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Abstract

This paper explores how people make predictions about
the future. Statistical approaches to predicting the fu-
ture are discussed, focussing on the method for predict-
ing the future suggested by J. R. Gott (1993). A gener-
alized Bayesian form of Gott’s method is presented, and
a specific psychological model suggested. Three experi-
ments show that the predictions people make about the
future are consistent with a Bayesian approach.

Despite the difficulty of predicting the future, people
happily do it every day. We are confident about being
able to predict the durations of events, how much time
we will need to get home after work, and how long it
will take to finish the shopping. In many cases we have
a great deal of information guiding our judgments. How-
ever, sometimes we have to make predictions based upon
much less evidence. When faced with new situations our
decisions about how much longer we can expect events to
last are based on whatever evidence is available. When
the only information we possess concerns how long a par-
ticular event has lasted until now, predicting the future
becomes a task of induction.

In this paper we explore the question of how people
predict the future when told only about the past. We
examine a simple statistical method of predicting the
future, and consider how such a method could be made
sufficiently flexible to be useful in everyday situations.
The resulting Bayesian model makes strong predictions
about the effects of providing further information, the
symmetry of this form of reasoning, and how it should
be affected by prior knowledge. We test these predictions
empirically.

The Copernican Anthropic Principle

A simple solution to the problem of predicting the fu-
ture was recently proposed by the cosmologist J. Richard
Gott IIT (1993). Gott’s method is founded upon what he
calls the “Copernican anthropic principle”, which holds
that

...the location of your birth in space and time in
the Universe is priveleged (or special) only to the
extent implied by the fact that you are an intelli-
gent observer, that your location among intelligent
observers 1s not special but rather picked at random

(1993, p. 316)

Gott extends this principle to reasoning about our po-
sition in time — given no evidence to the contrary, we
should not assume that we are in a “special” place in
time. This means that the time at which an observer
encounters a phenomenon should be randomly located
in the total duration of that phenomenon.

Denoting the time since the start of a phenomenon
tpast, and its total duration t;,:41, Gott forms what he
terms the “delta ¢ argument”. Define the ratio

P = tpa.st (1)
ttotal

and assume that this is a random number between 0 and
1. It is possible to form probabilistic predictions about
the value of r. For example, r will be between 0.025 and
0.975 with a probability P = 0.95, meaning that

Etpast < tfuture < 39tpa.st (2)
with 95% confidence, where tfusure = tiotat — tpast. SIm-
ilarly, 7 will be less than 0.5 with probability P = 0.5,
80 tpast < truture With 50% confidence.

This method of reasoning has been used to predict a
wide range of phenomena. Gott (1993) tells of his visit to
the Berlin Wall in 1969 (£,45: = 8 years). Assuming that
his visit was randomly located in the period of the wall’s
existence, the 95% confidence interval for ¢fyusyr. would
be 2.46 months to 312 years. The wall fell 20 years later,
consistent with these predictions. Gott made similar cal-
culations of ?ysur. for Stonehenge, the journal Nature,
the U.S.S.R., and even the human race. Subsequent tar-
gets of the principle have included Broadway musicals
and the Conservative government in Britain (Landsberg,
Dewynne, & Please, 1993).

What’s Bayes got to do with it?

Gott’s (1993) method for predicting the future yields
interesting predictions in a wide range of situations. It is
simple, but could prove useful in forming effective plans
and expectations about future events. On this basis, it
would be plausible for people to apply similar principles
when making judgments concerning time.

Despite the attractiveness of this claim, there may be
good reasons why Gott’s (1993) method would not be-
long in our cognitive armory. One reason could be the
restrictive assumptions of such an inference. In many



cases in the real world where it might be desirable to
predict the future, we know more than simply how long
a process has been underway. In particular, our inter-
action with the world often gives us some prior expec-
tations about the duration of an event. For example,
meeting a 78 year-old man on the street, we are unlikely
to think that there is a 50% chance that he will be alive
at the age of 156.

Prior knowledge is not the only kind of information
that Gott’s (1993) method neglects. In some cases, our
predictions are facilitated by the availability of multiple
encounters with a phenomenon. For example, if we were
attempting to determine the period that passes between
subway trains arriving at a station, we would probably
have several trips upon which to base our judgment. If
on our first trip we discovered that a train had left the
station 103 seconds ago, we might assume that trains
run every few minutes. But, after three trips yield trains
that have left 103, 34, and 72 seconds ago, this estimate
might get closer to 103 seconds. And after ten trains, all
leaving less than 103 seconds before we arrive, we might
be inclined to accept a value very close to 103 seconds.

