
Categorization as nonparametric Bayesian density estimation 1

Running head: CATEGORIZATION AS NONPARAMETRIC BAYESIAN DENSITY ESTIMATION

Categorization as nonparametric Bayesian density estimation

Thomas L. Griffiths

Department of Psychology

University of California, Berkeley

Adam N. Sanborn

Department of Psychological and Brain Sciences

Indiana University

Kevin R. Canini

Department of Computer Science

University of California, Berkeley

Daniel J. Navarro

School of Psychology

University of Adelaide



Categorization as nonparametric Bayesian density estimation 2

Categorization as nonparametric Bayesian density estimation

Rational models of cognition aim to explain the structure of human thought and behavior

as an optimal solution to the computational problems that are posed by our environment

(Anderson, 1990; Chater & Oaksford, 1999; Marr, 1982; Oaksford & Chater, 1998).

Rational models have been developed for several aspects of cognition, including memory

(Anderson, 1990; Shiffrin & Steyvers, 1997), reasoning (Oaksford & Chater, 1994),

generalization (Shepard, 1987; Tenenbaum & Griffiths, 2001), and causal induction

(Anderson, 1990; Griffiths & Tenenbaum, 2005). By examining the computational

problems that underlie our cognitive capacities, it is often possible to gain a deeper

understanding of the assumptions behind successful models of human cognition, and to

discover new classes of models that might otherwise have been overlooked.

In this chapter, we pursue a rational analysis of category learning: inferring the

structure of categories from a set of stimuli labeled as belonging to those categories. The

knowledge acquired through this process can ultimately be used to make decisions about

how to categorize new stimuli. Several rational analyses of category learning have been

proposed (Anderson, 1990; Nosofsky, 1998; Ashby & Alfonso-Reese, 1995). These analyses

essentially agree on the nature of the computational problem involved, casting category

learning as a problem of density estimation: determining the probability distributions

associated with different category labels. Viewing category learning in this way helps to

clarify the assumptions behind the two main classes of psychological models: exemplar

models and prototype models. Exemplar models assume that a category is represented by

a set of stored exemplars, and categorizing new stimuli involves comparing these stimuli to

the set of exemplars in each category (e.g., Medin & Schaffer, 1978; Nosofsky, 1986).

Prototype models assume that a category is associated with a single prototype and

categorization involves comparing new stimuli to these prototypes (e.g., Reed, 1972).
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These approaches to category learning correspond to different strategies for density

estimation used in statistics, being nonparametric and parametric density estimation

respectively (Ashby & Alfonso-Reese, 1995).

Despite providing insight into the assumptions behind models of categorization,

existing rational analyses of category learning leave a number of questions open. One

particularly important question is whether rational learners should use an exemplar or

prototype representation. The greater flexibility of nonparametric density estimation has

motivated the claim that exemplar models are to be preferred as rational models of

category learning (Nosofsky, 1998). However, nonparametric and parametric methods

have different advantages and disadvantages: the greater flexibility of nonparametric

methods comes at the cost of requiring more data to estimate a distribution. The choice

of representation scheme should ultimately be determined by the stimuli presented to the

learner, and existing rational analyses do not indicate how this decision should be made

(although see Briscoe & Feldman, 2006). This question is complicated by the fact that

prototype and exemplar models are not the only options. A number of models have

recently explored possibilities between these extremes, representing categories using

clusters of several exemplars (Anderson, 1990; Kruschke, 1990; Love, Medin, & Gureckis,

2004; Rosseel, 2002; Vanpaemel, Storms, & Ons, 2005). The range of representations

possible in these models emphasizes the significance of being able to identify an

appropriate category representation from the stimuli themselves: with many

representational options available, it is even more important to be able to say which

option a learner should choose.

Anderson’s (1990, 1991) rational analysis of categorization presents a partial

solution to this question, automatically selecting the number of clusters to be used in

representing a set of objects, but has its own limitations. Anderson’s approach uses a

flexible representation in which new clusters are added as required. When a new stimulus
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is observed, it can either be assigned to one of the pre-existing clusters, or to a new cluster

of its own. As a result, the representation becomes more complex as new data are

observed, with the number of clusters growing as needed to accommodate the rich

structures that emerge as we learn more about our environment. Accordingly, a crucial

aspect of the model is the method by which stimuli are assigned to clusters. Anderson

(1990, 1991) proposed an algorithm in which stimuli are sequentially assigned to clusters,

and assignments of stimuli are fixed once they are made. However, this algorithm does not

provide any asymptotic guarantees for the quality of the resulting assignments, and is

extremely sensitive to the order in which stimuli are observed, a property which is not

intrinsic to the underlying statistical model.

In this chapter, we identify connections between existing rational models of

categorization and work on density estimation in nonparametric Bayesian statistics. These

connections have two consequences. First, we present two new algorithms that can be used

in evaluating the predictions of Anderson’s (1990, 1991) rational model of categorization.

These two algorithms both asymptotically approximate the Bayesian posterior

distribution over assignments of objects to clusters, and help to separate the predictions

that arise from the underlying statistical model from those that are due to the inference

algorithm. These algorithms also provide a source of hypotheses about the processes by

which people could solve the challenging problem of performing probabilistic inference.

Second, we develop a unifying model of categorization, of which existing rational models

are special cases. This model goes beyond previous unifying models of category learning

(e.g., Rosseel, 2002; Vanpaemel et al., 2005) by providing a rational solution to the

question of which representation should be chosen, and when the representation should

change, based purely on the information provided by the stimuli themselves.

Identifying the connection between models of human category learning and

nonparametric Bayesian density estimation extends the scope of the rational analysis of
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category learning. It also provides a different perspective on human category learning.

Rather than suggesting that people use one form of representation or another, our

approach indicates how it might be possible (and, in fact, desirable) for people to switch

between representations based upon the structure of the stimuli they observe. This basic

idea is similar to that underlying recent process models of category learning, such as

SUSTAIN (Love et al., 2004). Our contribution is a rational account of when a given

representation is justified by the data given a set of assumptions about the processes by

which those data are produced, providing a way to explore the assumptions that underlie

human category learning. We illustrate this approach by modeling data from Smith and

Minda (1998), in which people seem to shift from using a prototype representation early

in training to using an exemplar representation late in training, showing that such a shift

can be understood as a rational statistical inference.

The plan of the chapter is as follows. The next section summarizes exemplar and

prototype models, and the idea of interpolating between the two. We then discuss existing

rational models of categorization, before going on to highlight the connection between the

rational model proposed by Anderson (1990, 1991) and the Dirichlet process mixture

model (Antoniak, 1974; Ferguson, 1983; Neal, 1998), a statistical model that is commonly

used in nonparametric Bayesian statistics. This allows us to identify two new algorithms

for use with Anderson’s model, which we describe and evaluate, and to use generalizations

of this statistical model as the basis for a more complete account of human categorization.

