
Adaptor Grammars: A Framework for Specifying
Compositional Nonparametric Bayesian Models

Mark Johnson
Microsoft Research / Brown University

Mark Johnson@Brown.edu

Thomas L. Griffiths
University of California, Berkeley

Tom Griffiths@Berkeley.edu

Sharon Goldwater
Stanford University

sgwater@gmail.com

Abstract

This paper introduces adaptor grammars, a class of probabilistic models of lan-
guage that generalize probabilistic context-free grammars (PCFGs). Adaptor
grammars augment the probabilistic rules of PCFGs with “adaptors” that can in-
duce dependencies among successive uses. With a particularchoice of adaptor,
based on the Pitman-Yor process, nonparametric Bayesian models of language
using Dirichlet processes and hierarchical Dirichlet processes can be written as
simple grammars. We present a general-purpose inference algorithm for adaptor
grammars, making it easy to define and use such models, and illustrate how several
existing nonparametric Bayesian models can be expressed within this framework.

1 Introduction

Probabilistic models of language make two kinds of substantive assumptions: assumptions about
the structures that underlie language, and assumptions about the probabilistic dependencies in the
process by which those structures are generated. Typically, these assumptions are tightly coupled.
For example, in probabilistic context-free grammars (PCFGs), structures are built up by applying a
sequence of context-free rewrite rules, where each rule in the sequence is selected independently at
random. In this paper, we introduce a class of probabilisticmodels that weaken the independence
assumptions made in PCFGs, which we calladaptor grammars. Adaptor grammars insert addi-
tional stochastic processes calledadaptors into the procedure for generating structures, allowing the
expansion of a symbol to depend on the way in which that symbolhas been rewritten in the past.
Introducing dependencies among the applications of rewrite rules extends the set of distributions
over linguistic structures that can be characterized by a simple grammar.

Adaptor grammars provide a simple framework for defining nonparametric Bayesian models of
language. With a particular choice of adaptor, based on the Pitman-Yor process [1, 2, 3], simple
context-free grammars specify distributions commonly used in nonparametric Bayesian statistics,
such as Dirichlet processes [4] and hierarchical Dirichletprocesses [5]. As a consequence, many
nonparametric Bayesian models that have been used in computational linguistics, such as models of
morphology [6] and word segmentation [7], can be expressed as adaptor grammars. We introduce a
general-purpose inference algorithm for adaptor grammars, which makes it easy to define nonpara-
metric Bayesian models that generate different linguisticstructures and perform inference in those
models.

The rest of this paper is structured as follows. Section 2 introduces the key technical ideas we
will use. Section 3 defines adaptor grammars, while Section 4presents some examples. Section 5
describes the Markov chain Monte Carlo algorithm we have developed to sample from the posterior

distribution over structures generated by an adaptor grammar. Software implementing this algorithm
is available from http://cog.brown.edu/˜mj/Software.htm.

2 Background

In this section, we introduce the two technical ideas that are combined in the adaptor grammars
discussed here: probabilistic context-free grammars, andthe Pitman-Yor process. We adopt a non-
standard formulation of PCFGs in order to emphasize that they are a kind of recursive mixture, and
to establish the formal devices we use to specify adaptor grammars.

2.1 Probabilistic context-free grammars

A context-free grammar (CFG) is a quadruple(N,W,R, S) whereN is a finite set ofnonterminal
symbols, W is a finite set ofterminal symbols disjoint fromN , R is a finite set of productions or
rules of the formA → β whereA ∈ N andβ ∈ (N ∪ W)⋆ (the Kleene closure of the terminal and
nonterminal symbols), andS ∈ N is a distinguished nonterminal called thestart symbol. A CFG
associates with each symbolA ∈ N ∪W a setTA of finite, labeled, ordered trees. IfA is a terminal
symbol thenTA is the singleton set consisting of a unit tree (i.e., containing a single node) labeled
A. The sets of trees associated with nonterminals are defined recursively as follows:

TA =
⋃

A→B1...Bn∈RA

TREEA(TB1
, . . . , TBn

)

whereRA is the subset of productions inR with left-hand sideA, and TREEA(TB1
, . . . , TBn

) is
the set of all trees whose root node is labeledA, that haven immediate subtrees, and where theith
subtree is a member ofTBi

. The set of trees generated by the CFG isTS , and the language generated
by the CFG is the set{Y IELD(t) : t ∈ TS} of terminal strings or yields of the treesTS .