These limitations suggest that Gott’s (1993) formal-
ization lacks the flexibility that would be required of
a method for predicting the future in real world situ-
ations. Such a method must allow for the influence of
prior knowledge, and reflect the effect of multiple exam-
ples. Bayesian inference may provide a means of satis-
fying both of these requirements. Bayes Theorem states

that P(d|h)P(h)

where h 1s some hypothesis under consideration, and d 1s
the observed data. By convention, P(h|d) is referred to
as the posterior probability of the hypothesis, P(h) the
prior probability, and P(d|h) the likelihood of the data
given that hypothesis. In the case where the hypotheses
are continuous, P(d) can be obtained by summing across

P(d|h)P(h) for all hypotheses, giving

P(d|h;)P(hi)
P(d|h)P(h)dh )

P(h|d) =

P(hsld) = T

where H is the set of all hypotheses.

Conveniently, some work extending Gott’s (1993)
method into a Bayesian framework already exists. In
responding to a criticism offered by Buch (1994), Gott
(1994) noted that his method for predicting the future
could be eXpressed in Bayesian terms. Using the prior
P(tfota[) o and the likelihood P(tpast|tiotar) =

tt — ylelds the same results as his original formulation
of the delta ¢ argument.

These values are not chosen arbitrarily. The use of
for the prior is motivated by sound statistical

ft tal
principles (Press, 1989), and provides a scale-invariant

method for distributing probability over hypotheses. In
many applications it is referred to as the uninformative
prior, as it 1is appropriate when an inference is guided
by no specific prior knowledge. The use of ; — for the

likelihood is also well motivated. The anthroplc principle

essentially states that ¢,45; should be viewed as having
been randomly sampled from #;44;. Assuming a uniform
distribution across values of tp(m, the probability of any
particular #,45; will be 5

Crucially, both the prlors and the likelihoods of this
Bayesian framework can be modified to suit the situation
at hand. A simple, flexible set of priors is provided by
the Erlang distribution

ttotale_twmz/ﬁ

T 6

where 3 1s a free parameter. This distribution has a
broad peak at t;5;q;1 = B, and decays to zero at 0 and
oo. This parameterized peaked distribution provides a
simple means to summarize many of the kinds of dis-
tributions that might be encountered across temporal
domains. Similarly, the effect of multiple examples of
tpast can be introduced by modifying the likelihoods.
Extending the anthropic principle, we can assume that
each example is drawn independently from #;5¢4;. The
probability of observing a set of n examples will then be

1
(itotaz )n

A Bayesian model

The specification of a Bayesian model requires identi-
fying the distributions governing the prior probabilities
and the likelihoods. For the case of predicting the future,
Gott’s (1993) method provides a good starting point.
For each model considered in this section, we will as-
sume that people’s responses reflect the point ¢, such
that P(t < tiotar) = 0.5. This is essentially assuming
that people adopt an unbiased criterion in making their
judgments. Furthermore, we will examine the predic-
tions of each model when provided with one, three, or
ten examples of ¢,45: (n = 1,3, 10 respectively).

The simplest case of Gott’s (1993) method is just the
delta ¢ argument, as presented in Equation 1. The pre-
dictions of the delta ¢t argument are shown in the leftmost
panel of Figure 1(a). The predictions are unaffected by
n, and are thus constant at { = 2¢,,,;. This seems to
defy intuition, and is the weakest of the models we will
consider.

At the next level of complexity is the introduction of
(ttlt l)” for the likelihood of a set of n examples and

the uninformative prior P(tiptq1)

P(ttotal) =

7. vielding the

closed form prediction ¢ = 2 1/n "tpast- As shown in the
second panel of Figure 1(a), the model shows an effect
of the number of examples. The main problem with
this model is that the prior does not make use of the
flexibility provided by the inclusion of prior knowledge in
inference. In particular, the uninformative prior makes
scale invariant predictions about generalization, which
means that ¢fysu,. Will be a constant proportion of ¢4+,
whether predicting the future of the human race or a 78-
year old man.

