
Exploring the structure of mental representations by
implementing computer algorithms with people

Adam N. Sanborn
University of Warwick

Thomas L. Griffiths
University of California, Berkeley

Abstract
Computer metaphors have been a mainstay of cognitive psychology, treat-
ing minds like information processing systems that operate on memory and
mix serial and parallel processes. Recent work has taken this idea beyond
a metaphor, examining the consequences of treating people as components
in an algorithm that is usually executed by digital computers. By imple-
menting a popular class of randomized algorithms – Markov chain Monte
Carlo algorithms – with people, we are able to generate samples from sub-
jective probability distributions that reveal the mental representations that
inform people’s judgments. In this chapter, we summarize the key idea be-
hind this approach and review a number of ways in which it has recently
been extended.

The computer metaphor has had a long and productive history in cognitive psychol-
ogy. One of its first uses was in the presentation of the Atkinson and Shiffrin (1968) model
of human memory. The memory system was described as a computer under the control of
a remote operator: structural features of memory were described as hardware or built-in
programs, while memory control processes were described as the commands and programs
under the control of the remote operator. The computer metaphor has yielded many fruit-
ful results, including further insights into human memory (Raaijmakers & Shiffrin, 1981;
Shiffrin & Steyvers, 1997) and the characterization of cognitive processes as serial or par-
allel (Schneider & Shiffrin, 1977; Shiffrin & Schneider, 1977; Sternberg, 1966; Townsend &
Ashby, 1983). Recently, the connections between computer science and cognitive psychol-
ogy have been made tighter, as algorithms used in computer science have been proposed
as candidates for cognitive processes (Daw, Courville, & Dayan, 2008; Griffiths, Vul, &
Sanborn, 2012; Sanborn & Silva, 2013; Sanborn, Griffiths, & Navarro, 2010; Shi, Griffiths,
Feldman, & Sanborn, 2010). Importation of ideas has run both ways: studying computa-
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tional problems in psychology has also led to the development of new methods in computer
science (Anderson & Matessa, 1992; Griffiths & Ghahramani, 2005).

One opportunity arising from the closer links between psychology and computer sci-
ence is that it is now relatively easy to characterize the capabilities of both people and
machines in a common language to allow them to work together for a common goal. In
some domains this is an established and essential idea – researchers in human-computer
interaction have designed machines and trained people to improve cooperative performance
on specific tasks, and the catastrophes resulting from failures of cooperation have high-
lighted its importance (Kemeny et al., 1979). However, this is still a relatively new idea
in the context of developing methods for psychological research. Here we review work in
which a formal characterization of human decision making allows a person and a machine
to work together as components of an algorithm used to investigate a person’s beliefs.

Following the computer metaphor, beliefs can be thought of as the data upon which
cognitive algorithms operate. For much of the cognitive data in which psychologists might be
interested, such as the strength of category membership (Nosofsky, 1988; Rosch, 1973), the
strength of a memory (Shiffrin & Steyvers, 1997), or the strength of an economic preference
(Kahneman & Tversky, 1979; Savage, 1954), the default assumption is that there is a
single non-negative number that represents that strength. The beliefs that experimenters
are interested in are therefore the set of strengths over a set of stimuli. The problem with
investigating these beliefs is that for any sort of naturalistic problem there is a huge number
of stimuli, but relatively few stimuli are relevant to a particular question (and for interesting
questions the relevant stimuli are not known before the experiment begins). As a result,
the most straightforward methods for testing people’s beliefs, such as providing ratings for
every stimulus, will result in many wasted trials.

Computer scientists and statisticians often encounter exactly the same problem – eval-
uating a function that has large values for only a few inputs. For example, high-dimensional
probability distributions typically concentrate their mass on a small part of a large space.
A number of sophisticated algorithms have been developed to make it possible to work with
such distributions. One class of algorithms, Markov chain Monte Carlo (MCMC), is used
to draw samples from these distributions by constructing a Markov chain that visits higher
probability regions with greater frequency. These samples can then be used to characterize
the form of the distribution, sometimes as simply as constructing a histogram from the
samples.