A probabilistic context-free grammar (PCFG) is a quintuple(N,W,R, S, θ), where(N,W,R, S) is
a CFG andθ is a vector of non-negative real numbers indexed by productionsR such that

∑

A→β∈RA

θA→β = 1.

Informally, θA→β is the probability of expanding the nonterminalA using the productionA → β. θ
is used to define a distributionGA over the treesTA for each symbolA. If A is a terminal symbol,
thenGA is the distribution that puts all of its mass on the unit tree labeledA. The distributionsGA

for nonterminal symbols are defined recursively overTA as follows:

GA =
∑

A→B1...Bn∈RA

θA→B1...Bn
TREEDISTA(GB1

, . . . , GBn
) (1)

where TREEDISTA(GB1
, . . . , GBn

) is the distribution over TREEA(TB1
, . . . , TBn

) satisfying:

TREEDISTA(G1, . . . , Gn)

(

�
�

X
X

A

t1 tn. . .

)

=

n
∏

i=1

Gi(ti).

That is, TREEDISTA(G1, . . . , Gn) is a distribution over trees where the root node is labeledA and
each subtreeti is generated independently fromGi; it is this assumption that adaptor grammars
relax. The distribution over trees generated by the PCFG isGS , and the probability of a string is the
sum of the probabilities of all trees with that string as their yields.

2.2 The Pitman-Yor process

The Pitman-Yor process [1, 2, 3] is a stochastic process thatgenerates partitions of integers. It is
most intuitively described using the metaphor of seating customers at a restaurant. Assume we have
a numbered sequence of tables, andzi indicates the number of the table at which theith customer is
seated. Customers enter the restaurant sequentially. The first customer sits at the first table,z1 = 1,
and then + 1st customer chooses a table from the distribution

zn+1|z1, . . . , zn ∼
ma + b

n + b
δm+1 +

m
∑

k=1

nk − a

n + b
δk (2)

wherem is the number of different indices appearing in the sequencez = (z1, . . . , zn), nk is the
number of timesk appears inz, andδk is the Kronecker delta function, i.e., the distribution that
puts all of its mass onk. The process is specified by two real-valued parameters,a ∈ [0, 1] and
b ≥ 0. The probability of a particular sequence of assignments,z, with a corresponding vector of
table countsn = (n1, . . . , nm) is

P(z) = PY(n | a, b) =

∏m

k=1(a(k − 1) + b)
∏nk−1

j=1 (j − a)
∏n−1

i=0 (i + b)
. (3)

From this it is easy to see that the distribution produced by the Pitman-Yor process isexchangeable,
with the probability ofz being unaffected by permutation of the indices of thezi.

Equation 2 instantiates a kind of “rich get richer” dynamics, with customers being more likely to sit
at more popular tables. We can use the Pitman-Yor process to define distributions with this character
on any desired domain. Assume that every table in our restaurant has a valuexj placed on it, with
those values being generated from an exchangeable distribution G, which we will refer to as the
generator. Then, we can sample a sequence of variablesy = (y1, . . . , yn) by using the Pitman-Yor
process to producez and settingyi = xzi

. Intuitively, this corresponds to customers entering the
restaurant, and emitting the values of the tables they choose. The distribution defined ony by this
process will be exchangeable, and has two interesting special cases that depend on the parameters
of the Pitman-Yor process. Whena = 1, every customer is assigned to a new table, and theyi are
drawn fromG. Whena = 0, the distribution on theyi is that induced by the Dirichlet process [4],
a stochastic process that is commonly used in nonparametricBayesian statistics, with concentration
parameterb and base distributionG.