We summarize the ideas behind the hierarchical Dirichlet process (Teh, Jordan, Beal, &

Blei, 2004), and use it as the foundation for a unifying rational model of categorization.

Finally, we show that this model can capture the shift from prototypes to exemplars in

the data of Smith and Minda (1998).
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Similarity-based models of categorization

While early work assumed that people use explicit classification rules in order to assign

stimuli to categories (e.g., Bruner, Goodnow, & Austin, 1956), most categorization models

developed in the last 30 years have assumed that categories are defined by a kind of

“family resemblance” (e.g., Rosch, 1978). The two most influential approaches have been

prototype models and exemplar models, which both assume that people assign stimuli to

categories based on similarity, formalized in the following manner. Given a set of N − 1

stimuli with features xN−1 = (x1, x2, . . . , xN−1) and category labels

yN−1 = (y1, y2, . . . , yN−1), the probability that stimulus N with features xN is assigned to

category j is given by

P (yN = j|xN ,xN−1,yN−1) =
ηN,jβj

∑

y ηN,yβy
(1)

where ηN,y is the similarity of the stimulus xN to category y and βy is the response bias

for category y. Thus, the decision is a function of the various category similarities, and

involves a straightforward application of the standard choice rule (Luce, 1959). The key

difference between the models is in how ηN,j , the similarity of a stimulus to a category, is

computed.

Exemplars and prototypes

In an exemplar model (e.g., Medin & Schaffer, 1978; Nosofsky, 1986), all of the instances

of that category are stored. The similarity of stimulus N to category j is calculated by

summing the similarity of the stimulus to all these stored instances. That is,

ηN,j =
∑

i|yi=j

sN,i (2)



Categorization as nonparametric Bayesian density estimation 7

where sN,i is a symmetric measure of the similarity between the two stimuli xN and xi.

The similarity measure is typically defined as a decaying exponential function of the

distance between the two stimuli, following Shepard (1987). An example of the overall

similarity function is shown in the rightmost panel of Figure 1. In contrast, prototype

models (e.g., Reed, 1972), represent a category j in terms of a single prototypical instance.

In this formulation, the similarity of stimulus N to category j is defined to be,

ηN,j = sN,pj
(3)

where pj is the prototypical instance of the category and sN,pj
is a measure of the

similarity between stimulus N and the prototype pj . One common way of defining the

prototype is as the centroid of all instances of the category in some psychological space,

i.e.,

pj =
1

Nj

∑

i|yi=j

xi (4)

where Nj is the number of instances of the category (i.e., the number of stimuli for which

yi = j). The panel on the left of Figure 1 illustrates the kind of category similarity

functions employed by a prototype model.

Broader classes of representation

Although exemplars and prototypes have dominated the modern literature, a number of

authors (e.g., Kruschke, 1990; Love et al., 2004; Vanpaemel et al., 2005) have proposed

more general classes of category representation that interpolate between prototype and

exemplar models. For example, Vanpaemel et al. (2005) formalized a set of interpolating

models by partitioning instances of each category into clusters, where the number of

clusters Kj ranges from 1 to Nj . Then each cluster is represented by a prototype, and the
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similarity of stimulus N to category j is defined to be,

ηN,j =

Kj
∑

k=1

sN,pj,k
(5)

where pj,k is the prototype of cluster k in category j. This is equivalent to the prototype

model when Kj = 1, and the exemplar model when Kj = Nj . Thus, this generalized

model, the Varying Abstraction Model (VAM), is more flexible than both the exemplar

and prototype models (as illustrated by the middle panel of Figure 1), although it raises

the problem of estimating which clustering people use in any particular categorization

task (for details, see Vanpaemel et al., 2005).

The idea of representing a category using a set of clusters is reasonably intuitive,

since explicitly labeled categories are not the only level at which homogeneity can be

found in the world (Rosch, 1978). For example, while no two chairs are exactly the same,

many chairs are of similar types, differing only in superficial properties like color. By

clustering the instances of these similar types of chairs and storing a single prototype, we

can avoid having to remember a large number of redundant instances. A similar property

holds for natural categories, where, for example, species of animals might be composed of

subspecies. This underlying structure supports a finer-grained representation than a single

prototype, while not requiring the comprehensiveness of a full exemplar model.

Rational accounts of categorization

The models discussed in the previous section all explain categorization behavior in terms

of cognitive processes, in particular similarity and choice. An alternative approach is to

seek an explanation based on the form of the computational problem that underlies

categorization. Following the methodology outlined by Anderson (1990), rational models

of categorization explain human behavior as an adaptive solution to a computational
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problem posed by the environment, rather than focusing on the cognitive processes

involved. Existing analyses tend to agree that the basic problem is one of prediction –

identifying the category label or some other unobserved property of an object using its

observed properties (Anderson, 1990; Ashby & Alfonso-Reese, 1995; Rosseel, 2002). This

prediction problem has a natural interpretation as a form of Bayesian inference. In a

standard classification task, for instance, Bayes’ rule allows us to compute the probability

that object N belongs to category j given the features and category labels of N − 1

objects:

P (yN = j|xN ,xN−1,yN−1) =
P (xN |yN = j,xN−1,yN−1)P (yN = j|yN−1)

∑

y P (xN |yN = y,xN−1,yN−1)P (yN = y|yN−1)
. (6)

where we assume that the prior probability of an object coming from a particular category

is independent of the features of the previous objects. In this expression, the posterior

probability of category j is related to both the probability of sampling an object with

features xN from that category, and the prior probability of choosing that category.

Category learning, then, becomes a matter of determining these probabilities – a problem

known as density estimation. Since different rational models vary in how they approach

this problem, we provide a brief overview of the various accounts.