MCMC is normally used to draw samples from probability distributions represented
within a computer. By dividing each non-negative strength by the sum of all the strengths, a
person’s beliefs can also be represented as a probability distribution over the set of possible
stimuli. This probability distribution is implicitly represented inside human heads, not
digital computers. However, this is not an impediment to running an MCMC algorithm:
using a standard model of people’s decision making process, we can specify a task that
allows people to act as an element of such an algorithm. The algorithm produces samples
drawn from the distribution reflecting a person’s beliefs and these samples can then be
used to reconstruct that probability distribution. Because samples occur more often in
high probability regions, this approach reduces the number of trials wasted on irrelevant
stimuli, as illustrated in Figure 2. The resulting method for exploring people’s beliefs is
called Markov chain Monte Carlo with people (MCMCP; Sanborn, Griffiths, & Shiffrin,
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Figure 1 . Comparison of different methods for learning about participant beliefs. The
sampling simulation is 1,000 samples from the belief distribution, which accurately reflect
its structure. The reverse correlation simulation shows 1,000 samples drawn uniformly and
labelled as part of the belief distribution if they exceed a fixed probability threshold (1/30th
of the distribution peak). The MCMCP plot shows empirical results from Experiment 3 of
Sanborn et al. (2010): three chains (in different colors) from a participant judging whether
stick figures were giraffes. This plot is a two-dimensional projection of the nine-dimensional
parameter space. Adapted from Sanborn et al. (2010), with permission from Elsevier.

2010).
In this chapter, we summarize the ideas behind MCMCP, and describe a number of

recent extensions to the method. We begin with a more detailed introduction to MCMC
algorithms and MCMCP. Next, we review evidence of the effectiveness of MCMCP and
compare it to another well-known method for eliciting beliefs about complex naturalis-
tic stimuli, reverse correlation. We then discuss three ways in which MCMCP has been
extended: taking advantage of a manifold structure, working with discrete stimuli, and
focusing trials in areas of interest to the experimenter.

Markov Chain Monte Carlo with People

Markov chain Monte Carlo algorithms generate samples from complex and high-
dimensional probability distributions by constructing a Markov chain that has the target
distribution as it stationary distribution (for a general introduction, see Gilks, Richardson,
& Spiegelhalter, 1996). A Markov chain is a sequence of random variables where each vari-
able is independent of all other preceding variables when conditioned on the variable that
immediately precedes it in the sequence. The values that each variable can take on are
known as the state space of the Markov chain (with the value of a single variable being its
state), and the probability each variable takes on a particular value given the value of the
preceding variable is called the transition probability.

A good example of a Markov chain is shuffling a deck of cards. The state space is all
possible orderings of the cards, and the procedure used for shuffling defines the transition
probabilities. If you know the order the cards were in prior to the most recent shuffle,
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knowing what order they were in before that provides no further information. If this were
not the case, you would have to worry about the entire history of games played with a deck
of cards every time you played a game.

The reason we shuffle cards is to put them in a random order. More precisely, a
good shuffling procedure is one that, regardless of what order the cards begin in, results
in a uniform distribution over all possible orderings after some number of shuffles. The
fact that it is possible to do this is a result of the convergence of Markov chains to a
stationary distribution: provided the transition probabilities of a Markov chain satisfy a
set of properties that make the chain ergodic (see Norris, 1997), the probability that the
last variable takes on a particular value converges to a fixed probability as the length of
the chain increases, regardless of the value of the first variable. These fixed probabilities
constitute the stationary distribution of the chain.