We can also identify another scheme that generates the distribution outlined in the previous para-
graph. LetH be a discrete distribution produced by generating a set of atomsx from G and weights
on those atoms from the two-parameter Poisson-Dirichlet distribution [2]. We could then generate a
sequence of samplesy from H. If we integrate over values ofH, the distribution ony is the same
as that obtained via the Pitman-Yor process [2, 3].

3 Adaptor grammars

In this section, we use the ideas introduced in the previous section to give a formal definition of
adaptor grammars. We first state this definition in full generality, allowing any choice of adaptor,
and then consider the case where the adaptor is based on the Pitman-Yor process in more detail.

3.1 A general definition of adaptor grammars

Adaptor grammars extend PCFGs by inserting an additional component called anadaptor into the
PCFG recursion (Equation 1). An adaptorC is a function from a distributionG to a distribution
over distributions with the same support asG. An adaptor grammar is a sextuple(N,W,R, S, θ,C)
where(N,W,R, S, θ) is a PCFG and the adaptor vectorC is a vector of (parameters specifying)
adaptors indexed byN . That is,CA maps a distribution over treesTA to another distribution over
TA, for eachA ∈ N . An adaptor grammar associates each symbol with two distributionsGA and
HA overTA. If A is a terminal symbol thenGA andHA are distributions that put all their mass on
the unit tree labeledA, while GA andHA for nonterminal symbols are defined as follows:1

GA =
∑

A→B1...Bn∈RA

θA→B1...Bn
TREEDISTA(HB1

, . . . , GHn
) (4)

HA ∼ CA(GA)

The intuition here is thatGA instantiates the PCFG recursion, while the introduction ofHA makes
it possible to modify the independence assumptions behind the resulting distribution through the
choice of the adaptor,CA. If the adaptor is the identity function, withHA = GA, the result is
just a PCFG. However, other distributions over trees can be defined by choosing other adaptors. In
practice, we integrate overHA, to define a single distribution on trees for any choice of adaptorsC.

1This definition allows an adaptor grammar to include self-recursive or mutually recursive CFG productions
(e.g.,X → X Y or X → Y Z, Y → X W). Such recursion complicates inference, so we restrict ourselves
to grammars where the adapted nonterminals are not recursive.

3.2 Pitman-Yor adaptor grammars

The definition given above allows the adaptors to be any appropriate process, but our focus in the
remainder of the paper will be on the case where the adaptor isbased on the Pitman-Yor process.
Pitman-Yor processes can cache, i.e., increase the probability of, frequently occurring trees. The ca-
pacity to replace the independent selection of rewrite rules with an exchangeable stochastic process
enables adaptor grammars based on the Pitman-Yor process todefine probability distributions over
trees that cannot be expressed using PCFGs.

A Pitman-Yor adaptor grammar (PYAG) is an adaptor grammar where the adaptorsC are based on
the Pitman-Yor process. A Pitman-Yor adaptorCA(GA) is the distribution obtained by generating a
set of atoms from the distributionGA and weights on those atoms from the two-parameter Poisson-
Dirichlet distribution. A PYAG has an adaptorCA with parametersaA andbA for each non-terminal
A ∈ N . As noted above, ifaA = 1 then the Pitman-Yor process is the identity function, soA is
expanded in the standard manner for a PCFG. Each adaptorCA will also be associated with two
vectors,xA andnA, that are needed to compute the probability distribution over trees.xA is the
sequence of previously generated subtrees with root nodes labeledA. Having been “cached” by the
grammar, these now have higher probability than other subtrees.nA lists the counts associated with
the subtrees inxA. The adaptor state can thus be summarized asCA = (aA, bA,xA,nA).