Substituting the Erlang distribution for the uninfor-
mative prior renders Equation 4 into

(ttotal)l_ne_twtal/ﬁ

ftc:ist (ttotal)l_ne_ttoml/ﬁdttotal

P(tiora|T) = (6)



where T'is the set of n examples of £,45;. The third panel
of Figure 1(a) shows the predictions of this model for
n = 1,3,10 with # ranging from 0.5 to 4.5 in unit incre-
ments. The model shows reduced predictions with more
examples, and increased predictions with larger values
of 3.

This third model is what will be tested against peo-
ple’s predictions about the future. The use of a param-
eterized prior and specification of the likelihoods makes
it appear somewhat more complex than Gott’s (1993)
original prescription. As parsimony contributed to the
psychological plausibility of the approach, this additional
complexity needs to be justified. One source of justifi-
cation is the success of the Bayesian framework in de-
scribing behavior in other domains. Tenenbaum (1999)
discussed several examples of tasks that map naturally
onto the temporal problems addressed by Gott.

The tasks considered by Tenenbaum (1999) were cases
of inductive concept learning, where people learn about a
concept through the provision of positive examples. An
example of this kind of task would be predicting healthy
levels of imaginary toxins. People would be given a num-
ber that they are told is a healthy level of a particular
toxin, then asked to guess the highest level of the toxin
that would be considered healthy. This situation is ex-
actly analogous to predicting the total duration of an
event from the amount of elapsed time since the start of
the event. In both cases, a person is given a number that
is assumed to be randomly sampled from the set of all
numbers satisfying a particular criterion, and asked to
judge the nature of this criterion. Since both duration
and toxin levels are numbers required to be between 0
and some maximum number, this judgement requires the
estimation of the maximum number (¢45147 in the case of
predicting the future). Tenenbaum (1999) found that
a Bayesian framework gave a good account of people’s
performance on this kind of task.

Model predictions

The Bayesian model outlined above, and depicted in the
third panel of Figure 1(a), has some obvious implica-
tions. Most central is how the provision of further in-
formation should affect predictions. The tightening of
the range of acceptable values of ;4447 corresponds to an
important component of Tenenbaum’s (1999) account of
concept learning. As people are given more examples of
a concept, they become less inclined to generalize be-
yond the properties of those examples. In the case of
predicting the future, where all hypotheses have a value
of t:0tq1 as their sole property, this manifests as a ten-
dency to accept the smallest possible value of #;,:4; that
includes all observed values of £44.

The Bayesian model also clearly defines the phenom-
ena of prediction to be symmetric. In forming a judg-
ment about #;4:47, knowledge of #,45; and knowledge of
t tuture are equally informative. Given one of these pieces
of information, it is possible to calculate a range of ac-
ceptable values for #;,¢4;. If people apply similar meth-
ods in making judgments about time the effects should
be maintained regardless of which of ¢,4,; and ¢y 44y are

provided. This is not an absolute symmetry, however: if
scenarios in which ¢y sure and t,45¢ are provided differ in
the distribution of prior probability, then the predicted
values of t;,;41 may also differ.

One further implication of the model is that manipu-
lating the prior probability distribution across the hy-
pothesis space will produce a general change in pre-
dictions, at least until the effect of the priors is over-
whelmed by the likelihoods. In particular, inducing a
prior preference for a relatively high value will bias in-
ferences towards hypotheses around that value. If peo-
ple employ approximately Bayesian methods in forming
their judgments, introducing information that biases the
prior probability distribution in this way should result in
higher predictions, especially when those predictions are
based upon few observations.

The Bayesian framework for predicting the future has
three clear implications for the kind of judgments that it
will produce. The effects of further information, symme-
try of predictions, and effects of prior probabilities are all
important properties of how these judgments are made.
Experiments 1, 2, and 3 examine these predictions in
turn.

Experiment 1: New information
Method

Participants Participants were 81 undergraduates
from Stanford University, participating for partial course
credit. The participants were randomly assigned to four
groups.