The rational basis of exemplar and prototype models

Ashby and Alfonso-Reese (1995) observed that both prototype and exemplar models can

be recast as rational solutions to the problem of categorization, highlighting the

connection between the Bayesian solution presented in Equation 6 and the choice

probabilities in the exemplar and prototype models (i.e., Equation 1). Specifically, the

category similarity ηN,j can be identified with the probability of generating an item,

P (xN |yN = j,xN−1,yN−1), while the category bias βj corresponds naturally to the prior

probability of category j, P (yN = j|yN−1). The difference between exemplar and
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prototype models is thus the different ways of estimating P (xN |yN = j,xN−1,yN−1). The

definition of ηN,j used in an exemplar model (Equation 2) corresponds to estimating

P (xN |yn = j,xN−1,yN−1) as the sum of a set of functions (known as “kernels”) centered

on the xi already labeled as belonging to category j, with

P (xN |yN = j,xN−1,yN−1) ∝
∑

i|yi=j

f(xN , xi) (7)

where f(x, xi) is a probability distribution centered on xi.
1 This method is widely used

for approximating distributions in statistics, being a simple form of nonparametric density

estimation called kernel density estimation (e.g., Silverman, 1986). In contrast, the

definition of ηN,j used in a prototype model (Equation 3) corresponds to estimating

P (xN |yn = j,xN−1,yN−1) by assuming that each category distribution comes from an

underlying parametric family and then finding the parameters that best characterize the

instances labeled as belonging to that category. The prototype is specified by these

parameters, with the centroid being an appropriate estimate for distributions whose

parameters characterize their mean. Again, this is a common method for estimating a

probability distribution, known as parametric density estimation, in which the distribution

is assumed to be of a known form but with unknown parameters (e.g., Rice, 1995).

The Mixture Model of Categorization

Casting exemplar and prototype models as different schemes for density estimation

suggests that a similar interpretation might be found for interpolating models. Rosseel

(2002) proposed one such model – the Mixture Model of Categorization (MMC) –

assuming that P (xN |yN = j,xN−1,yN−1) is a mixture distribution. Specifically, each

object xi comes from a cluster zi, and each cluster is associated with a probability

distribution over the features of the objects generated from that cluster. When evaluating
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the probability of a new object xN , it is necessary to sum over all of the clusters from

which that object might have been drawn. Accordingly,

P (xN |yN = j,xN−1,yN−1) = (8)
Kj
∑

k=1

P (xN |zN = k,xN−1, zN−1)P (zN = k|zN−1, yN = j,yN−1)

where Kj is the total number of clusters for category j, P (xN |zN = k,xN−1, zN−1) is the

probability of xN under cluster k, and P (zN = k|zN−1, yN = j,yN−1) is the probability of

generating a new object from cluster k in category j. The clusters can either be shared

between categories, or be specific to a single category (in which case

P (zN = k|zN−1, yN = j,yN−1) is 0 for all clusters not belonging to category j). This

model reduces to kernel density estimation when each object has its own cluster and the

clusters are equally weighted, and parametric density estimation when each category is

represented by a single cluster. By a similar argument to that used for the exemplar

model above, we can connect Equation 8 with the definition of ηN,j in the VAM (Equation

5), providing a rational justification for this method of interpolating between exemplars

and prototypes.2

Anderson’s Rational Model of Categorization

The MMC elegantly defines a rational model between exemplars and prototypes, but does

not determine how many clusters are appropriate for representing each category, based on

the available data. Anderson (1990) introduced the Rational Model of Categorization

(RMC), which presents a partial solution to this problem. The RMC differs from the

other models discussed in this section by treating category labels like features. Thus, the

RMC specifies a joint distribution on features and category labels, rather than assuming

that the distribution on category labels is estimated separately and then combined with a
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distribution on features for each category. As in the MMC, this distribution is a mixture,

with

P (xN ,yN ) =
∑

zN

P (xN ,yN |zN )P (zN ) (9)

where P (zN ) is a distribution over clusterings of the N objects. The key difference from

the MMC is that the RMC provides an explicit prior distribution over possible partitions.

Importantly, this distribution allows the number of clusters to be unbounded, with

P (zN ) =
(1 − c)KcN−K

∏N−1
i=0 [(1 − c) + ci]

K
∏

k=1

(Mk − 1)! (10)

where c is a parameter called the coupling probability, and Mk is the number of objects

assigned to cluster k. This is the distribution that results from sequentially assigning

objects to clusters with probability

P (zi = k|zi−1) =











cMk

(1−c)+c(i−1) if Mk > 0 (i.e., k is old)

(1−c)
(1−c)+c(i−1) if Mk = 0 (i.e., k is new)

(11)

where the counts Mk are accumulated over zi−1. Thus, each object can be assigned to an

existing cluster with probability proportional to the number of objects already assigned to

that cluster, or to a new cluster with probability determined by c.

Despite having been defined in terms of the joint distribution of xN and yN , the

assumption that features and category labels are independent given the cluster

assignments makes it possible to write P (xN |yN = j,xN−1,yN−1) in the same form as

Equation 8. To do so, note that the probability that the Nth observation belongs to the

kth cluster is given by,

P (zN = k|zN−1, yN = j,yN−1) ∝ P (yN = j|zN = k, zN−1,yN−1)P (zN = k|zN−1) (12)
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where we take into account the fact that this observation belongs to category yN . The

second term on the right hand side is given by Equation 11. This defines a distribution

over the same K clusters regardless of j, but the value of K depends on the number of

clusters in zN−1. Substituting this expression into Equation 8 provides the relevant

mixture model for the RMC. In general, the probabilities in Equation 12 will never be

precisely zero, so all clusters contribute to all categories. The RMC can therefore be

viewed as a form of the mixture model in which all clusters are shared between categories

but the number of clusters is inferred from the data. However, the two models are not

directly equivalent because the RMC assumes that both features and category labels are

generated from the clusters. This assumption induces a dependency between labels and

features, such that the prior over yN depends on xN−1 as well as yN−1, violating the

(arguably sensible) independence assumption made by the other models and embodied in

Equation 6.

The RMC comes close to specifying a unifying rational model of categorization,

capturing many of the ideas embodied in other models and allowing the representation to

be inferred from the data. It can also be shown to mimic the behavior of other models of

categorization under certain conditions (Nosofsky, 1991). However, the model is still

significantly limited. First, the RMC assumes a single set of clusters for all categories, an

assumption that is inconsistent with many models that interpolate between prototypes

and exemplars (e.g., Vanpaemel et al., 2005). Second, the idea that category labels should

be treated like other features has odd implications, such as the dependency between

features and category labels mentioned above. Third, as we will discuss shortly, the

approximate algorithm used for assigning objects to clusters in the RMC has serious

drawbacks. In order to address these issues, we now discuss the connections between the

RMC and nonparametric Bayesian statistics.
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Nonparametric Bayes and categorization

One of the most interesting properties of the RMC is that it has a direct connection to

nonparametric Bayesian statistics (Neal, 1998). The rationale for using nonparametric

methods is that real data are not generally sampled from some neat, finite-dimensional

family of distributions, so it is best to avoid this assumption at the outset. From a

Bayesian perspective, the nonparametric approach requires us to use priors that include as

broad a range of densities of possible, thereby allowing us to infer very complex densities

if they are warranted by data. The most commonly used method for placing broad priors

over probability distributions is the Dirichlet process (DP; Ferguson, 1973). The

distributions indexed by the Dirichlet process can be expressed as countably infinite

mixtures of point masses (Sethuraman, 1994), making them ideally suited to act as priors

in infinite mixture models (Escobar & West, 1995; Rasmussen, 2000). When used in this

fashion, the resulting model is referred to as a Dirichlet process mixture model (DPMM;

Antoniak, 1974; Ferguson, 1983; Neal, 1998).