A Pitman-Yor adaptor grammar analysis u = (t, ℓ) is a pair consisting of a parse treet ∈ TS

together with an index functionℓ(·). If q is a nonterminal node int labeledA, thenℓ(q) gives the
index of the entry inxA for the subtreet′ of t rooted atq, i.e., such thatxAℓ(q) = t′. The sequence
of analysesu = (u1, . . . , un) generated by an adaptor grammar contains sufficient information to
compute the adaptor stateC(u) after generatingu: the elements ofxA are the distinctly indexed
subtrees ofu with root labelA, and their frequenciesnA can be found by performing a top-down
traversal of each analysis in turn, only visiting the children of a nodeq when the subanalysis rooted
at q is encountered for the first time (i.e., when it is added toxA).

4 Examples of Pitman-Yor adaptor grammars

Pitman-Yor adaptor grammars provide a framework in which itis easy to define compositional non-
parametric Bayesian models. The use of adaptors based on thePitman-Yor process allows us to
specify grammars that correspond to Dirichlet processes [4] and hierarchical Dirichlet processes
[5]. Once expressed in this framework, a general-purpose inference algorithm can be used to calcu-
late the posterior distribution over analyses produced by amodel. In this section, we illustrate how
existing nonparametric Bayesian models used for word segmentation [7] and morphological anal-
ysis [6] can be expressed as adaptor grammars, and describe the results of applying our inference
algorithm in these models. We postpone the presentation of the algorithm itself until Section 5.

4.1 Dirichlet processes and word segmentation

Adaptor grammars can be used to define Dirichlet processes with discrete base distributions. It is
straightforward to write down an adaptor grammar that defines a Dirichlet process over all strings:

Word → Chars
Chars → Char
Chars → Chars Char

(5)

The productions expandingChar to all possible characters are omitted to save space. The start sym-
bol for this grammar isWord. The parametersaChar andaChars are set to1, so the adaptors for
Char andChars are the identity function andHChars = GChars is the distribution over words pro-
duced by sampling each character independently (i.e., a “monkeys at typewriters” model). Finally,
aWord is set to0, so the adaptor forWord is a Dirichlet process with concentration parameterbWord.

This grammar generates all possible strings of characters and assigns them simple right-branching
structures of no particular interest, but theWord adaptor changes their distribution to one that reflects
the frequencies of previously generated words. Initially,theWord adaptor is empty (i.e.,xWord is
empty), so the first words1 generated by the grammar is distributed according toGChars. However,
the second word can be generated in two ways: either it is retrieved from the adaptor’s cache (and

hence iss1) with probability1/(1 + bWord), or else with probabilitybWord/(1 + bWord) it is a new
word generated byGChars. After n words have been emitted,Word puts massn/(n + bWord) on
those words and reserves massbWord/(n + bWord) for new words (i.e., generated byChars).

We can extend this grammar to a simple unigram word segmentation model by adding the following
productions, changing the start label toWords and settingaWords = 1.

Words → Word
Words → Word Words

This grammar generates sequences ofWord subtrees, so it implicitly segments strings of terminals
into a sequence of words, and in fact implements the word segmentation model of [7]. We applied the
grammar above with the algorithm described in Section 5 to a corpus of unsegmented child-directed
speech [8]. The input strings are sequences of phonemes suchasWAtIzIt . A typical parse might
consist ofWords dominating threeWord subtrees, each in turn dominating the phoneme sequences
Wat, Iz and It respectively. Using the sampling procedure described in Section 5 with bWord =
30, we obtained a segmentation which identified words in unsegmented input with 0.64 precision,
0.51 recall, and 0.56 f-score, which is consistent with the results presented for the unigram model
of [7] on the same data.

4.2 Hierarchical Dirichlet processes and morphological analysis

An adaptor grammar with more than one adapted nonterminal can implement a hierarchical Dirichlet
process. A hierarchical Dirichlet process that uses theWord process as a generator can be defined
by adding the productionWord1 → Word to (5) and makingWord1 the start symbol. Informally,
Word1 generates words either from its own cachexWord1 or from theWord distribution. Word
itself generates words either fromxWord or from the “monkeys at typewriters” modelChars.

