Generative Model for Action Sequences
Just as a sentence is composed of words, which are in turn
composed of phonemes, in our model an action sequence A
is composed of actions ai which are themselves composed
of motion elements m j. We assume a finite set of possible
actions, and that complete actions are chosen one at a time
from this set, and then added to the the sequence. The
conditional probability of the next action in the sequence
p(ai|a1...ai−1), is given by a standard algorithm known as the
Chinese Restaurant Process (CRP). In the CRP customers
enter a restaurant, and are seated at tables, each of which has
an associated label. In this case, the labels are actions. When
the ith customer enters the restaurant, they sit at a table zi,
which is either a new table or an already occupied table. The
label at table zi becomes the ith action in our sequence with

p(zi = k|z1...zi−1) =

{
nk

i−1+α0
, 0≤ k ≤ K

α0
i−1+α0

, k = K +1
(1)

where nk is the number of customers already at table k,
and K is the number of previously occupied tables. So, the
probability of the ith customer sitting at an already occupied
table depends on the proportion of customers already at that
table, while the probability of starting a new table depends
on the concentration parameter α0.

Whenever a customer starts a new table, an action ak must
be associated with this table. Since multiple tables may be
labeled with the same action, the probability that the next
action in the sequence will have a particular value ai = w is

p(ai = w|a1...ai−1) =
nw

i−1+α0
+

α0P0(ai = w)
i−1+α0

(2)

where nw is the number of customers already seated at tables
labeled with action w. In other words, the probability of a
particular action ai = w being selected is based on the number
of times it has already been selected, and the probability of
generating it anew. We draw new action labels from the base
distribution P0. Actions are created by adding motions one at
a time, so that P0(ai = w) is simply the product of action w’s
component motion probabilities, with an added assumption
that action lengths are geometrically distributed with

P0(ai) = p#(1− p#)n−1
n

∏
j=1

p(m j) (3)

where n is the length of ai in motions, p# is the probability of
ending the action after each motion, and p(m j) is the prob-
ability of an individual motion. Currently, we use a uniform
probability over all motions. We assume that action sequence
length is also geometrically distributed, so we use the same
equation for the overall sequence probability, substituting ac-
tions for motions, and p$ (the probability of ending the se-
quence A after the current action) for p#. In this work p# =
0.95, which represents a bias towards finding smaller length
actions, p$ = 0.001 biases the model towards sequences made
up of more actions, and α0 = 3 represents an expectation that
the set of all possible actions is relatively small.

Generative Model for Events
The action sequence A also contains non-action events e,
which can occur between motions. In our model, some
actions are causal sequences, and are followed by an event
with high probability. Each unique possible action aw has
an associated binary variable cw ∈ {0,1} that determines
whether or not the action is causal with cw ∼ Bernoulli(π).
If an action is a causal sequence, then it is followed by an
event with probability ω. We use a small fixed value ε for the
probability of an effect occurring after a non-causal sequence
(in the middle of an action, or after a non-causal action.
See Figure 1). For this work, we used ε = 0.00001 and
ω = 0.999, which represent our assumption that events are
very unlikely to follow non-causal sequences, and very likely
to occur after actions that are causal sequences. We used
π = 0.05, which represents an assumption that relatively few
actions are causes for a particular effect.
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Figure 1: A theoretical action sequence depicting causal
relationships in the model.

Inferring Segmentation and Causal Structure
An unsegmented action sequence consists of the motions m j
without any breaks between them. Given such a sequence,
how do we find the boundaries between actions? A segmenta-
tion hypothesis h indicates whether there is an action bound-
ary after each motion m j. For a given segmentation hypothe-
sis h, and unsegmented action sequence d, we use Bayes rule
p(h|d) ∝ p(d|h)p(h) to infer the posterior distribution p(h|d).

To do this, we can use a standard Markov chain Monte
Carlo method known as Gibbs sampling (Gilks, Richardson,
& Spiegelhalter, 1996). The key property of a Gibbs sampler
is that it converges to the posterior distribution, allowing
us to sample segmentation hypotheses from p(h|d) (a more
detailed explanation of using Gibbs sampling to infer a
segmentation is given in Goldwater et al., 2006). We can also
use Gibbs sampling to infer the posterior distribution over
causal relationships between actions and events. In this case



Action1 - Slide Look Clean

Action2 - Drink Empty Rattle

Action3 - Poke Blow Twirl

Action4 - Under Read Feel
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Figure 2: Left: Four actions composed of three unique mo-
tions each were used to create the Experiment 1 exposure cor-
pus. Right: Example Action, Part-Action and Non-Action.

a causal structure hypothesis h consists of values cw for all
the actions found in the inferred segmentation.