Although a complete description of the Dirichlet process is beyond the scope of this

chapter (for more details, see Navarro, Griffiths, Steyvers, & Lee, 2006), what matters for

our purposes is that the Dirichlet process implies a distribution over partitions: any two

observations in the sample that were generated from the same mixture component may be

treated as members of the same cluster, allowing us to specify priors over an unbounded

number of clusters. In the case where N observations have been made, the prior

probability that a Dirichlet process will partition those observations into the clusters zN is

P (zN ) =
αK

∏N−1
i=0 [α + i]

K
∏

k=1

(Mk − 1)! (13)

where α is the dispersion parameter of the Dirichlet process. This distribution over

partitions can be produced by a simple sequential stochastic process (Blackwell &
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MacQueen, 1973), known as the Chinese restaurant process (Aldous, 1985; Pitman, 2002).

If observations are assigned to clusters one after another and the probability that

observation i + 1 is assigned to cluster k is

P (zi = k|zi−1) =











Mk

i−1+α
if Mk > 0 (i.e., k is old)

α
i−1+α

if Mk = 0 (i.e., k is new)

(14)

we obtain Equation 13 for the probability of the resulting partition. This distribution has

a number of nice properties, with one of the most important being exchangeability: the

prior probability of a partition is unaffected by the order in which the observations are

received (Aldous, 1985). To make some of these ideas more concrete, Figure 2 presents a

visual depiction of the relationship between the partitioning implied by the DP, the

distribution over parameters that is sampled from the DP, and the mixture distribution

over stimuli that results in the DPMM.

It should be apparent from our description of the DPMM that it is similar in spirit

to the probabilistic model underlying the RMC. In fact, the two are directly equivalent, a

point that was first made in the statistics literature by Neal (1998). If we let α = (1− c)/c,

Equations 10 and 13 are equivalent, as are Equations 11 and 14. Thus the prior over

cluster assignments used in the RMC is exactly the same as that used in the DPMM.

Anderson (1990, 1991) thus independently discovered one of the most celebrated models in

nonparametric Bayesian statistics, deriving this distribution from first principles. This

connection provides us with the opportunity to draw on work related to the DPMM in

statistics to develop new rational models of categorization. In the remainder of the

chapter, we use this approach to explore two new algorithms for approximate Bayesian

inference in the RMC and a way to significantly extend the scope of the model.
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Approximate inference algorithms

When considering richer representations than prototypes and exemplars it is necessary to

have a method for learning the appropriate representation from data. Using Equation 9 to

make predictions about category labels and features requires summing over all possible

partitions zN . This sum rapidly becomes intractable for large N , since the number of

partitions grows rapidly with the number of stimuli.3 Consequently, an approximate

inference algorithm is needed. The RMC does provide an algorithm, but it has some

significant drawbacks. In this section, we first discuss the algorithm that Anderson (1990,

1991) originally proposed for the RMC, and then use the connections with the DPMM to

motivate two alternative inference algorithms, which we will compare with exact Bayesian

inference and human judgments in the next section.

The existence of alternative inference algorithms for the RMC is valuable for two

reasons. The first is that these algorithms provide us with a way to separate the

assumptions behind the underlying statistical model – the DPMM – and the scheme used

for approximate inference when evaluating the predictions of the model. This is important,

because different algorithms can have properties that significantly affect the predictions of

the model, such as violating the exchangeability assumption. The second is that each

inference algorithm provides us with a hypothesis about how people might go about

solving the challenging problem of performing the probabilistic computations involved in

Bayesian inference. Rational models are useful for testing assumptions learners make

about the environment, but do not generally aim to describe the psychological processes

used in solving the computational problems posed by the environment. The computations

involved in solving these problems are often intractable, with the overwhelming number of

partitions of a set of objects being just one example of a seemingly simple problem that

rapidly exceeds the capacities of most computers. Computer science and statistics have

developed useful algorithms for approximating intractable probability distributions.
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Cognitive scientists can appropriate these algorithms for modeling categorization –

assuming that people have rational goals and perhaps approximate the solutions using

these same algorithms. Incorporating these algorithms into categorization models provides

a way to convert principled rational models into practical process models, as well as

tightening the link between these two levels of analysis.

The local MAP algorithm

Anderson (1990, 1991) identified two desiderata for an approximate inference

algorithm: that it be incremental, assigning a stimulus to each cluster as it is seen, and

that these assignments, once made, be fixed. These desiderata were based on beliefs about

the nature of human category learning: that “people need to be able to make predictions

all the time not just at particular junctures after seeing many objects and much

deliberation” (Anderson, 1991, p. 412), and that “people tend to perceive objects as

coming from specific categories” (Anderson, 1991, p. 411). He developed a simple

inference algorithm that satisfies these desiderata. We will refer to this algorithm as the

local MAP algorithm, as it involves assigning each stimulus to the cluster that has the

highest posterior probability given the previous assignments (i.e., the maximum a

posteriori or MAP cluster).

The local MAP algorithm approximates the sum in Equation 9 with just a single

clustering of the N objects, zN . This clustering is selected by assigning each object to a

cluster as it is observed. The posterior probability that stimulus i was generated from

cluster k given the features and labels of all stimuli, along with the cluster assignments

zi−1 for the previous i − 1 stimuli is given by

P (zi = k|zi−1, xi,xi−1, yi,yi−1) ∝ (15)

P (xi|zi = k, zi−1,xi−1)P (yi|zi = k, zi−1,yi−1)P (zi = k|zi−1)
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where P (zi = k|zi−1) is given by Equation 11. Under the local MAP algorithm, xi is

assigned to the cluster k that maximizes Equation 15. Iterating this process results in a

single partition of a set of N objects. The local MAP algorithm approximates the

complete joint distribution using only this partition. In effect, it assumes that

P (xN ,yN ) ≈ P (xN ,yN |zN ) (16)

where zN is produced via the procedure outlined above. The probability that a particular

object receives a particular category label would likewise be computed using a single

partition. Unfortunately, although this approach is fast and simple, the local MAP

algorithm has some odd characteristics. In particular, the quality of the approximation is

often poor, and the algorithm violates the principle of exchangeability. In fact, the local

MAP algorithm is extremely sensitive to the order in which stimuli are observed, perhaps

more than human participants are (see Sanborn, Griffiths, & Navarro, 2006).