The stationary distribution of a good shuffling scheme is uniform over all orders of
cards, but we can construct Markov chains with different stationary distributions. For
example, a shuffling scheme with a slight tendency to put red cards on top of the deck
would result in a stationary distribution that favors orders where red cards are higher in
the deck. MCMC algorithms exploit this principle, setting the transition probabilities of
a Markov chain in such a way that a particular distribution – the distribution we want
to sample from – is the stationary distribution. Once the Markov chain converges to its
stationary distribution, its values can be treated like samples from that distribution.

The most widely-used MCMC method is the Metropolis algorithm (Metropolis,
Rosenbluth, Rosenbluth, Teller, & Teller, 1953; Neal, 1993). In this algorithm, the transi-
tion probabilities of the Markov chain are decomposed into two multiplicative parts. The
first part is the proposal probability, which is the probability of proposing a possible new
state for the Markov chain. The second part is the acceptance probability, which is the
probability of accepting the proposal and transitioning to the proposed state. This de-
composition is useful because the proposal distribution requires no knowledge of the target
distribution; only the acceptance function uses information about the target distribution.

A sufficient condition for specifying transition probabilities that result in a particular
stationary distribution is known as detailed balance,

p(x)q(x∗|x)a(x∗;x) = p(x∗)q(x|x∗)a(x;x∗), (1)

where p(x) is the target distribution (which we want to be the stationary distribution),
q(x∗|x) is the probability of proposing a new state x∗ given the current state x, and a(x∗;x)
is the probability of accepting that proposal. A Markov chain that satisfies detailed balance
has equal probability of moving in either direction between two states once it reaches its
stationary distribution.

If the proposal distribution is set to be symmetric, meaning that the probability of
proposing x∗ given the current state x is the same as proposing the current state x given
x∗, then we can cancel q(x|x∗) and q(x∗|x) in Equation 1. Consequently, we can satisfy
detailed balance using an acceptance function that depends just on the probabilities of the
current and the proposed state. One acceptance function that satisfies detailed balance is
the Barker or Boltzmann acceptance function (Barker, 1965; Flinn & McManus, 1961)

a(x∗;x) = p(x∗)
p(x∗) + p(x) , (2)
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where the acceptance probability is proportional to the probability of the proposed and
the current state under the target distribution. A nice feature of the method is that the
acceptance function only requires a knowledge of the ratios of the probabilities, meaning
that any values proportional to the probabilities can be used in place of the probabilities.

Putting People into the Algorithm

The algorithm presented above defines a Markov chain that will converge to the
distribution p(x), which is usually a probability distribution represented by a computer.
But we can use the same algorithm to explore people’s beliefs if we can define a task where
those beliefs affect people’s behavior in exactly the way that p(x) affects the probability of
accepting a proposed state. In the standard task used in MCMCP, a participant is given two
options and instructed to select the one that better answers a particular question (Sanborn,
Griffiths, & Shiffrin, 2010). For example, participants might be asked to pick which of two
stick figures is a better example of a giraffe.

A default description of people’s decisions in a two-alternative forced choice task is
the ratio rule (Luce, 1959; Shepard, 1957). This rule relates the goodness of each option,
described as f(x) and f(x∗) respectively, to the probability of choosing one option over the
other

a(x∗;x) = f(x∗)
f(x∗) + f(x) . (3)

This equation is formally identical to the Barker-Boltzmann acceptance function given in
Equation 2, meaning that participants in this task act equivalently to the acceptance func-
tion in the MCMC algorithm, converging to a distribution p(x) proportional to f(x). Cru-
cially, the experimenter does not need to know p(x) or f(x) in order for this method to work
– these quantities only govern the probability of a participant’s choice. This scheme matches
the stochasticity required by the MCMC algorithm to the stochasticity in human choice be-
havior, so that human choices are, at least to the extent that they are well-described by the
ratio rule, a perfect implementation of the algorithm.