Predictions for Human Segmentation
An important feature of this model is that action segmen-
tation and causal structure are learned simultaneously, and
interdependently. At each iteration, the inferred actions
help determine the inferred causal structure and vice versa,
because the two are linked in the generative model. This
corresponds to our prediction that people also believe actions
and causal effects go hand in hand. If statistical action struc-
ture is also a cue to causal relationships then, like our model,
adults should think statistically grouped actions are more
likely to be potential causes than other equivalent sequences.
This prediction is tested in Experiment 1. Second, if people
believe that causal sequences of motion are also likely to
be actions, then adults should be able to not only segment
out causal sequences, but find them to be more meaningful
and coherent than other sequences with equivalent statistical
regularities. This prediction is tested in Experiment 2.

Experiment 1: Using Statistical Cues
The structure of this experiment is similar to that used in
previous action segmentation experiments (Baldwin et al.,
2008; Meyer & Baldwin, 2008). Since previous work has
established that adults are able to recognize artificial actions
grouped only by their statistical regularities, we wanted
to investigate whether these groupings are also considered
meaningful, and whether they are inferred to be causal.
Specifically, we hypothesized that participants would judge
these artificial actions to be more coherent and meaningful
than similar non-action and part-action sequences (see
Figure 2), and would also view actions as more likely to
generate a (hidden) effect than non-actions and part-actions .

Method
Participants Participants were 100 U.C Berkeley under-
graduate students, who received course credit for participat-
ing. Participants were randomly assigned to view one of the
two exposure corpora, and were also randomly assigned to

one of three follow-up question conditions. All participants
were instructed to attend closely to the exposure corpus, and
were told that they would be asked questions about it later.
Thirty participants were assigned to each of the first two con-
ditions and 40 participants were assigned to the last condition.

Stimuli Similar to Baldwin et al. (2008), we used 12
individual video clips of object-directed motions (referred to
as small motion elements or SMEs in the previous work), to
create four actions composed of three SMEs each (see Figure
2). The SMEs in this experiment are identical to those in
Meyer and Baldwin (2008). As in previous work, SMEs were
sped up slightly and transitions were smoothed using iMovie
HD, to make the exposure corpus appear more continuous.

We created a 25 minute exposure corpus by randomly
choosing actions to add to the sequence, with the condition
that no action follow itself, and that all actions and transitions
between actions appear an equal number of times, resulting
in 90 appearances of each action and 30 appearances of
each transition. We also created four non-action and four
part-action comparison stimuli, where a non-action is a
combination of three SMEs that never appear together in
the exposure corpus, and a part-action is a combination of
three SMEs that appears across a transition (e.g. the last
two SMEs from the first action and the first SME from the
second action, see Figure 2). Finally, to ensure that none of
our randomly assembled actions were inherently more causal
or meaningful, we created a second exposure corpus, using
the non-action SME combinations of the first corpus as the
actions of the second corpus.

Procedure Following the exposure corpus, participants in
the familiarity condition were presented with all 12 actions,
non-actions and part-actions individually, and asked "How
familiar is this action sequence?". They responded by choos-
ing a value on a 1 to 7 Likert scale, with 1 representing "not
familiar" and 7 representing "very familiar" (other than the
use of ratings instead of a forced choice format, this condition
is almost identical to Baldwin et al., 2008). In the causal
condition, participants were given a "hidden effect" cover
story before viewing the exposure corpus. These participants
were told that certain actions would cause the bottle being
manipulated to play music, but that they would be watching
the video with the sound off. Following the exposure corpus,
these participants were asked "How likely is this sequence to
make the bottle play a musical sound?", with 1 representing
"not likely" and 7 representing "most likely". Finally, in the
coherence condition, participants were asked the question
"how well does this action sequence go together?". They
were given the example of removing a pen cap and then
writing with the pen as "going together" and of removing a
pen cap and then tying your shoes as "not going together".
They then rated all test items on a scale with 1 being "does
not go together" and 7 being "goes together well".

