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Abstract

Models of category learning can take two different approaches
to representing the relationship between objects and cate-
gories. The generative approach solves the categorization
problem by building a probabilistic model of each category and
using Bayes’ rule to infer category labels. In contrast, the dis-
criminative approach directly learns a mapping between inputs
and category labels. With this distinction in mind, we revisit a
previously studied categorization experiment that showed peo-
ple are biased towards categorizing objects into a category with
higher variability. Modelling results predict that generative
learners should be more greatly affected by category variabil-
ity than discriminative learners. We show that humans can
be prompted to adopt either a generative or discriminative ap-
proach to learning the same input, resulting in the predicted
effect on use of category variability.
Keywords: human category learning; generative models; dis-
criminative models; rational models; Bayesian models

Introduction
Categories can be learned using a variety of approaches. Here
we examine two distinct approaches that humans can use
to learn categories: generative and discriminativelearning.
While relatively unexplored in human categorization, this dis-
tinction has been widely studied in machine learning (e.g., Ng
& Jordan, 2001). The distinction comes down to whether the
ability to categorize objects is the result of estimating a distri-
bution for each category, or learning a mapping from objects
to categories. Both of these strategies can be used in learning
real life categories. For example, you could learn the food
preferences of a friend by observing the foods he eats and
trying to infer a probability distribution, or by recording his
affective responses to different kinds of foods and trying to
identify which factors lead to positive or negative reactions.

More formally, generative and discriminative models rep-
resent two distinct strategies for estimating the probability
that a particular object belongs to a category. Generative
learners solve this problem by building a probabilistic model
of each category, and then using Bayes’ rule to identify which
category was most likely to have generated the object. Dis-
criminative learners estimate the probability distribution over
category labels given objects directly. These different strate-
gies have implications for the performance of these mod-
els. Theoretical and empirical analyses have shown that gen-
erative and discriminative models differ in their generaliza-
tion behavior, as well as the speed and accuracy of learning
(Efron, 1975; Ng & Jordan, 2001; Xue & Titterington, 2008).

While the generative/discriminative distinction has been
studied extensively in machine learning and statistics, it has
been little examined in human behavior. A recent study has

shown humans can adopt these two different strategies while
learning an artificial language (Hsu & Griffiths, 2009). In this
paper, we explore whether people can adopt these two strate-
gies in category learning.

The paper will be presented as follows. First we will pro-
vide an overview of generative and discriminative categoriza-
tion models. Second, we will review related work from the
existing human categorization literature. Third, we will re-
visit a previously studied paradigm that showed people are
sensitive to category variability, being more likely to assign
an object equidistant from the mean of two categories to the
category with higher variance (Stewart & Chater, 2002; Co-
hen, Nosofsky, & Zaki, 2001; Rips, 1989; Smith & Sloman,
1994). Modelling results show that a generative model ex-
hibits greater sensitivity to category variability than a dis-
criminative model. We use this analysis as the basis for
an empirical investigation of whether human learners can be
prompted to take these two distinct learning approaches. Our
results support the idea that humans adopt generative and dis-
criminative approaches when appropriate. This provides new
insight into the factors affecting human category learning.

Generative and discriminative models
Rational models of categorization identify the underlying
problem as one of estimating the probability of a given ob-
ject x belonging to a category c, as expressed by the distri-
bution p(c|x). The difference between generative and dis-
criminative approaches to categorization comes down to how
this probability distribution is estimated. Generative models
build a probabilistic model of the input by learning the prob-
ability that an object x is generated given that the category is
c, p(x|c), and then solving the categorization problem by ap-
plying Bayes’ rule. Discriminative models estimate p(c|x) di-
rectly. Generative models thus assume that observed objects
are sampled in a way that reflects p(x|c), while discriminative
models do not make any assumptions about the distribution
from which the input is sampled. These two approaches to
categorization are illustrated schematically in Figure 1.

Comparison of generative and discriminative approaches
to category learning has been done in the machine learn-
ing and statistics literature, where the classic generative-
discriminative pair being compared is usually (generative)
naı̈ve Bayes vs. (discriminative) logistic regression (Efron,
1975; Ng & Jordan, 2001; Xue & Titterington, 2008).
Under certain conditions, these two models are identical
in the asymptotic form of the function p(c|x) that they
produce, differing only in how that function is estimated.



Figure 1: Generative and discriminative models. Generative
models aim to estimate the probability distribution over the
input given the category label. Discriminative models find a
direct mapping between inputs and category labels.