A more accurate characterization of human behavior in this task is that people often
respond more deterministically than predicted by Equation 3 (Ashby & Gott, 1988; Vulkan,
2000). As a result a more general exponentiated form of the ratio rule has been used (Ashby
& Maddox, 1993)

a(x∗;x) = f(x∗)γ

f(x∗)γ + f(x)γ , (4)

where γ is a constant that makes it possible to capture more deterministic behavior than
the probability matching of Equation 3: a value of γ = 1 is equivalent to Equation 3, but
values of γ > 1 increase the determinism of the choice. Equation 4 is still useful as an
acceptance function, but it converges to a distribution p(x) proportional to f(x)γ rather
than f(x). An unknown γ introduces a degree of freedom into the results, so the order
of the probabilities of different options will be known, but cannot be directly evaluated.
Consequently, the distribution has the same peaks as when γ is known, and the ordering
of the variances for the dimensions is unchanged, but the exact values of the variances will
depend on the parameter γ.

Using this correspondence between human behavior and the acceptance function, a
long sequence of trials can be used to produce samples from a distribution that reveals
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people’s beliefs. On each trial one of the alternatives is the state of the Markov chain and
the other is the proposal, where the proposal is chosen probabilistically by the computer.
Participants choose between the two alternatives and the chosen alternative is used as the
state on the next trial. This procedure continues through a “burn-in” period, to remove
the influence of the starting state, and states of the chain following the burn-in period are
then treated as (dependent) samples from the target distribution. These samples can then
be used to reconstruct the probability distribution proportional to the beliefs about the
question that was asked to participants.

An example for illustration is shown in Figure 2, showing the results of a single
participant who was asked which stick figure was a better example of a giraffe. Stick figures
were represented as points in a nine-dimensional stimulus space, using dimensions such as
head length and neck angle (Olman & Kersten, 2004). Three interleaved chains were started
at experimenter-chosen points in the space, and proposals were chosen mainly from nearby
points in the space, with the constraint that the proposals had to be within bounds chosen
to prevent impossible-to-display or very strange stick figures. While the stimulus space was
not carefully chosen to align with psychological or perceptual variability, the participant’s
choices quickly caused the chains to converge on the same small area of the nine-dimensional
parameter space. After removal of the initial burn-in trials, the samples show what this
participant believes a giraffe looks like.

Testing the Method

Markov chain Monte Carlo with people has been tested for accuracy by investigating
whether samples from the algorithm matched category distributions upon which people
were trained (Sanborn, Griffiths, & Shiffrin, 2010). These samples were also compared
to people’s category discrimination judgments to show that the output of the algorithm
could predict more standard category discrimination judgments. Below we review these
findings and demonstrate the generality and efficiency of MCMCP by evaluating it against
an extant method for investigating people’s mental representations in a high-dimensional
space: reverse correlation.

Accuracy

In order to test the accuracy of MCMCP, in initial experiments participants were
trained on one-dimensional categories, in which the dimension described the height of fish
presented on a computer screen (Sanborn, Griffiths, & Shiffrin, 2010). In two experiments,
participants were trained on a uniform distribution (characterizing the size of fish who came
from the open ocean) and a Gaussian distribution with a particular mean and standard
deviation (characterizing the size of fish who came from a fish farm). The training trials
were discriminative trials in which participants decided whether a single example belonged
to the uniform or the Gaussian distribution.

The first experiment using MCMCP investigated a set of questions to determine which
would be able to produce samples that reflected the trained distribution. Participants were
asked one of three questions aimed to elicit judgments that matched the desired decision
rule: “Which fish came from the fish farm?”, “Which fish is a better example of a fish
that came from the fish farm?”, and “Which fish was more likely to have come from the
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fish farm?”. Each of the questions led to participants producing samples that were a close
match to both the mean and standard deviation of the training distribution.