Monte Carlo methods

The connection between the RMC and the DPMM suggests a solution to the shortcomings

of the local MAP algorithm. In the remainder of this section, we draw on the extensive

literature on approximate inference for DPMMs to offer two alternative algorithms for the

RMC: Gibbs sampling and particle filtering. These algorithms are less sensitive to order

and are asymptotically guaranteed to produce accurate predictions. Both are Monte Carlo

methods, in which the intractable sum over partitions is approximated numerically using a

collection of samples. Specifically, to compute the probability that a particular object
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receives a particular category label, a Monte Carlo approximation gives

P (yN = j|xN ,yN−1) =
∑

zN

P (yN = j|xN ,yN−1, zN )P (zN |xN ,yN−1) (17)

≈
1

m

m
∑

`=1

P (yN = j|xN ,yN−1, z
(`)
N )

where z
(1)
N , . . . , z

(m)
N are m samples from P (zN |xN ,yN−1), and the approximation becomes

exact as m → ∞. This is the principle behind the two algorithms we outline in this

section. However, since sampling from P (zN |xN ,yN−1) is not straightforward, the two

algorithms use more sophisticated Monte Carlo methods to generate a set of samples.

Gibbs sampling

The approximate inference algorithm most commonly used with the DPMM is Gibbs

sampling, a Markov chain Monte Carlo (MCMC) method (see Gilks, Richardson, &

Spiegelhalter, 1996). This algorithm involves constructing a Markov chain that will

converge to the distribution from which we want to sample, in this case the posterior

distribution over partitions. The state space of the Markov chain is the set of partitions,

and transitions between states are produced by sampling the cluster assignment of each

stimulus from its conditional distribution, given the current assignments of all other

stimuli. The algorithm thus moves from state to state by sequentially sampling each zi

from the distribution

P (zi = k|z−i, xi,x−i, yi,y−i) ∝ (18)

P (xi|zi = k, z−i,x−i)P (yi|zi = k, z−i,y−i)P (zi = k|z−i)

where z−i refers to all cluster assignments except for the ith.

Equation 18 is extremely similar to Equation 15, although it gives the probability of
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a cluster based on the all of the trials in the entire experiment except for the current trial,

instead of just the previous trials. Exchangeability means that these probabilities are

actually computed in exactly the same way: the order of the observations can be

rearranged so that any particular observation is considered the last observation. Hence,

we can use Equation 14 to compute P (zi|z−i), with old clusters receiving probability in

proportion to their popularity, and a new cluster being chosen with probability

determined by α (or, equivalently, c). The other terms reflect the probability of the

features and category label of stimulus i under the partition that results from this choice

of zi, and depend on the nature of the features.

The Gibbs sampling algorithm for the DPMM is straightforward (Neal, 1998). First,

an initial assignment of stimuli to clusters is chosen. Next, we cycle through all stimuli,

sampling a cluster assignment from the distribution specified by Equation 18. This step is

repeated, with each iteration potentially producing a new partition of the stimuli. This

process is illustrated in Figure 3. Since the probability of obtaining a particular partition

after each iteration depends only on the partition produced on the previous iteration, this

is a Markov chain. After enough iterations for the Markov chain to converge, we begin to

save the partitions it produces. The partition produced on one iteration is not

independent of the next, so the results of some iterations are discarded to approximate

independence. The partitions generated by the Gibbs sampler can be used in the same

way as samples z
(`)
N in Equation 17.

The Gibbs sampler differs from the local MAP algorithm in two ways. First, it

involves sequentially revisiting the cluster assignments of all objects many times, while the

local MAP algorithm assigns each object to a cluster exactly once. Second, the cluster

assignment is sampled from the posterior distribution instead of always going to the cluster

with the highest posterior probability. As a consequence, different partitions are produced

on different iterations, and approximate probabilities can be computed using a collection
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of partitions rather than just one. As with all Monte Carlo approximations, the quality of

the approximation increases as the number of partitions in that collection increases.

The Gibbs sampler provides an effective means of constructing the approximation in

Equation 17, and thus of making accurate predictions about the unobserved features of

stimuli. However, it does not satisfy the desiderata Anderson (1990, 1991) used to

motivate his algorithm. In particular, it is not an incremental algorithm: it assumes that

all data are available at the time of inference. Depending on the experimental task, this

assumption may be inappropriate. The Gibbs sampler is an excellent algorithm to model

experiments where people are shown the full set of stimuli simultaneously. However, when

the stimuli are shown sequentially, it needs to be run again each time new data are added,

making it inefficient when predictions need to be made on each trial. In such situations,

we need to use a different algorithm.

Particle filtering

Particle filtering is a sequential Monte Carlo technique that can be used to provide a

discrete approximation to a posterior distribution that can be updated with new data

(Doucet, de Freitas, & Gordon, 2001). Each “particle” is a partition z
(`)
i of the stimuli

from the first i trials. Unlike the local MAP algorithm, in which the posterior distribution

is approximated with a single partition, the particle filter uses m partitions. Summing

over these particles gives us an approximation to the posterior distribution over partitions

P (zi|xi,yi) ≈
1

m

m
∑

`=1

δ(zi, z
(`)
i ) (19)

where δ(z, z′) is 1 when z = z′, and 0 otherwise. If Equation 19 is used as an

approximation to the posterior distribution over partitions zi after the first i trials, then

we can approximate the distribution of zi+1 given the observations xi,yi in the following
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manner:

P (zi+1|xi,yi) =
∑

zi

P (zi+1|zi)P (zi|xi,yi)

≈
∑

zi

P (zi+1|zi)
1

m

m
∑

`=1

δ(zi, z
(`)
i

)

=
1

m

m
∑

`=1

P (zi+1|z
(`)
i

) (20)

where P (zi+1|zi) is given by Equation 14. We can then incorporate the information

conveyed by the features and label of stimulus i + 1, arriving at the approximate posterior

probability

P (zi+1|xi+1,yi+1) ∝ P (xi+1|zi+1,xi)P (yi+1|zi+1,yi)P (zi+1|xi,yi)

≈
1

m

m
∑

`=1

P (xi+1|zi+1,xi)P (yi+1|zi+1,yi)P (zi+1|z
(`)
i

) (21)

The result is a discrete distribution over all the previous particle assignments and all

possible assignments for the current stimulus. Drawing m samples from this distribution

provides us with our new set of particles, as illustrated in Figure 4.

The particle filter for the RMC is initialized with the first stimulus assigned to the

first cluster for all m particles. On each following trial, the distribution in Equation 21 is

calculated, based on the particles sampled in the last trial. On any trial, these particles

provide an approximation to the posterior distribution over partitions. The stimuli are

integrated into the representation incrementally, satisfying one of Anderson’s desiderata.