Such generative-discriminative pairs can thus be used to ex-
plore the consequences of adopting these different strategies
through mathematical analysis and simulations. For exam-
ple, if the training data consist of two normally distributed
samples, generative models learn categories more quickly
(Efron, 1975; Ng & Jordan, 2001). However, when the train-
ing data come from other distributions, discriminative models
are asymptotically more accurate (Xue & Titterington, 2008),
though in some cases generative models may perform bet-
ter initially and arrive at their (higher) asymptotic error more
quickly (Ng & Jordan, 2001).

Summary of related work
Previous models of categorization have used both genera-
tive and discriminative strategies, without necessarily rec-
ognizing that the significance of the distinction.The com-
monly cited prototype and exemplar models can be applied
both generatively and discriminatively. Prototypes and ex-
emplars are psychological models of category representation
whereas discriminative and generative are statistical models
of learning. Thus, prototype and exemplar models can be
used under either approach, depending on how learning takes
place. For instance, ALCOVE (Kruschke, 1992) is an ex-
emplar model akin to discriminative kernel methods. SUS-
TAIN (Love, Medin, & Gureckis, 2004) is a discriminative
model that chooses between exemplar and prototype repre-
sentations. Decision bounds (Maddox & Ashby, 1993) can be
either discriminative or generative depending on how model
parameters are estimated. While rational models of catego-
rization can adopt either approach, the ones proposed so far
have taken a generative approach (e.g., J. R. Anderson, 1990;
Griffiths, Canini, Sanborn, & Navarro, 2007). These genera-
tive categorization models span the range between exemplar
and prototype representations. At the extremes, generative
prototype models estimate parameters of category distribu-
tions (usually a Gaussian with a mean and variance) and gen-

erative exemplar models estimate category distributions using
kernel density estimation (Ashby & Alfonso-Reese, 1995).

Despite the prevalence of human categorization models
with both discriminative and generative approaches, most ex-
perimental paradigms seem more consistent with discrimi-
native learning: stimuli are presented, participants guess the
category and feedback is given. However, a few exceptions
this can be seen in previous work on classification vs. in-
ference learning, and observational vs. feedback learning.
While not explicitly mentioned in previous work, both of
these paradigms are potentially related to our discriminative
vs. generative distinction.

Classification vs. inference learning
Another line of experiments has shown that human category
learning can also be influenced by using different tasks to
teach people about the relationship between categories and
features. The effect of using these two different tasks is sim-
ilar to that of changing the direction of a learned causal re-
lationship. (A. L. Anderson, Ross, & Chin-Parker, 2002;
Markman & Ross, 2003; Ross & Murphy, 1996). In these
experiments, all participants were presented with exactly the
same training stimuli, consisting of the features and category
membership of a set of objects. In one condition, learning
took place via through classification: Participants were pro-
vided with the values for (some of) the features of an object
asked to predict category membership. In the other condi-
tion, learning was based on making a predictive inference:
The category membership and/or values of some of the fea-
tures were provided and participants were asked to predict
the value of another feature. Because participants in both
conditions were given feedback, they were both ultimately
provided with exactly the same information about categories
and features. However, learning results differed in terms of
performance accuracy and generalizations made. For exam-
ple, inference learners performed better than classification
learners on single-feature classification tasks but more poorly
when all of the features were provided (A. L. Anderson et
al., 2002). While this study was not motivated by generative
and discriminative learning, people may have adopted these
different strategies in the different conditions: Classification
learning can be done using a discriminative model, while in-
ference learning requires a generative model.

Observation vs. feedback training
Another study, by Ashby, Maddox, and Bohill (2002), has
also examined how learning of the exact same input was af-
fected by presentation style. Here they compared what they
called feedback training (where the category label appears af-
ter the object) with observation training (where the category
label appears before the object). Their results showed that
participants in the feedback condition performed significantly
better than those in the observation condition for information-
integration categories, where category membership could not
be expressed in terms of a rule using a single feature. These
two forms of training might encourage learners to adopt gen-



erative and discriminative strategies. Feedback training gives
an error signal that can be used to adapt a discriminative
model. Observation training is more relevant for learning ob-
ject features based on the category label, which is the gener-
ative approach.

Summary
Generative and discriminative models use different ap-
proaches to solve the problem of categorizing objects. Ex-
isting models of human category learning differ in which of
these approaches they use. Previous work has not explored
whether people are able to switch the approach they take in
learning categories, although the effects of different training
regimes that might encourage one approach over the other
have been investigated. In the remainder of the paper, we ex-
plicitly test whether people can adopt these two approaches
to learning categories, using a phenomenon that is diagnostic
for one generative-discriminative pair of models.