The second experiment investigated whether training participants on different distri-
butions would result in sets of samples that were distinguishable from one another. Four
groups of participants were trained on a factorial combination of low and high means and
low and high standard deviations, and the means and standard deviations recovered showed
reliable differences between different training distributions. The difference in the average
recovered distributions for participants trained with the same means and different standard
deviations are shown in Figure 2 for the fish stimuli. These two experiments demonstrated
that people’s trained beliefs could be accurately estimated from the samples generated by
MCMCP.

Further research with natural categories has demonstrated that MCMCP can produce
sensible looking results in a variety of domains including stick figure animals (Sanborn,
Griffiths, & Shiffrin, 2010), intuitive physics (Cohen & Ross, 2009), and facial expressions
(Martin, Griffiths, & Sanborn, 2012; McDuff, 2010). In addition, the data gathered in these
experiments were also able to predict choices in the discrimination trials. Prediction of
discrimination trials was above chance in both fish experiments, and this was also the case
in the separate experiments using stick figure animals (Sanborn, Griffiths, & Shiffrin, 2010)
and cartoon facial expressions (McDuff, 2010). Individual differences were reflected in the
samples, as Huszár, Noppeney, and Lengyel (2010) showed that prediction of discrimination
results was better than an ideal observer trained on the fish category distributions shown
to participants.

Generality and Efficiency

While MCMCP was developed to deal with the problem of determining people’s be-
liefs about high-dimensional stimuli, it is not the only method that does so. A popular
existing method for determining people’s beliefs about high-dimensional stimuli is known
as classification images or reverse correlation analysis. In its most basic form, this method
involves collecting a set of stimuli associated with each category and determining the differ-
ence in the means between the stimuli from the two categories. (Ahumada & Lovell, 1971;
Beard & Ahumada, 1998; Olman & Kersten, 2004). This provides an estimate of a linear
decision boundary between the categories. This approach has been used extensively in the
literature on visual perception, being applied to problems such as visualizing the illusory
contours people see (Gold, Murray, Bennett, & Sekuler, 2000) and visualizing facial affect
categories (Kontsevich & Tyler, 2004).

MCMCP is more general than reverse correlation, as the linear decision bound be-
tween two categories provides much less information than is in the full distribution for
each category recovered by the MCMCP method (Sanborn, Griffiths, & Shiffrin, 2010; Vic-
tor, 2005).1 A simple example in which MCMCP would outperform reverse correlation is
recovering two categories with the same mean but different variances, as in the fish ex-
periment described above. MCMCP recovers the mean and variance of each category as
was demonstrated, but reverse correlation would recover the same mean for each category.

1Although it is worth noting that the reverse correlation method can be extended to capture other
quantities such as second order decision boundaries (Neri, 2004) or features (Gold, Cohen, & Shiffrin, 2006).
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Figure 2 . Demonstrations of how MCMCP and reverse correlation recover two distributions
over a single parameter that have the same mean, but different standard deviations. The two
distributions are shown in the target distributions plot. The reverse correlation simulation
takes a uniform sample of stimuli from the space and labels them using the ratio decision
rule. The MCMCP plot shows empirical results from Sanborn et al (2010): the average
distributions of participants in the two different standard deviation training conditions of
Experiment 2, with an example of the stimuli inset. The recovered distributions have higher
variance than the target distribution, perhaps due to perceptual noise or γ < 1.

Even looking at the full collection of trials assigned each label would be misleading – the
collection of trials associated with the more variable category would look bimodal with a
hole in the center, when it is actually unimodal with a peak in the center, as shown in
Figure 2. The discrimination trials show a hole because even though the high-variance cat-
egory has its highest probability at the common mean, the low-variance category has even
higher probability and shows its greatest relative advantage at the common mean.

Aside from the generality of the method, there is also the question of efficiency: how
does MCMCP compare to reverse correlation for categories for which reverse correlation is
expected to perform well? As there are many fewer degrees of freedom in determining a
decision boundary than in determining an entire distribution, in principle reverse correlation
should be more efficient in some situations. However, MCMCP has a second advantage over
reverse correlation due to the focused sampling of the MCMC algorithm. Unlike reverse
correlation, in which the stimuli that people make judgments about must be selected before
the experiment begins, the stimuli used in MCMCP are automatically concentrated on the
interesting portions of the space.