For all conditions, we used a custom Java program
to present video of action sequences and collect ratings.



Figure 3: Results of Experiment 1. Error bars show one
standard error.

The program presented all 12 actions, non-actions and
part-actions individually and in a random order.

Results
We analyzed all results using 2×3 ANOVAs on exposure
corpus (1 or 2) and sequence type (action, non-action,
part-action). No effects of exposure corpus were found.

Ratings from 27 participants in the familiarity condition
were analyzed (data from three additional participants
who rated all sequences identically as either a 1 or 7 was
discarded). As predicted by previous results (Baldwin et al.,
2008; Meyer & Baldwin, 2008), there was an overall signif-
icant effect of sequence type F(2, 50)= 25.14, MSE= 41.12,
p < 0.0001, with actions rated significantly more familiar
than part-actions and non-actions t(26)= 5.84, p < 0.0001,
one sample t-test on contrast values, and part-actions rated
significantly more familiar than non-actions t(26)= 3.65,
p < 0.002.

Ratings from 29 participants in the causal condition
were analyzed (data from one additional participant was
discarded). As predicted, there was an overall significant
effect of sequence type F(2,54)= 10.20, MSE= 12.869,
p < 0.0002, with actions rated as significantly more likely
to cause a musical effect than part-actions or non-actions
t(28)= 2.36, p < 0.01, one sample t-test on contrast values,
and part-actions rated significantly more likely to be causal
than non-actions, t(28) = 2.36, p < 0.03.

Ratings from 37 participants in the coherence condition
were analyzed (data from an additional three participants
was discarded). As predicted, there was an overall signif-
icant effect of sequence type F(2,70)= 9.18, MSE= 14.47,
p < 0.0003, with actions rated as going together signifi-
cantly better than part-actions or non-actions t(36)= 3.87,
p < 0.0005, one sample t-test on contrast values. There was
also a marginally significant difference between part-action
and non-action ratings t(36)= 2.0, p = 0.05.

Discussion
The results of this experiment support the hypothesis that
people experience sequences of action grouped only by their
statistical regularities as casually significant, meaningful
groupings. Participants rated actions as more likely to cause
a hidden musical effect than part-action and non-action
sequences, even though all sequences were equally arbitrary,
and in fact the non-actions for one exposure corpus were
the actions for the other, meaning that the same sequences

reversed their rating merely based on the number of times
the SMEs appeared together. Similarly, participants rated
actions as going together (a question we used as a measure of
sequence coherence and meaningfulness) significantly better
than other sequences. Anecdotally, a number of participants
reported a feeling that the action sequences made more intu-
itive sense to them than the other sequences. Finally, all three
conditions replicated the finding by Baldwin et al. (2008)
that adults are able to parse statistically grouped actions from
within a longer action sequence, and differentiate them from
other non-action groupings, and confirmed the use of ratings
as a viable alternative measure to forced choice comparisons.

These results have several important implications. First,
they demonstrate that people’s sensitivity to the statistical
patterns in the exposure corpus is not simply an artifact of
the impoverished stimuli, but appears to play a real role in
their subsequent understanding of the intentional structure
of the action sequence. The fact that participants found the
statistically grouped actions to be more coherent, suggests
that they do not experience the sequences they segment out
as arbitrary, but assume that they are meaningful groupings
that play some (possibly intentional) role. This is further
supported by the results from the causal condition which
show that, even without being presented with overt causal
structure, people believe the statistically grouped actions are
more likely to lead to external effects in the world.

Finally, these results also support our hypothesis that
inference of action structure and causal structure are linked,
with statistically grouped actions being perceived as more
likely to also be causal variables. This result is consistent
with our computational model, which also predicts that,
without other evidence of causal structure, actions are more
likely to be causal than non-action and part-action sequences.

Experiment 2: Using Causal Structure
Our second experiment investigated whether people are able
to pick out causal subsequences from within a longer stream
of actions, and whether they use this causal information to
inform their action segmentations. Specifically, we hypoth-
esized that when statistical cues to action segmentation are
unavailable, adults will be able to use causal event structure
to identify meaningful units of action.