Materials Four simple scenarios were developed for
exploring the predictions of the Bayesian framework.
The first scenario described a coffee shop that had re-
cently started selling teacakes. This scenario is given
below. Participants were shown #,,,;, and asked to pre-
dict t40¢tq;. The second scenario told participants that
they were visiting a foreign country in which trains ran
precisely to schedule. The schedule was set up so that
exactly the same amount of time passed between succes-
sive trains. On the platform was a clock showing how
long it had been since the last train arrived. Participants
were told the value on the clock when they reached the
station, ffysure, and asked to predict ;o141

These scenarios were compared with two analogous
situations that made no reference to time. One of the
comparison scenarios was the healthy levels of toxin ex-
periment described above. The second was a version of
the Jeffreys (1961) tramcar problem: participants were
told the serial number of a taxicab (as well as being given
the information that all cabs are given a unique number
between 1 and the total number of cabs in the company)
and asked to guess the number of cabs in the company.

Each scenario had three sections. The first section
outlined the situation and give a single number on which
judgments were to be based. The second and third sec-
tions added further information, giving a total of three
numbers and ten numbers respectively. The first number
given was the largest, meaning that further observations
would only tighten the range of generalization. The sets



of numbers given were identical for the teacake and toxin
scenarios and the train and taxicab scenarios, and were
approximately uniformly distributed. The largest ex-
ample was 34 minutes (ng/mL) for the teacake (toxin)
scenario, and 103 seconds (cabs) for the train (taxicab)
scenario.

For example, the first section of the teacake scenario
was

Each day, on your way to class, you walk past
a coffee shop. The shop has recently started a new
advertising campaign: they bake fresh teacakes reg-
ularly throughout the day, and have a clock outside
that shows how long it has been since the teacakes
were taken out of the oven. You are interested in
buying a teacake as soon as it is removed from the
oven, and wonder how often batches of teacakes are
baked. Today, the clock shows that it has been 34
minutes since the last batch of teacakes was removed
from the oven.

Please write down your best guess of how much
time elapses between batches of teacakes, in min-
utes. Try to make a guess, even if you feel like you
don’t have enough information to make a decision -
just go with your gut feeling. You may assume that
the batches of teacakes are always separated by the
same amount of time.

The second section gave the additional times of 21 and 8
minutes, and the third section gave further times of 18,
2, 5,27, 22, 10 and 14 minutes.

Procedure The procedure used in all three experi-
ments was identical: Each participant received a sheet
providing general instructions about the task, and a
questionnaire of one of four kinds.

Results and Discussion

Plausible responses to these problems are constrained to
be greater than the largest example provided. Responses

were transformed such that ¢t = ﬁ, where z is the raw
pas

score and 1,4, is the largest example, and participants
who gave ¢ < 1 were excluded from the analysis, elim-
inating approximately 15% of the participants in each
experiment. Responses more than three standard devia-
tions from the mean were considered outliers, and were
also excluded. Only one outlier was identified in the
course of all three experiments.

A one-way within-subjects ANOVA showed a sta-
tistically significant effect of the number of examples
for each scenario (F(2,30) = 9.71, F(2,32) = 18.00,
F(2,44) = 9.57, F(2,30) = 15.05, for the teacake, train,
taxicab, and toxin respectively, all p < .001). Means and
standard errors are shown in Figure 1(b), which demon-
strate that the two temporal tasks show a similar effect
of new information to the tasks of analogous statistical
structure. The Figure also shows predictions generated
by the Bayesian model, using the Erlang prior with 3 set
independently for each scenario. The parameterization
of the distribution reflects the different priors that might
exist across different scenarios, relative to the scale of the

examples selected. The values of 3 for the teacake, train,
toxin and taxicab scenarios were 1.6, 5.4, 0.7 and 4.4 re-
spectively. The peak of the Erlang prior is at 45141 = 5,
yielding values of 54 minutes between batches of tea-
cakes, 9 minutes 21 seconds between trains, 24 ng/mL
of toxin, and 460 taxicabs, all of which seem appropriate.

Experiment 2: Symmetry of effects
Method

Participants Participants were another 77 undergrad-
uates from Stanford University, participating for partial
course credit. The participants were randomly assigned
to four groups.

Materials Again, four scenarios were used. The tea-
cake and train scenarios from Experiment 1 were applied
to a different set of participants, and modified versions
of these scenarios were generated to make it possible to
test the symmetry of predictions. The new scenarios
were 1dentical to the original teacake and train scenar-
ios, except for the provision of t;ysur. instead of #,,4;
- the participants were informed how long it would be
before the next batch of teacakes were removed from the
oven, or the next train would arrive, and were asked to
predict the period that went between these events. All
scenarios asked for predictions with 1, 3, and 10 exam-
ples, replicating Experiment 1.