A slightly more elaborate grammar can implement the morphological analysis described in [6].
Words are analysed into stem and suffix substrings; e.g., theword jumping is analysed as a stem
jump and a suffixing. As [6] notes, one of the difficulties in constructing a probabilistic account
of such suffixation is that the relative frequencies of suffixes varies dramatically depending on the
stem. That paper used a Pitman-Yor process to effectively dampen this frequency variation, and
the adaptor grammar described here does exactly the same thing. The productions of the adaptor
grammar are as follows, whereChars is “monkeys at typewriters” once again:

Word → Stem Suffix
Word → Stem
Stem → Chars
Suffix → Chars

We now give an informal description of how samples might be generated by this grammar. The
nonterminalsWord, Stem andSuffix are associated with Pitman-Yor adaptors. Stems and suffixes
that occur in many words are associated with highly probablecache entries, and so have much higher
probability than under theChars PCFG subgrammar.

Figure 1 depicts a possible state of the adaptors in this adaptor grammar after generating the three
wordswalking, jumpingandwalked. Such a state could be generated as follows. Before any strings
are generated all of the adaptors are empty. To generate the first word we must sample fromHWord,
as there are no entries in theWord adaptor. Sampling fromHWord requires sampling fromGStem

and perhaps alsoGSuffix, and eventually from theChars distributions. Supposing that these return
walk and ing asStem andSuffix strings respectively, the adaptor entries after generating the first
wordwalkingconsist of the first entries forWord, Stem andSuffix.

In order to generate anotherWord we first decide whether to select an existing word from the
adaptor, or whether to generate the word usingGWord. Suppose we choose the latter. Then we must
sample fromHStem and perhaps also fromHSuffix. Suppose we choose to generate the new stem
jump from GStem (resulting in the second entry in theStem adaptor) but choose to reuse the existing
Suffix adaptor entry, resulting in the wordjumping. The third wordwalkedis generated in a similar
fashion: this time the stem is the first entry in theStem adaptor, but the suffixed is generated from
GSuffix and becomes the second entry in theSuffix adaptor.

Word

Stem

w a l k

Suffix

i n g

Word

Stem

w a l k

Suffix

e d

Stem

w a l k

Stem

j u m p

Suffix

i n g

Suffix

e d

Word

Stem

j u m p

Suffix

i n g

Word:

Stem:

Suffix:

Figure 1: A depiction of a possible state of the Pitman-Yor adaptors in the adaptor grammar of
Section 4.2 after generatingwalking, jumpingandwalked.

The model described in [6] is more complex than the one just described because it uses a hidden
“morphological class” variable that determines which stem-suffix pair is selected. The morpholog-
ical class variable is intended to capture morphological variation; e.g., the present continuous form
skippingis formed by suffixingping instead of theing form using inwalkingandjumping. This can
be expressed using an adaptor grammar with productions thatinstantiate the following schema:

Word → Wordc

Wordc → Stemc Suffixc

Wordc → Stemc

Stemc → Chars
Suffixc → Chars

Here c ranges over the hidden morphological classes, and the productions expandingChars and
Char are as before. We set the adaptor parameteraWord = 1 for the start nonterminal symbol
Word, so we adapt theWordc, Stemc andSuffixc nonterminals for each hidden classc.

Following [6], we used this grammar with six hidden classesc to segment 170,015 orthographic
verb tokens from the Penn Wall Street Journal corpus, and seta = 0 andb = 500 for the adapted
nonterminals. Although we trained on all verbs in the corpus, we evaluated the segmentation pro-
duced by the inference procedure described below on just theverbs whose infinitival stems were a
prefix of the verb itself (i.e., we evaluatedskippingbut ignoredwrote, since its stemwrite is not a
prefix). Of the 116,129 tokens we evaluated, 70% were correctly segmented, and of the 7,170 verb
types, 66% were correctly segmented. Many of the errors werein fact linguistically plausible: e.g.,
easedwas analysed as a stemeasfollowed by a suffixed, permitting the grammar to also generate
easingaseasplus ing.