The degree to which Anderson’s fixed assignment criterion is satisfied depends on the

number of particles. The assignments in the particles themselves are fixed: once a

stimulus has been assigned to a cluster in a particle, it cannot be reassigned. However, the

probability of a previous assignment across particles can change when a new stimulus is
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introduced. When a new set of particles is sampled, the number of particles that carry a

particular assignment of a stimulus to a cluster is likely to change. For large m, the

assignments will not appear fixed. However, when m = 1, previous assignments cannot be

changed, and Anderson’s criterion is unambiguously satisfied. In fact, the single-particle

particle filter is very similar to the local MAP algorithm: each assignment of a stimulus

becomes fixed on the trial the stimulus is introduced. The key difference from the local

MAP algorithm is that each stimulus is stochastically assigned a cluster by sampling from

the posterior distribution, rather than being deterministically assigned to the cluster with

highest posterior probability.

Comparing the algorithms to data

In this section we use data from Medin and Schaffer’s (1978) Experiment 1 to compare

how effective the algorithms are in approximating the full Bayesian solution, and how

closely they match human performance. In order to do so, we need to specify a measure of

the probability of a set of features given a particular partition. The RMC assumes that

the features (and category label) of a stimulus are independent once the cluster it belongs

to is known. Using this idea, we can write the probability of the features of a stimulus as

P (xN |zN = k,xN−1, zN−1) =
∏

d

P (xN,d|zN = k,xN−1, zN−1)

where xN,d is the value of the dth feature of object N . In this section, we collapse the

distinction between category labels and features, treating category labels simply as a

special kind of discrete feature. Anderson (1991) presents the likelihood for both discrete

and continuous features, but we need only consider binary features for our applications.

Given the cluster, the value on each feature is assumed to have a Bernoulli distribution.

Integrating out the parameter of this distribution with respect to a Beta(β0, β1) prior, we
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obtain

P (xN,d = v|zN = k,xN−1, zN−1) =
Bv + βv

B· + β0 + β1
(22)

where Bv is the number of stimuli with value v on the dth feature that zN identifies as

belonging to the same cluster as xN . B· denotes the number of other stimuli in the same

cluster. We use β0 = β1 = 1 in all simulations.

Medin and Schaffer’s (1978) experiment used six training items, each consisting of

five binary features (including the category label, listed last): 11111, 10101, 01011, 00000,

01000, and 10110. In an experiment with only six training examples, the exact posterior

probabilities can be computed, as can the partition with the highest posterior probability

(the global MAP solution). The algorithms were trained on the six examples, and the

category label of a set of test stimuli (shown in Table 1) was then predicted. Three

coupling probabilities were compared: c = 0.25, c = 0.45, and c = 0.75. The local MAP

algorithm was run on all 720 possible orders of the training stimuli. The Gibbs sampler

was run for 1, 100 iterations on a single training order. The first 100 iterations were

discarded and only every 10th iteration was kept for a total of 100 samples. The particle

filter was run with 100 particles on a single training order. Linear correlations with the

human confidence ratings reported by Medin and Schaffer (1978) were computed for all

algorithms.

The results shown in the top row of Figure 5 show that the coupling parameter does

not have a large effect on the exact solution, the particle filter, or the Gibbs sampler.

Moreover, the particle filter and Gibbs sampler provide good approximations to the full

posterior solution.4 In contrast, the local MAP algorithm depends heavily on the value of

the coupling parameter. Furthermore, the global MAP solution, which the local MAP

algorithm attempts to discover, is not a very good approximation to the full posterior, and

provides a worse fit to the human data than the local MAP solution.
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The fits to the human data for the two Monte Carlo algorithms are not particularly

good when shown one instance of each stimulus (i.e. one block of training), but improve

when they are trained on ten blocks of the six stimuli, as shown in the lower panels of

Figure 5. This is more relevant for the different algorithms to human data, as participants

in the experiment received ten blocks of training data. The full posterior is not tractable

for sixty trials, but we can still compare the three approximation algorithms. Again, all of

the predictions across algorithms and values of the coupling parameter are similar except

for the local MAP algorithm with a high coupling parameter. Overall, the local MAP

algorithm does not predict the human data any better than the other algorithms, and is in

fact substantially worse for some values of the coupling parameter.

Unifying rational models using hierarchical Dirichlet processes

In the previous sections, interpreting the RMC as a DPMM allowed us to propose

approximate inference algorithms that improve the fit to empirical data and better

approximate the ideal Bayesian solution to the categorization problem. In this section we

extend the approach, showing how Bayesian nonparametric models can unify all of the

rational models discussed so far, subsuming prototypes, exemplars, the MMC, and RMC

into a single model that learns the most appropriate representational structure. The tool

that we will use to do this is the hierarchical Dirichlet process (HDP).

The HDP, introduced by Teh, Jordan, Blei, and Beal (2004), is a straightforward

generalization of the basic Dirichlet process. Observations are divided into groups, and

each group is modeled using a Dirichlet process (with parameter α). A new observation is

first compared to all of the clusters in its group, with the prior probability of each cluster

determined by Equation 14. If the observation is to be assigned to a new cluster, the new

cluster is drawn from a second Dirichlet process that compares the stimulus to all of the

clusters that have been created across groups. This higher-level Dirichlet process is
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governed by parameter γ, analogous to α, and the prior probability of each cluster is

proportional to the number of times that cluster has been selected by any group, instead

of the number of observations in each cluster. The new observation is only assigned to a

completely new cluster if both Dirichlet processes select a new cluster. In this manner,

stimuli in different categories can end up belonging to the same mixture component,

simply by being drawn from the same partition in the higher level. An illustration of this

is shown in Figure 6.

The HDP provides a way to model probability distributions across groups of

observations. Each distribution is a mixture of an unbounded number of clusters, but the

clusters can be shared between groups. Shared clusters allow the model to leverage

examples from across categories to better estimate cluster parameters. A priori

expectations about the number of clusters in a group and the extent to which clusters are

shared between groups are determined by the parameters α and γ. When α is small, each

group will have few clusters, but when α is large, the number of clusters will be closer to

the number of observations. When γ is small, groups are likely to share clusters, but when

γ is large, the clusters in each group are likely to be unique.