Results and Discussion

Responses were screened using the same procedure as
in Experiment 1. FEach pair of putatively symmetric
scenarios was subjected to a two-way within-between
ANOVA, examining the effects of number of examples
and temporal direction. The train scenario showed
a statistically significant effect of number of examples
(F(2,56) = 17.40, p < .001), and no evidence of an ef-
fect of temporal direction (F(1,28) = 0.50, p = 0.49)
or an interaction between the factors (F(2,56) = 0.08,
p = 0.93). The effect of new information reproduces that
of Experiment 1, and the non-significant result for tem-
poral direction implies that any asymmetry in prediction
is too weak to be detected by the present experiment.
The teacake scenario likewise showed a statistically
significant effect of number of examples (F(2,60) =
22.18, p < .001). However, the results also indicated a
significant effect of temporal direction (F(1.30) = 4.46,
p < .05) and an interaction between the two factors
(F(2,60) = 3.667, p < .05). This difference between the
two scenarios may be a result of the way that the asym-
metry introduces new information about the teacakes.
Changing “the clock shows that it has been 34 minutes
since the last batch of teacakes was removed from the
oven” to “the clock shows that it will be 34 minutes un-
til the next batch of teacakes is removed from the oven”
provides the implication that the next batch of teacakes
is currently in the oven. The time between batches of
teacakes can be divided into time in the oven and time
left waiting. Of these, the time the teacakes spend in
the oven is less flexible. Applying the anthropic princi-
ple, the observation that the teacakes are currently in the
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Figure 1: (a) Predictions of the various models, depicting point at which P(¢ < t10141) = 0.5 for 1, 3 and 10 examples.
On all graphs, the vertical axis shows the predicted value of ¢ in proportion to tpqs¢. (b) Results for Experiment 1.
The solid line shows means (with one standard error). The dotted line shows the predictions of the Bayesian model
with an Erlang prior. (¢) Results for Experiment 2. (d) Results for Experiment 3.

oven suggests that the teacakes spend more time in the
oven than waiting to be purchased. This correspondingly
reduces the total amount of time that might be expected
to pass between successive batches of teacakes.

Figure 1(c) shows the means and standard errors,
which are reminiscent of those found in Experiment 1.
The predictions of the model were made with 3 values of
2, 0.91, 3.75, and 2.95 for teacake-past, teacake-future,
train-past, and train-future respectively. These values
approximate those used in fitting the results of Experi-
ment 1.

Experiment 3: Manipulating priors
Method

Participants Participants were another 78 undergrad-
uates from Stanford University, participating for partial
course credit. The participants were randomly assigned
to four groups.

Materials The teacake scenario from Experiment 1
and the train scenario from Experiment 2 were used, to-
gether with two new scenarios. The new scenarios gave
participants information that was designed to alter their
prior before they were given specific numbers upon which
a prediction could be based. The sentence “A friend who
you are walking with says that he worked in a coffee shop
in the same chain last year, and that shops usually bake
every two hours, although it varies from shop to shop”
was added to the teacake scenario, and “In the course of
your travels, you have noticed that most subway trains
in this country run approximately every seven minutes,
although it varies from place to place” to the train sce-

nario.
All scenarios asked for predictions with 1, 3, and 10
examples, replicating Experiment 1.

Results and Discussion

Responses were screened using the same procedure as in
Experiment 1. The scenarios were grouped into teacakes
and trains, and examined for the effect of number of ex-
amples and manipulating priors using two-way within-
between ANOVAs. The teacake scenarios showed an ef-
fect of the number of examples (F = 25.86, p < .001) and
manipulating priors (F = 4.70, p < .05), as well as an
interaction between the two (F' = 3.80, p < .05). Similar
results were shown for the train scenarios. There was a
statistically significant effect of the number of examples
(F = 50.31, p < .001), as well as an effect of manipu-
lating priors (F = 5.85, p < .05). In both groups, the
effect of the number of examples replicates the results of
Experiment 1, and the higher means for the group given
the raised prior is consistent with the predictions of the
Bayesian model.