5 Bayesian inference for Pitman-Yor adaptor grammars

The results presented in the previous section were obtainedby using a Markov chain Monte Carlo
(MCMC) algorithm to sample from the posterior distributionover PYAG analysesu = (u1, . . . , un)
given stringss = (s1, . . . , sn), wheresi ∈ W ⋆ andui is the analysis ofsi. We assume we are given
a CFG(N,W,R, S), vectors of Pitman-Yor adaptor parametersa andb, and a Dirichlet prior with
hyperparametersα over production probabilitiesθ, i.e.:

P(θ |α) =
∏

A∈N

1

B(αA)

∏

A→β∈RA

θA→β
αA→β−1 where:

B(αA) =

∏

A→β∈RA
Γ(αA→β)

Γ(
∑

A→β∈RA
αA→β)

with Γ(x) being the generalized factorial function, andαA is the subsequence ofα indexed byRA

(i.e., corresponding to productions that expandA). The joint probability ofu under this PYAG, in-
tegrating over the distributionsHA generated from the two-parameter Poisson-Dirichlet distribution
associated with each adaptor, is

P(u |α,a,b) =
∏

A∈N

B(αA + fA(xA))

B(αA)
PY(nA(u)|a,b) (6)

wherefA→β(xA) is the number of times the root node of a tree inxA is expanded by production
A → β, andfA(xA) is the sequence of such counts (indexed byr ∈ RA). Informally, the first term
in (6) is the probability of generating the topmost node in each analysis in adaptorCA (the rest of
the tree is generated by another adaptor), while the second term (from Equation 3) is the probability
of generating a Pitman-Yor adaptor with countsnA.

The posterior distribution over analysesu given stringss is obtained by normalizing P(u |α,a,b)
over all analysesu that haves as their yield. Unfortunately, computing this distribution is intractable.
Instead, we draw samples from this distribution using a component-wise Metropolis-Hastings sam-
pler, proposing changes to the analysisui for each stringsi in turn. The proposal distribution is
constructed to approximate the conditional distribution overui givensi and the analyses of all other
stringsu−i, P(ui|si,u−i). Since there does not seem to be an efficient (dynamic programming) al-
gorithm for directly sampling from P(ui|si,u−i),2 we construct a PCFGG′(u−i) on the fly whose
parse trees can be transformed into PYAG analyses, and use this as our proposal distribution.

5.1 The PCFG approximationG′(u−i)

A PYAG can be viewed as a special kind of PCFG which adapts its production probabilities depend-
ing on its history. The PCFG approximationG′(u−i) = (N,W,R′, S, θ′) is a static snapshot of the
adaptor grammar given the sentencess−i (i.e., all of the sentences ins exceptsi). Given an adaptor
grammarH = (N,W,R, S,C), let:

R′ = R ∪
⋃

A∈N

{A → Y IELD(x) : x ∈ xA}

θ′A→β =

(

mAaA + bA

nA + bA

)

(

fA→β(xA) + αA→β

mA +
∑

A→β∈RA
αA→β

)

+
∑

k:Y IELD(XAk
)=β

(

nAk
− aA

nA + bA

)

where YIELD(x) is the terminal string or yield of the treex andmA is the length ofxA. R′ contains
all of the productionsR, together with productions representing the adaptor entriesxA for each
A ∈ N . These additional productions rewrite directly to stringsof terminal symbols, and their
probability is the probability of the adaptorCA generating the corresponding valuexAk

.

The two terms to the left of the summation specify the probability of selecting a production from
the original productionsR. The first term is the probability of adaptorCA generating a new value,
and the second term is the MAP estimate of the production’s probability, estimated from the root
expansions of the treesxA.

It is straightforward to map parses of a strings produced byG′ to corresponding adaptor analyses
for the adaptor grammarH (it is possible for a single production ofR′ to correspond to several
adaptor entries so this mapping may be non-deterministic).This means that we can use the PCFG
G′ with an efficient PCFG sampling procedure [9] to generate possible adaptor grammar analyses
for ui.