We can now define a unifying rational model of categorization, based on the HDP. If

we identify each category with a “group” for which we want to estimate a distribution, the

HDP becomes a model of category learning, subsuming all previous rational models

through different settings of α and γ. Figure 7 identifies six models we can obtain by

considering limiting values of α and γ.5 We will refer to the different models using the

notation HDPα,γ , where α and γ take on values corresponding to the values of the two

parameters of the model (with + denoting a value in the interval (0,∞)).Three of the

models shown in Figure 7 are exactly isomorphic to existing models.6 HDP∞,∞ is an

exemplar model, with one cluster per object and no sharing of clusters. HDP0,∞ is a

prototype model, with one cluster per category and no sharing of clusters. HDP∞,+ is the



Categorization as nonparametric Bayesian density estimation 27

RMC, provided that category labels are treated as features. In HDP∞,+, every object has

its own cluster, but those clusters are generated from the higher-level Dirichlet process.

Consequently, group membership is ignored and the model reduces to a Dirichlet process.

Figure 7 also includes some models that have not previously been explored in the

literature on categorization. HDP0,+ makes the same basic assumptions as the prototype

model, with a single cluster per category, but makes it possible for different categories to

share the same prototype – something that might be appropriate in an environment where

the same category can have different labels. However, the most interesting models are

HDP+,+ and HDP+,∞. These models are essentially the MMC, with clusters shared

between categories or unique to different categories respectively, but the number of

clusters in each category can differ and can be learned from the data. Consequently, these

models make it possible to answer the question of whether a particular category is best

represented using prototypes, exemplars, or something in between, simply based on the

objects belonging to that category. In the remainder of the chapter, we show that one of

these models – HDP+,∞ – can capture the shift that occurs from prototypes to a more

exemplar-based representation in a recent categorization experiment.

Modeling the prototype-to-exemplar transition

Smith and Minda (1998) argued that people seem to produce responses that are more

consistent with a prototype model early in learning, later shifting to exemplar-based

representations. The models discussed in the previous section potentially provide a

rational explanation for this effect: the prior specified in Equation 13 prefers fewer clusters

and is unlikely to be overwhelmed by small amounts of data to the contrary, but as the

number of stimuli consistent with multiple clusters increases, the representation should

shift. These results thus provide an opportunity to compare the HDP to human data.

We focused on the non-linearly separable structure explored in Experiment 2 of
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Smith and Minda (1998). In this experiment, 16 participants were presented with six-letter

nonsense words labeled as belonging to different categories. Each letter could take one of

two values, producing the binary feature representation shown in Table 2. Each category

contains one prototypical stimulus (000000 or 111111), five stimuli with five features in

common with the prototype, and one stimulus with only one feature in common with the

prototype, which we will refer to as an “exception”. No linear function of the features can

correctly classify every stimulus, meaning that a prototype model cannot distinguish

between the categories exactly. Participants were presented with a random permutation of

the 14 stimuli and asked to identify each as belonging to either Category A or Category B,

receiving feedback after each stimulus. This block of 14 stimuli was repeated 40 times for

each participant, and the responses were aggregated into 10 segments of 4 blocks each.

The results are shown in Figure 8 (a). The exceptions were initially identified as belonging

to the wrong category, with performance improving later in training.

We tested three models: the exemplar model HDP∞,∞, the prototype model

HDP0,∞, and HDP+,∞. All three models were exposed to the same training stimuli as the

human participants and used to categorize each stimulus after each segment of 4 blocks.

The cluster structures for the prototype and exemplar models are fixed, so the probability

of each category is straightforward to compute. However, since HDP+,∞ allows arbitrary

clusterings, the possible clusterings need to be summed over when computing the

probabilities used in categorization (as in Equation 8). We approximated this sum by

sampling from the posterior distribution on clusterings using the MCMC algorithm

described by Teh et al. (2004), which is a variant on the Gibbs sampling algorithm for the

DPMM introduced above. Each set of predictions is based on an MCMC simulation with

a burn-in of 1000 steps, followed by 100 samples separated by 10 steps each. The

parameter α, equivalent to the coupling probability c, was also estimated by sampling.

As in Smith and Minda’s original modeling of this data, a guessing parameter was
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incorporated to allow for the possibility that participants were randomly responding for

some proportion of the stimuli. In practice, rational models – which have perfect memory

for the stimuli and access to their features – can outperform human learners, so

introducing a guessing parameter to handicap the models is a necessary part of comparing

them to human data. If a model originally assigned probability P (yN = j) to categorizing

a stimulus to some category, and the guessing parameter for the participant in question

was φ, this probability would be updated to (1 − φ)P (yN = j) + φ0.5. The guessing

parameter was allowed to vary between 0 and 1 across individual participants, but was

fixed per participant across every instance of every stimulus. Furthermore, the values of

β0 and β1 in Equation 22 were fit to each participant, with the restriction that β0 = β1.

Intuitively, this captures variation in the tendency to create new clusters, since the

stronger bias towards feature probabilities near 0.5 resulting from high values of β0 and β1

makes it less likely that a new cluster will provide a better match to the particular

features of a given object.

The predictions of the three models are shown in Figure 8. As might be expected,

the prototype model does poorly in predicting the categories of the exceptions, while the

exemplar model is more capable of handling these stimuli. We thus replicated the results

of Smith and Minda (1998), finding that the prototype model fit better early in training,

and the exemplar model better later in training. More interestingly, we also found that

HDP+,∞ provided an equivalent or better account of human performance than the other

two models after the first four segments. In particular, only this model captured the shift

in the treatment of the exceptions over training. This shift occurred because the number

of clusters in the HDP changes around the fourth segment: categories are initially

represented with one cluster, but then become two clusters, one for the stimuli close to the

prototype and one for the exception.

The HDP model produces the shift from performance similar to a prototype model
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to performance similar to an exemplar model because this shift is justified by the data.

The underlying structure – five stimuli that form a natural cluster and one exception in

each category – supports a representation with more than a single cluster, and once

evidence for this being the true structure accumulates, through the provision of enough

instances of these stimuli, this is the structure favored by the posterior distribution. The

model is able to capture similar predictions for other experiments reported by Smith and

Minda (1998), as well as other standard datasets (e.g., Nosofsky, Gluck, Palmeri,

McKinley, & Glauthier, 1994), but perhaps its greatest strength is in being able to explain

how learning about one category can inform learning about another. In the general case,

the HDP model allows clusters to be shared between categories, suggesting that we might

be able to understand the great ease with which adults learn new categories of familiar

objects (or new words) in terms of having acquired an accurate understanding of the

clusters from which these categories could be composed through their previous experiences

in category learning.