Differential use of category variability
Several experiments have shown an effect of category vari-
ability on human categorization judgments. In these experi-
ments, the stimuli belong to one of two categories with dif-
ferent means and variances. The key question is how stimuli
with features lying (perceptually) in between the two cate-
gories are categorized. The results of these experiments all
showed that there was a bias towards categorizing stimuli into
the high-variance category (Stewart & Chater, 2002; Cohen
et al., 2001; Rips, 1989; Smith & Sloman, 1994). Here we
propose that the degree of preference for the high variance
category may be affected by whether the learner is adopting
a generative or discriminative approach.

Intuitively, we expect category variability to have a greater
effect on generative learners because estimating p(x|c) for
each category requires being sensitive to the variance of that
category. In contrast, one need not consider the variance of
the stimuli in simply learning a function from x to c, p(c|x).
Indeed many discriminative models used in machine learn-
ing, such as support vector machines (Schölkopf & Smola,
2002), focus just on the location of the most extreme mem-
bers of each category. We are not claiming that all generative
models are sensitive to category variance, or that all discrimi-
native models are insensitive, but that these approaches differ
in the extent to which they are sensitive to this property of the
stimuli. To illustrate this, we will explore the predictions of
one generative-discriminative pair of models.

We follow previous work exploring the difference between
generative and discriminative models (e.g., Ng & Jordan,
2001) and focus on the generative-discriminative pair of naı̈ve
Bayes and logistic regression. Since we will focus on contin-
uous stimuli, we assume a Gaussian generative model, with

p(x|c = i) = N(µi,  i) (1)

where µi and  i are the mean and variance of the ith category
with i ∈ {1,2}. The parameters µi and  i can be estimated

by maximizing the likelihood ∑n
j = 1 log p(x j|c j,µ,  ), where

c j and x j are the category membership and features of the
jth stimulus respectively. The probability a novel stimulus
belongs to a category, p(c|x), is then computed by applying
Bayes’ rule, with the prior probability of each category being
proportional to the number of observed stimuli from that cat-
egory. The naı̈ve Bayes model is similar to the Gaussian deci-
sion bound model used in Normal general recognition theory
(Stewart & Chater, 2002; Maddox & Ashby, 1993).

The discriminative model uses logistic regression to esti-
mate p(c|x) directly, with

p(c = 1|x,w,b) = 1/(1 + exp{−wT x)−b}) (2)

where w and b are the parameters of the model and x is a vec-
tor of feature values. The parameters w and b are estimated by
maximizing the log likelihood ∑n

j = 1 log p(c j|x j,w,b). In gen-
eral, w and b are vectors of length equal to the number of stim-
ulus features. However, we will be using one-dimensional
stimuli (x j is scalar), so w and b will be scalars in our case.

Cat A Middle stimuli Cat B

Figure 2: Stimuli used in the experiment. Category A and B
were the low and high variance categories respectively

To examine the predictions of these models, we used stim-
uli based largely on those of Cohen et al. (2001). Stimuli
consisted of vertical lines of varying lengths. Training stim-
uli belonged to one of two categories, A and B. Category A
is the low variance category. Category A contained lines of
length 110, 120, 130, 140 and 150 pixels. Category B was the
high variance category. Category B contained lines of length
300, 375, 450, 525 and 600 pixels. All stimuli were equally
likely within each category (categories had a flat distribution
of stimuli). We also included novel transfer stimuli in the test



stimuli. There were eight transfer stimuli, equally spaced be-
tween the highest value of A and the lowest value of B (see
Figure 2). A range of intermediate transfer stimuli were used
in case the middle stimulus in psychological space differed
from the numerical middle stimulus. The precise location of
the middle stimulus is not important for our purposes, as the
difference in results between generative and discriminative
models is the question of interest.
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Figure 3: Generative and discriminative model predictions
for the probability of categorization stimuli into the high vari-
ance category. The model predictions are that a generative
learner is more likely to categorize in between stimuli in the
high variance category

We trained a generative naı̈ve Bayes model and discrimi-
native logistic regression model on all labeled examples from
category A and B. Our naı̈ve Bayes model had uniform cate-
gory priors, i.e. both categories were assumed to be equally
likely. Parameters for both models were fit using maximum
likelihood estimation. To compare the outcomes of the two
models, we analysed categorization predictions for our trans-
fer stimuli using these generative and discriminative models.
The generative model predicts intermediate transfer stimuli
will be classified to the high-variance category more often
than the discriminative model (see Figure 3).This is because
it is more likely that intermediate stimuli are extreme val-
ues from the high-variance category than the low-variance
category. These results illustrate that sensitivity to category
variability may be a diagnostic indicator of whether learn-
ers are using a generative or a discriminative strategy. In the
next section we present an experiment that uses this indicator
to determine whether human learners switch between these
strategies depending on the way in which a categorization
task is presented.