The most extensive comparison of MCMCP and reverse correlation has used categories
of human faces. Kontsevich and Tyler (2004) showed that for facial affect categories, the
mean of the stimuli associated with categories of happy and sad faces produced images
that clearly distinguished the two categories. Martin et al. (2012) tested MCMCP against
reverse correlation in this problem, using a 175-dimensional representation of faces. The
dimensions were the first 175 eigenfaces from the California Facial Expression database
(Dailey, Cottrell, & Reilly, 2001). Participants in the MCMCP condition made choices
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between pairs of faces to answer the question of which was “happier” or “sadder” while
participants in the reverse correlation condition labelled a randomly generated set of faces
as “happy”, “sad”, or “neither”. To evaluate the goodness of the resulting estimates of
the means of the categories, another set of participants rated the mean faces for each
category produced by each method after various numbers of choices had been made in each
experiment to determine which method converged more quickly. Comparing the mean faces
from the two methods after the same number of choices had been made, participants judged
the mean happy faces from MCMCP to be statistically significantly happier than the mean
happy faces from reverse correlation, with a similar result holding for sad faces.

Extensions

Markov chain Monte Carlo with people can provide more information about the struc-
ture of categories, and do so faster, than competing methods. With enough trials, MCMCP
will be able to estimate any probability distribution, no matter how complex, as long as the
Markov chain is ergodic. However, there are problems for which the number of MCMCP
trials required would be impracticably large. For example, there could be multiple well-
separated modes in the target distribution, and if the proposal distribution is relatively
narrow the expected number of trials required to transition between modes would be large.
Another potential problem is an experimenter who is interested in the lower probability
regions of a target distribution – relatively few samples will be collected in these regions,
increasing the total number of trials required.

Recent work with MCMCP has explored other ideas from computer science and statis-
tics that can be used to address these problems. Below we review three such extensions:
taking advantage of a manifold structure, working with discrete stimuli, and focusing trials
in areas of interest to the experimenter.

Taking Advantage of a Manifold Structure

Many of the parameterized stimulus spaces that experimenters construct are not a
good match to mental representations. As an example, reverse correlation usually adds
independent luminance noise to each pixel (cf. Olman & Kersten, 2004), even though
adding in this type of noise to an image of an object is extremely unlikely to result in an
image of another object. The images of objects lie on a manifold within the pixel space, a
lower-dimensional representation that is not known to the experimenter.

For MCMCP, a mismatch between the stimulus space and the mental representation
reduces the efficiency of the algorithm. A general problem in sampling is producing good
proposal distributions, as illustrated in Figure 3 which shows a toy example of attempting
to sample golden rectangles (rectangles that have a fixed ratio of height to width of 1.618, a
ratio that played an important role in ancient art) from the space of all possible rectangles.
For this distribution only a particular kind of change to both the height and width results
in another golden rectangle. MCMCP proposes without knowledge of the structure of the
space and as a result will produce many poor proposals for this problem.