Method
Stimuli The structure and stimuli for this experiment
closely matched that of Experiment 1. However, in Experi-
ment 2, there were no a priori, statistically-grounded actions.
Instead, the exposure corpus was assembled using four
SMEs, so that each individual SME would be seen an equal
number of times, and all possible length three sequences of
SMEs would also occur with equal frequency (see Figure
4). Throughout the exposure corpus, no length three subse-
quences containing repeats of an SME were allowed to occur.
This resulted in 24 possible SME triplets. A target triplet of
SMEs was then randomly chosen as the "cause". Whenever
this sequence of motions was performed in the exposure cor-
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Figure 4: A portion of the Experiment 2 exposure corpus.
four SMEs (Poke, Look, Feel, Rattle) are distributed so that
all possible triplets appear equally often. A target triplet
(Look, Feel Poke) is chosen to cause a sound.

pus, it was followed by the object playing music (participants
were able to hear the music, unlike in Experiment 1).

The exposure corpus was created by first generating
24 shorter video clips. Each clip was designed to have a
uniform distribution of both individual SMEs and of SME
triplets. Specifically, in each clip, the four unique SMEs
appear exactly six times each, and 23 of the 24 possible SME
triplets appear exactly once each. These 24 video clips were
shown consecutively in the exposure corpus, but were clearly
separated from each other by text notifying the participant of
the beginning and end of each shorter clip. The result was an
exposure corpus composed of 24 short video clips, with each
SME appearing 576 times throughout the complete corpus,
and each triplet appearing 20 to 24 times.

iMovie HD was used to assemble the exposure corpus and
add a cartoon sound effect following every appearance of the
target sequence. Two different exposure corpora, each using
a distinct set of four SMEs were created. Look, Poke, Feel
and Rattle were used to create the first exposure corpus, with
Look-Feel-Poke being the target triplet, and Read, Slide,
Blow, and Empty were used to create the second exposure
corpus, with Slide-Blow-Empty being the target triplet.

Participants and Procedure Participants were 100 U.C
Berkeley undergraduates. Participants were divided into the
same three conditions as in Experiment 1, with the difference
that after viewing the exposure corpus, they rated all 24
possible SME triplets, and that all participants were told that
certain action sequences caused the bottle to play music.

Results
We analyzed all results using 2×2 ANOVAs on exposure
corpus (1 or 2) and sequence type (target, other). No effects
of exposure corpus were found.

Ratings from 28 participants in the familiarity condition
were analyzed (data from an additional two participants who
rated all sequences identically as either a 1 or 7 was dis-
carded). Contrary to our predictions, and the predictions of
previous work, there was no effect of sequence type F(1,26)=
1.58, MSE= 1.74, p > 0.22. Participants rated the target
sequence and the other SME triplets as equally familiar.

Ratings from 30 participants in the causal condition were
analyzed. As predicted, there was a significant effect of
sequence type F(1,28)= 193.97, MSE= 310.439, p < 0.0001,
with the target sequence being rated as much more likely to
lead to a musical sound than the other SME triplets.

Ratings from 35 participants in the coherence condition
were analyzed (data from five additional participants was
discarded). As predicted, there was a significant effect of

Figure 5: Results of Experiment 2. Error bars show one
standard error.

sequence type F(1,33)= 19.44, MSE= 47.1, p < 0.0001,
with the target sequence rated as going together significantly
better than the other SME triplets.

Discussion
This experiment is one of the first to demonstrate that people
can infer a correctly ordered set of causal variables from
within a longer temporal sequence. In fact, the results of
this experiment suggest that it was a relatively easy task for
participants. Participants in the causal condition were nearly
at ceiling in their ratings of how likely sequences were to lead
to a musical effect, with the target sequence having a mean
rating only slightly below 7 and the remaining sequences
being rated a bit below 2.

The results of this experiment also provide further support
for a relationship between action segmentation and causal in-
ference. Even though there were no statistically grouped ac-
tions in this experiment, participants still perceived the target
sequence as being more meaningful (going together better)
than the other sequences, suggesting they had nonetheless
segmented it out as a coherent action unit. It is worth noting
that the ratings for the coherence question were different than
those for the causal question, suggesting that participants did
interpret the question as one of meaningfulness, rather than
an alternate phrasing of the causality question.