Conclusion

One of the most valuable aspects of rational models of cognition is their ability to establish

connections across different fields. Here, we were able to exploit the correspondence

between Anderson’s (1990) Rational Model of Categorization and the Dirichlet process to

draw on recent work in nonparametric Bayesian statistics. Using this correspondence, we

identified more accurate approximation algorithms for use with Anderson’s model and to

define a more general rational model, based on the hierarchical Dirichlet process. The

algorithms provide a source of hypotheses as to how people can solve the difficult problem

of performing Bayesian inference, and the new model subsumes previous rational analyses

of human category learning, indicating how learners should select the number of clusters

to represent a category. The result is a picture of human categorization in which people
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do not use a fixed representation of categories across all contexts, but instead select a

representation whose complexity is warranted by the available data, using simple and

efficient approximation algorithms to perform these computations.

While our focus in this paper has been on applying ideas from statistics to cognitive

science, the connection between human category learning and methods used in

nonparametric Bayesian density estimation also has the potential to lead to new kinds of

models that might be useful in statistics. The ways in which people use different sources

of data in forming categories, combine category learning with language learning, and

exploit structured knowledge as well as statistical information when categorizing objects

all provide challenging computational problems that are beyond the scope of existing

statistical models. Understanding how people solve these problems is likely to require

thinking about categorization in terms that are more sophisticated than the schemes for

density estimation summarized in this chapter, although we anticipate that similar issues

of determining the complexity of the underlying representations are likely to arise, and

that solutions to these problems can be found in the methods of nonparametric Bayesian

statistics.
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Footnotes

1The constant of proportionality is determined by
∫

f(x, xi)dx, being 1
Nj

if

∫

f(x, xi) dx = 1 for all i, and is absorbed into βj to produce direct equivalence to

Equation 2.

2Note, however, that the MMC is more general than the VAM, since the VAM does

not allow clusters to be shared across categories.

3The number of partitions of a set of N stimuli is given by the Nth Bell number,

with the first ten values being 1, 2, 5, 15, 52, 203, 877, 4140, 21147, and 115975.

4Though not shown, a particle filter with fewer particles produced correlations to

human data that were similar to those produced with 100 particles.

5The case of γ → 0 is omitted, since it simply corresponds to a model in which all

observations belong to the same cluster across both categories, for all values of α.

6In stating these equivalence results, we focus just on the kind of representation

acquired by the model. In order to produce the same predictions for new observations, we

need to assume that different values of the α and γ parameters are used in acquiring a

representation and applying it. Specifically, we need to assume that α = 0 in HDP∞,∞

when making categorization decisions, guaranteeing that the new object is compared to

old exemplars. A similar assumption was made by Nosofsky (1991) in showing equivalence

between the RMC and exemplar models.
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Table 1
Test Stimuli Ordered by Category 1 Subject Ratings from Medin and Schaffer (1978)

1111 0101 1010 1101 0111 0001 1110 1000 0010 1011 0100 0000
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Table 2
Categories A and B from Smith and Minda (1998)

Stimuli

A 000000, 100000, 010000, 001000, 000010, 000001, 111101
B 111111, 011111, 101111, 110111, 111011, 111110, 000100
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Figure Captions

Figure 1. Category similarity functions for a simple one-dimensional category. The panel

on the left shows the similarity function for a prototype model, with a single prototype

summarizing the structure of the category. The panel on the right shows the similarity

function for an exemplar model, with the overall similarity resulting from summing a set

of similarity functions centered on each exemplar. The similarity function shown in the

middle panel comes from an intermediate model that groups the three stimuli on the left

and the two stimuli on the right.

Figure 2. The relationship between (a) the clustering implied by the DP, (b) the

distribution over parameters that is sampled from the DP, and (c) the mixture distribution

over stimuli that results in the DPMM. The clustering assignments in (a) were produced

by drawing sequentially from the stochastic process defined in Equation 14, and each

cluster is associated with a parameter value θ. After an arbitrarily large number of cluster

assignments have been made, we can estimate the probability of each cluster, and hence of

the corresponding parameter value. The resulting probability distribution is shown in (b).

If each value of θ is treated as the mean of a simple normal distribution (with fixed

variance) over the value of some continuous stimulus dimension, then the resulting mixture

distribution drawn from the DPMM is the one illustrated in (c). While the applications

considered in this chapter use stimuli that have discrete features, not a single continuous

dimension, the notion of a mixture distribution is more intuitive in the continuous setting.

Figure 3. Example of Gibbs sampling with three objects (circles, differentiated by

numbers). A partition of the objects is expressed using boxes, where all objects within a

box belong to the same element of the partition. At any point in time, a single partition is

maintained. Stochastic transitions between partitions are produced by sequentially

sampling the element of the partition to which each object is assigned from its conditional
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distribution given the data and all other assignments. The partition produced by a full

iteration of sampling (i.e. reassignment of all three objects) is shown by the solid boxes,

with the intermediate steps being illustrated by dotted boxes. After many iterations, the

probability of producing a particular partition corresponds to the posterior probability of

that partition given the observed data (features and category labels).

Figure 4. Example of particle filtering, involving three particles and three sequentially

observed objects (circles, differentiated by numbers). On any given trial, we take the

sampled distribution over partitions (boxes) from previous trial, and treat it as an

approximation to the full posterior over partitions for that trial (Equation 19). We then

update to an approximate posterior for the current trial using Equation 21 and redraw a

collection of particles. Note that since we are sampling with replacement, it is possible for

particles to “exchange histories”, as is illustrated by the states of particles 2 and 3 in this

figure.

Figure 5. Probability of choosing category 1 for the stimuli from the first experiment of

Medin & Schaffer (1978). The test stimuli (listed in order of human preference in the

legend) are along the horizontal axis. In the first row only the first six trials are presented,

while in the second row ten blocks of six trials each are presented. The three lines in each

panel correspond to three different coupling parameters: c = 0.25, 0.45, or 0.75.

Correlations between the human data and the simulation data are displayed on each plot

for each value of the coupling parameter.

Figure 6. Illustration of the HDP prior. The prior probability for each cluster at the lower

level is based on the number of category examples in that cluster. If a cluster is selected

from the higher level, the prior probability of clusters is based on the number of categories

by which they have been selected. Completely new clusters can only be created at the
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higher level.

Figure 7. Structural assumptions underlying different parameterizations of the HDPα,γ

model. The unfilled circles are clusters, the filled circles are exemplars, and the boxes

indicate which exemplars belong to the same categories. Descriptions of the properties of

these six models and their correspondence to existing models are given in the text.

Figure 8. Human data and model predictions. (a) Results of Smith and Minda (1998,

Experiment 2). (b) Prototype model, HDP∞,0. (c) Exemplar model, HDP∞,∞. (d)

HDP+,∞. For all panels, white plot markers are stimuli in Category A, and black are in

Category B. Triangular markers correspond to the exceptions to the prototype structure

(111101 and 000100 respectively).
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