Many different types of algorithms have been developed to make MCMCmore efficient
for this type of problem, such as Hybrid Monte Carlo (Duane, Kennedy, Pendleton, &
Roweth, 1987). Very roughly, this method uses the idea of momentum, so that the proposals
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Figure 3 . Extensions to MCMCP for three different methodological challenges. The plots
show how MCMCP and extensions address these challenges, and an example of each chal-
lenge is shown as well. In each plot, the red x’s correspond to the current state or past
states of the Markov chain and the black x’s correspond to proposals based on the current
state. The black circles and ellipses correspond to the target distributions of participants
and the blue circle corresponds to the target distribution of the experimenter. A different
extension is used for each challenge, and these are discussed in the text. a) The challenge
is that the strength distribution lies on a one-dimensional manifold in a two-dimensional
parameter space. b) The challenge is that the stimuli are discrete and the space is poorly
parameterized such that high probability regions are far from one another. c) The chal-
lenge is that the experimenter also has a preference distribution for which stimuli should
be tested.
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will tend to be made along the line in which the chain has been traveling, taking advantage
of a smooth manifold structure. We could not find a way to implement this algorithm
directly with people, so instead we implemented an analogue of momentum in order to
take advantage of the manifold structure in the stimulus space, a method called look-ahead
Monte Carlo with people (LAMCP; Blundell, Sanborn, & Griffiths, 2012).

In LAMCP, participants alternate between two types of trials. One is a regular
MCMCP trial. The other is a trial in which participants picked between various proposal
distributions for the next trial. The proposal distributions are lower-dimensional slices of
the full stimulus space, and participants can choose between animations that illustrated
what sorts of proposals each type of distribution would generate. The proposed directions
do not necessarily have to be linear slices, but like state proposals the direction proposals
must be symmetric: the probability of proposing direction d∗ given the previous direction
was d is the same as the converse probability. Crucially, slices that were previously chosen
would appear again as a choice on the next trial, allowing the participants to continue along
a direction if they so wished.

Blundell et al. (2012) tested this method on the golden rectangle problem. The full
stimulus space included all possible rectangles, and participants were asked to select the
golden rectangle on each trial. The animations shown to participants were smooth linear
trajectories through the space of rectangles determined by height and width. As a result of
using this form of momentum, participants in the LAMCP condition were able to converge
to their target distribution at a much faster rate than participants in the MCMCP condition.

Working with Discrete Stimuli

While LAMCP is useful for investigating questions with categories that form a mani-
fold within a parameterized stimulus space, there are other types of stimuli, such as images
and text from large online databases, for which the parameterization may be too poor to
use. Here, to increase efficiency, it can be better to use the examples themselves rather than
construct a parameterized space.

To use MCMCP with discrete items, some way of making local proposals must be
found. Hsu, Martin, Sanborn, and Griffiths (2012) did this by constructing a graph of the
discrete items: the nodes of the graph were the items themselves and the edges of the graph
linked items that were most similar to one another, using a rough and ready measure of sim-
ilarity. The proposal distribution used in the MCMC algorithm then follows the structure
of the graph, proposing a move to states that are neighbors of the current state. Figure 3
illustrates how making proposals in a graph is superior to making proposals in a poorly-
parameterized space. In the case of images, the experimenter can avoid asking participants
to make judgments about uninterpretable images, instead restricting their choices to images
that are interpretable and possibly relevant to the question.

Constructing the graph is not trivial. The assumption that the proposals are sym-
metric means that every node in the graph must have equal degree (i.e., an equal number
of links to other nodes). If the k nearest neighbors in terms of similarity are selected for
each item, then it is not necessarily the case that if item j is one of the k nearest neighbors
of item i that the converse is true. In order to make symmetric links, we might either make
edges if either of the items are in the k nearest neighbors of the other or make edges only
if both items are in the k nearest neighbors of the other. Either of these combination rules
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lead to nodes having different numbers of links and thus not producing a useable graph for
the purposes of MCMCP.

Again the solution to this problem can be found in the computer science and statistics
literature. Formally, we want to find the graph that maximizes the similarity along edges
while keeping the degree of each node constant

arg max
G

∑
ij

GijSij such that
∑
i

Gij = b;Gii = 0;Gij = Gji (5)

where G is the adjacency matrix of the graph, with Gij = 1 if there is an edge from i to j and
Gij = 0 otherwise, and S is the symmetric similarity matrix which gives a rough measure of
similarity between pairs of items. S could be constructed, for example, using the similarity
between the color histograms of images. In computer science, this is the maximum weight
b-matching problem (Papadimitriou & Steiglitz, 1998). There exist exact algorithms for
solving this problem, such as the blossom algorithm (Edmonds, 1965), but these algorithms
are impractical for large-scale applications. Consequently, we approximate the b-matching
using a common approximation from computer science and statistics (Jebara & Shchogolev,
2006). The use of the b-matching for proposal distribution was termed discrete MCMCP
(d-MCMCP).