Means and standard errors are shown in Figure 1 (d),
together with the model predictions. The § values used
in fitting the data were 1.6, 3.3, 3.25, and 3.85 for the
teacake, teacake-prior, train, and train-prior conditions
respectively. The @ values are greater in the conditions
where the prior was raised, and give peak values of 1
hour, 52 minutes for the teacakes and 6 minutes 40 sec-
onds for the trains. It is notable that these values are
within 10% of the priors supplied in the experimental
materials, supporting the efficacy of the manipulation
and the appropriateness of the model.



General Discussion

Predicting the future is a difficult task, particularly when
the predictions are formed on the basis of very little
information. Gott (1993) suggested a simple method
for making predictions about the future. Gott’s method
lacks the flexibility to be useful in a wide range of real-
world situations, but the same principles allow the con-
struction of a more general Bayesian model. This model
shows many similarities to Tenenbaum’s (1999) Bayesian
framework for inductive concept learning, which has
proven successful in other domains. Experiments 1, 2,
and 3 explored whether the Bayesian model provided a
reasonable account of the effects of new information, the
symmetry of predictions, and the effects of prior proba-
bilities upon people’s judgments about the future.

Experiment 1 showed that the effect of providing
further examples conformed to the predictions of the
Bayesian model: more examples promoted a reduction
in the scope of generalization, with predictions becom-
ing closer to the largest example provided. Experiment
2 showed that these predictions were symmetric in time,
taking the same form regardless of whether the judgment
concerned the past or the future. Experiment 3 showed
that people’s predictions could be affected by the manip-
ulation of their prior expectations, and that this effect
was consistent with the interaction of priors and likeli-
hoods in Bayesian inference.

Psychological plausibility

It seems unlikely that the participants in this experi-
ment were consciously performing Bayesian inference. A
more probable explanation is that the problem can be
solved by the application of a simple heuristic, which
more closely resembles the cognitive process by which
answers can be reached (cf. Gigerenzer, 1999).

One simple heuristic that produces results consistent
with both the data and the normative Bayesian model
is the rule “The distance to extrapolate is the range of
scores divided by the number of examples”, which is an
unbiased frequentist estimator of ¢;4¢4;. The predictions
of this ’density’ heuristic are shown in the fourth panel
of Figure 1(a). Priors are implemented by taking the
average of t,4,; and @ before dividing by n, and the
curves shown illustrate @ ranging between 0.5 and 4.5 in
unit increments. Note that the extent of generalization
decreases with the number of examples, as in the present
experiments.

The existence of such a heuristic does not affect the
claim that people’s predictions about temporal events
are consistent with a Bayesian framework. The algorith-
mic properties of the Bayesian model and the heuristic
may differ, but their computational properties are sim-

ilar. In fact, producing the response ¢t = #,45¢ + ti’%”,
where n is the number of examples, serves as a first

order approximation of the Bayesian model with prior
P(ttotal) X

Predicting future research

tiotal

The present results provide support for the claim that a
process consistent with Bayesian inference underlies peo-

ple’s judgments on these tasks. However, the generality
of the findings needs to be extended. In particular fur-
ther scenarios need to be investigated. Demonstrating
the consistency of the results across a range of contexts
and set of numerical examples will increase the strength
of the findings.

The model-fitting presented in the preceding experi-
ments helps to show that the results are consistent with
a Bayesian model, but one of the most important out-
come of the model-fitting is that the peak values of the
prior distributions are in appropriate ranges. This pro-
vides a further avenue for future research: empirically
estimating the parameters of the prior distribution, and
using these results to predict the effects of providing ex-
amples. This would involve administering the scenarios
without giving a time displayed on the clock, and asking
people to estimate #4,14;. The resulting distribution will
give a prior, P(tsota1), that can be used to predict further
responses.

Finally, it is interesting to note that the ability to pre-
dict the future may be important to domains other than
conscious planning. For instance, Anderson (1990) ar-
gued that memory may display similar temporal sensitiv-
ities. The major challenge for any memory system is to
index entries in a fashion whereby those that are needed
will be readily available. This requires predicting the fu-
ture: given an event, the expected future occurrence of
the event must be inferred if it is to be indexed appro-
priately. Anderson (1990) suggests that these inferences
occur unconsciously, and are an important part of the
human memory. One attractive component of future re-
search is thus exploring the extent to which unconscious
temporal judgments reflect Bayesian principles.
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