Human generative and discriminative learning
Method
Participants We collected data from 24 participants (12 in
each condition). Participants wereundergraduates at the Uni-
versity of California, Berkeley and received course credit.

Stimuli Stimuli was the same training and transfer stimuli
used in the model simulations described in the previous sec-
tion. In the experiment, these stimuli were presented as white
vertical lines in a black circle.
Procedure While previous related work had paradigms that
may have encouraged discriminative or generative learning
(Ashby et al., 2002; A. L. Anderson et al., 2002), the connec-
tion between these paradigms and the distinction was tenta-
tive. Thus, we will use our own experimental manipulation
in order to encourage participants to adopt the distinct ap-
proaches as strongly as possible. Participants in both learn-
ing conditions were trained under the same randomized se-
quence of trials. In order to prompt generative or discrimina-
tive learning, the two conditions differed in the instructions,
category-stimulus presentation order and question presented
during testing blocks. Participants in both conditions were
told they will see “signs” from an alien tribe. Participants in
the generative condition were told that two aliens, one from
each tribe (A and B) will appear and produce signs from their
respective tribes. A picture of two aliens, who were identi-
cal except for the letter on their chest, was shown alongside
the instructions. These instructions were intended to make it
clear that the observed stimuli were generated from a prob-
ability distribution associated with the target category, con-
sistent with the assumptions of a generative model. Partici-
pants in the discriminative condition were told that there are
signs from two alien tribes and they would be shown a single
alien translator who can report which tribe a sign was from.
A single alien was shown alongside these instructions with a
question mark on its chest. These instructions were intended
to establish a situation in which participants learned a func-
tion from stimuli to category membership, consistent with a
discriminative model.

For all participants, the experiment contained 10 blocks
of 20 trials (each of 10 training stimuli were shown twice).
Training blocks (odd blocks) were interleaved with testing
blocks (even blocks). During training trials, participants were
shown a black circular background on which the “sign” ap-
pears as a white vertical line, next to an alien with either A
or B written on its chest. In the generative condition, the
alien appeared 500 ms before the sign during training and the
alien disappeared between trials to simulate different aliens
appearing. In the discriminative condition, the sign appeared
500 ms before the alien and the alien did not disappear be-
tween trials to simulate one constant alien interpreter. In both
conditions,once both stimulus and letter had appeared, both
remained simultaneously on the screen for 1.5 s (see Figure
4). The total length of each training trial was 2 s and there
were 700 ms between each trial.

During test trials, participants were shown a sign (white
vertical line) on the black circular background. Participants in
the generative condition were asked “Which alien was more
likely to have produced this sign?”. Participants in the dis-
criminative condition were asked “Which alien tribe does this
sign belong to?”. Stimuli during each test block consisted of



every example stimulus in categories A and B, along with the
eight transfer stimuli that were equally spaced between and
highest value of category A and the lowest value of category
B. (The highest value of category A and lowest value of cat-
egory B were seen twice during each test block to make up
the 20 trials.) No feedback was given during testing in either
condition.

Figure 4: Screen shot of the experiment

Results
The human learning results correspond to the predictions of
the models: Generative learners are more likely to catego-
rize transfer stimuli that lie in between the two categories in
the high-variance category relative to discriminative learners
(see Figure 5). A two-way within-between ANOVA revealed
statistically significant effects of test stimulus (F (9,198) =
76.88, MSE = 0.036, p < .001) and condition (F (1,22) =
5.43, MSE = 0.216, p < .05) and a marginally significant
interaction (F (9,198) = 1.90, MSE = 0.036, p = .054).
Planned comparisons using two-sample t-tests showed statis-
tically significant effects of condition for stimuli 216 (t(22) =
2.57, p < .05) and 233 (t(22) = 2.46, p < .05). These statis-
tics are calculated under the most conservative assumption,
under which the responses from each participant for each
stimulus are averaged together and treated as a single re-
sponse.