d-MCMCP was tested using the same facial affect categories as used in Martin et al.
(2012). However, instead of using the points in the eigenspace of faces, the actual faces
themselves were used. Like the comparison between reverse correlation and MCMCP, d-
MCMCP was compared to MCMCP after various numbers of choices to determine which
method converged faster. The mean happy faces from d-MCMCP were a significant im-
provement over the mean happy faces from MCMCP after the same number of choices,
demonstrating the effectiveness of the method. In addition d-MCMCP was applied to im-
ages of seasons downloaded from search engines. After constructing a graph based on image
similarity, the probability distribution over images associated with each season was found,
with the results showing plausible distributions for each season.

Focusing Trials in Areas of Interest

MCMCP and the above extensions all work toward the goal of sampling from the
target distribution, whether the stimulus parameterization is good or not. However, there
are also situations in which an experimenter might find the stimuli that have moderate
strength to be more theoretically interesting.

As an example, consider a gamble in which the probabilities of three outcomes, £0,
£10, and £20, are manipulated. The participant’s highest preference will almost certainly
be for a 100% chance of £20, but the experimenter will be more interested in how the
participant evaluates gambles away from the mode of the subjective distribution. One
particular motivation, especially for insurance companies or casino owners, is to instead
determine where the participant overvalues the gambles with respect to the expected value.

Noguchi, Sanborn, and Stewart (2013) dealt with this problem by introducing another
agent into the algorithm. After a proposal was made by the computer, first the computer
agent decided whether to accept the proposal with probability g(x)

g(x)+g(x∗) . Only if the com-
puter agent accepted the proposal, did the participant have a chance to judge between the
proposal and the state. If the participant also accepted the proposal, then the proposal
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became the new state on the next trial. This scheme fulfills detailed balance, and the tar-
get distribution becomes f(x)g(x). This f(x)g(x) distribution is essentially the agreement
distribution between the participant and the agent and as a result, trials are concentrated
on the items that have high agreement, as shown in Figure 3.

For the problem of determining where participants overvalue gambles with respect to
expected value, the experimenter can set the computer agent’s utility function to be equal
to the inverse of the expected value. As a result, the distribution converges to gambles on
which the participant’s utility exceeds that of the expected value. Participants were run in
this experiment and the results showed that participants overvalued gambles in which the
probability of receiving £0 was near zero, showing an aversion to the worst outcome.

Conclusions and Future Work

The computer metaphor has provided much inspiration for psychology. The recent
close links between computer science and cognitive psychology have led to even more produc-
tive developments, and here we examined the consequences of treating people as components
in an algorithm usually executed on digital computers. Using people as components in a
sampling algorithm has resulted in methods for efficiently exploring the representations that
people have of naturalistic stimuli. The power of this approach is further demonstrated in
extensions of the method, which are able to use other closely related algorithms from com-
puter science to improve the performance of the method in for particular applications. In
the future we hope to apply this method to even more interesting problems, such as eliciting
information from experts and finding areas of agreement between multiple participants.

Markov chain Monte Carlo with people is just one instance of a deeper idea: we can
use human beings as elements of algorithms that are more commonly executed by digital
computers, and that we can learn something about human cognition as a result. The
principle of treating human decisions as a sample from a particular probability distribution
is one that can be generalized to make it possible to implement other randomized algorithms
with people. We view this as an exciting possibility: there is a rich literature on randomized
algorithms that might contain other important insights about new methods by which we
can address the questions of cognitive psychology.
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