5.2 A Metropolis-Hastings algorithm

The previous section described how to sample adaptor analysesu for a strings from a PCFG ap-
proximationG′ to an adaptor grammarH. We use this as our proposal distribution in a Metropolis-

2The independence assumptions of PCFGs play an important role in makingdynamic programming possi-
ble. In PYAGs, the probability of a subtree adapts dynamically depending on the other subtrees inu, including
those inui.

Hastings algorithm. Ifui is the current analysis ofsi andu′

i 6= ui is a proposal analysis sampled
from P(Ui|si, G

′(u−i)) we accept the proposalui with probabilityA(ui, u
′

i), where:

A(ui, u
′

i) = min

{

1,
P(u′ |α,a,b) P(ui | si, G

′(u−i))

P(u |α,a,b) P(u′

i | si, G′(u−i))

}

whereu′ is the same asu except thatu′

i replacesui. Except when the number of training stringss
is very small, we find that only a tiny fraction (less than1%) of proposals are rejected, presumably
because the probability of an adaptor analysis does not change significantly within a single string.

Our inference procedure is as follows. Given a set of training stringss we choose an initial set of
analyses for them at random. At each iteration we pick a string si from s at random, and sample a
parse forsi from the PCFG approximationG′(u−i), updatingu when the Metropolis-Hastings pro-
cedure accepts the proposed analysis. At convergence theu produced by this procedure are samples
from the posterior distribution over analyses givens, and samples from the posterior distribution
over adaptor statesC(u) and production probabilitiesθ can be computed from them.

6 Conclusion

The strong independence assumptions of probabilistic context-free grammars tightly couple com-
positional structure with the probabilistic generative process that produces that structure. Adaptor
grammars relax that coupling by inserting an additional stochastic component into the generative
process. Pitman-Yor adaptor grammars use adaptors based onthe Pitman-Yor process. This choice
makes it possible to express Dirichlet process and hierarchical Dirichlet process models over dis-
crete domains as simple context-free grammars. We have proposed a general-purpose inference
algorithm for adaptor grammars, which can be used to sample from the posterior distribution over
analyses produced by any adaptor grammar. While our focus here has been on demonstrating that
this algorithm can be used to produce equivalent results to existing nonparametric Bayesian models
used for word segmentation and morphological analysis, thegreat promise of this framework lies in
its simplification of specifying and using such models, providing a basic toolbox that will facilitate
the construction of more sophisticated models.

Acknowledgments

This work was performed while all authors were at the Cognitive and Linguistic Sciences Depart-
ment at Brown University and supported by the following grants: NIH R01-MH60922 and RO1-
DC000314, NSF 9870676, 0631518 and 0631667, the DARPA CALO project and DARPA GALE
contract HR0011-06-2-0001.

References
[1] J. Pitman. Exchangeable and partially exchangeable random partitions. Probability Theory and Related

Fields, 102:145–158, 1995.

[2] J. Pitman and M. Yor. The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator.
Annals of Probability, 25:855–900, 1997.

[3] H. Ishwaran and L. F. James. Generalized weighted Chinese restaurant processes for species sampling
mixture models.Statistica Sinica, 13:1211–1235, 2003.

[4] T. Ferguson. A Bayesian analysis of some nonparametric problems. The Annals of Statistics, 1:209–230,
1973.

[5] Y. W. Teh, M. Jordan, M. Beal, and D. Blei. Hierarchical Dirichlet processes.Journal of the American
Statistical Association, to appear.

[6] S. Goldwater, T. L. Griffiths, and M. Johnson. Interpolating between types and tokens by estimating power-
law generators. InAdvances in Neural Information Processing Systems 18, 2006.

[7] S. Goldwater, T. L. Griffiths, and M. Johnson. Contextual dependencies in unsupervised word segmenta-
tion. In Proceedings of the 44th Annual Meeting of the Association for Computational Linguistics, 2006.

[8] M. Brent. An efficient, probabilistically sound algorithm for segmentation and word discovery.Machine
Learning, 34:71–105, 1999.

[9] J. Goodman. Parsing inside-out. PhD thesis, Harvard University, 1998. available from
http://research.microsoft.com/˜joshuago/.