The “middle stimulus” that lies midway between the two
categories in human perceptual space (i.e. equally likely to be
categorized in both categories in the discriminative condition)
is of length around 200 pixels. This is smaller than the nu-
merical middle (225 pixels). This is approximately the same
value as the perceptual “middle stimulus” that was found in
previous work (Cohen et al., 2001). Accounting for this shift,
the discriminative model predictions match fairly well with
the discriminative human results. The generative model pre-
dictions are significantly shifted to the left compared with our
generative human results, meaning the generative model pre-
dicted an even stronger tendency to categorize the in-between
stimuli in the high variance category. This difference in de-
gree between model predictions and human judgments could
be explained in many possible ways. One possibility is that
perceptual stimuli might follow Weberian compression for

the larger stimuli (Stewart & Chater, 2002). As a result of this
compression, the perceptual variability of the longer length
lines (which made up the high variability category) may have
been significantly smaller than the absolute numerical vari-
ability values that were used in our models. If this were the
case, a suitable transformation, such as to log space, would
leave our qualitative results the same, while resulting in an
appropriately less strong variability preference for the gener-
ative model. Another possibility is that people are not making
the Gaussian assumption that was made by our model. This is
plausible as our stimuli were very non-Gaussian. In this case,
it is possible that the probability of belonging in the high vari-
ance category under a Gaussian assumption is greater than the
probability estimates that generative participants might have
made for our actual stimuli. Finally, participants may not be
behaving fully generatively, or that the instructions resulted in
a mixed population of generative and discriminative learners
in this condition.
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Figure 5: Probability of categorizing transfer stimuli in high
variance category for participants in the generative and dis-
criminative learning conditions. Total values are the average
of all probabilities for individual stimulus lengths.

Discussion
The distinction between generative and discriminative ap-
proaches to categorization has played an important role in
machine learning research, but has not previously been ex-
plored in cognitive psychology. Our results show that people
can be cued to take these two different approaches to category
learning through the way in which a categorization task is
presented. These results have implications for understanding
human category learning, and for establishing links between
the communities studying human and machine learning.

The finding that people behave differently when encour-
aged to adopt these two different approaches to category
learning may shed light on previous empirical results in
cognitive psychology. For example, some previous experi-
ments have shown effects that may be partly due to learn-
ing paradigms that encouraged participants to adopt genera-
tive or discriminative learning approaches (e.g., Ashby et al.,



2002). The generative/discriminative distinction also has po-
tential implications for previously proposed models of cate-
gorization. For example, it seems appropriate that connec-
tionist models (Kruschke, 1992; Love et al., 2004) will best
characterize behavior when humans adopt a discriminative
learning approach whereas rational models (J. R. Anderson,
1990; Griffiths et al., 2007) will best describe behavior when
humans adopt a generative learning approach. Developing
a deeper understanding of how this distinction plays out in
human learning may provide additional insights into long-
standing debates on category learning.

Showing that people can adopt both generative and dis-
criminative learning strategies establishes a new connection
between human and machine learning. While many of the
goals of machine learning are inspired by human capabilities
(e.g., the ability to recognize and categorize complex struc-
tures quickly and efficiently), the principal issues that are
topical in machine and human learning seldom coincide. By
showing that a key distinction long studied in machine learn-
ing research is also significant to human learning, this work
begins to build an important bridge between machine learn-
ing and human learning communities. This will encourage
collaboration between the two research communities where
computational models of learning provide insight into human
learning and human learning, in turn, inspires computational
modelling. It also establishes a way to know how advances
in specific aspects of machine learning, such as improved dis-
criminative models, might be relevant to predicting aspects of
human learning.

Identifying the relevance of the generative/discriminative
distinction in human categorization also opens up many new
avenues of research questions. For the neuroscience com-
munity, one can ask: What neural mechanisms are imple-
menting these two very different learning strategies? Are the
neural circuits involved similar or different? This research
also provokes many questions about learning more generally:
When does human learning tend to be generative or discrimi-
native? How flexible are learners in alternating between gen-
erative and discriminative learning approaches? Can learn-
ing approaches be retrospectively altered? (i.e. if input is
learned with a discriminative perspective and learners were
later made to understand that the data was generated from a
probability distribution, would they switch their categoriza-
tion judgments?) Since much of human learning in everyday
life consists of a mix of scenarios in which one or the other of
these strategies is more appropriate, clarifying when people
use generative and discriminative approaches will help us un-
derstand differences in learning among individuals and across
situations. We anticipate that exploring these questions will
result in improved models of human category learning, and
a tighter coupling between research on human and machine
learning.
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