Finally, it is interesting to note that, despite correctly
identifying the target sequence as causal, participants did not
rate it as more familiar than the other sequences. Instead,
participants appeared to be aware that they had seen all the
sequences an equal number of times, and rated them all
as equally familiar. This implies that participants are not
judging the target sequence as more coherent or more likely
to be causal due to some sort of low level saliency effect
that causes them to remember this particular sequence more
clearly. It also suggests that participants, at least in this
context, interpret the familiarity question as a question about
frequency of appearance, which may help explain why Meyer
and Baldwin (2008) failed to find sensitivity to conditional
probabilities in action sequences using this question. These
results suggest that participants may be aware that certain
sequences are more causal or more coherent, while also being
aware that they have seen other sequences equally often.

Modeling Segmentation and Causal Inference
We ran the model on the same exposure corpora our human
participants watched in Experiments 1 and 2, to see if it
could come up with the correct segmentation and causal



structure hypotheses. An abstract representation of each
exposure corpus was used, with a letter standing for each
SME. For each experiment, we ran two randomly seeded
Gibbs samplers on each corpus, for 20,000 iterations. We
then averaged results from 10 samples drawn from the last
1,000 iterations of each sampler, to estimate the posterior
distributions and evaluate the model. For each experiment,
results from both exposure corpora were combined. In addi-
tion, we evaluated the model’s predictions for the coherence
and causal conditions of our experiments, by representing the
coherence of a sequence as its posterior probability of being
in the inferred set of actions (referred to below as a lexicon),
and its probability of causing an effect as the posterior
probability of that sequence being followed by an event.

Experiment 1
We compared our results to the correct segmentation, and
calculated average precision and recall scores across samples
(commonly used metrics in the natural language processing
literature). Precision (P) is the percent of all actions in the
produced segmentation that are correct, while recall (R) is
the percent of all actions in the true segmentation that were
found. These scores are for complete actions, meaning that
for an action to count, both boundaries must be correct. We
also calculated average precision (BP) and recall (BR) for
boundaries. Finally, we calculated precision (LP) and recall
(LR) for the inferred action lexicon. As the results in Table
1 show, the model performed extremely well on all these
measures of segmentation, especially when compared to a
matched set of random segmentations.

Like our human participants, the model also predicts that
actions are more likely to be in the lexicon, and more likely
to be causal than non-actions and part-actions. However, the
model’s predictions are more extreme than human responses,
with actions having an average probability of 0.88 of being
in the the lexicon, and non-actions and part-actions never
appearing at all. Similarly, the model predicts that actions are
5000 times more likely to be followed by an effect than part-
action and non-action sequences. There are a number of pos-
sible reasons for this discrepancy. For instance, in addition
to discovering complete actions, people may also be learning
which motions are likely to appear together within novel
actions. This would be equivalent to a model that learns the
base distribution P0, and could be explored in future work.

Model P R BP BR LP LR
Bayesian 0.83 0.75 1.0 0.88 0.75 0.88
Random 0.05 0.05 0.34 0.33 0.03 0.98

Table 1: Segmentation accuracy for Experiment 1 corpora.

Experiment 2
For Experiment 2, we were interested in seeing whether
the model could infer the correct causal subsequence from
within the longer sequence of motions (since the remainder
of the input was noise, overall segmentation performance
cannot be measured for this experiment). On average

across samples, the model correctly segmented 76% of the
occurances of the target sequence, while an equivalent set
of random segmentations found only 7%. The model also
correctly predicts that the target triplet is more likely to be in
the lexicon than other triplets, with p(causal | lexicon)= 1.0
and p(other | lexicon)= 0.31, and is significantly more likely
to be causal, with p(effect | target)= 0.999 and p(effect
| other)= 0.0001. This performance is qualitatively very
similar to that of our human participants in the Coherence
and Causality conditions of Experiment 2.

Conclusion
People are able to use both statistical regularities and causal
structure to help segment a continuous stream of observed
behavior into individual actions. They can also identify
the correct causal subsequence from within a longer set of
motions. We used a non-parametric Bayesian model, adapted
from work on statistical language processing, to infer the
segmentation and causal structure of the same sequences our
human participants saw. The parallels in both human and
computational model performance between word segmenta-
tion and action segmentation tasks supports the possibility
of a more general statistical learning ability. Future work
will look at causal inference and action segmentation per-
formance when the reliability of both sources of information
is varied, and will explore the extent to which the model
matches or differs from human behavior in more detail.
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