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1 Brief Comments

Ghahramani and colleagues have proposed an interesting class of infinite latent feature (ILF)

models. The basic premise of ILF models is that there are infinitely many latent predictors

represented in the population, with any particular subject having a finite selection. This is

presented as an important advance over models that allow a finite number of latent variables.

ILF models are most useful when all but a few of the features are very rare, so that one

obtains a sparse representation. Otherwise, one cannot realistically hope to learn about the

latent feature structure from the available data. The utility of sparse latent factor models

has been compellingly illustrated in large p, small n problems by West (2003) and Carvalho

et al. (2006). Given that performance is best when the number of latent features represented

in the sample is much less than the sample size, it is not clear whether there are practical

advantages to the ILF formulation over finite latent variable models that allow uncertainty

in the dimension. For example, Lopes and West (2004) and Dunson (2006) allow the number

of latent factors to be unknown using Bayesian methods.

That said, it is conceptually appealing to allow additional features to be represented

in the data set as additional subjects are added, and it is also appealing to allow partial

clustering of subjects. In particular, under an ILF model, subjects can have some features

in common, leading to a degree of similarity based on the number of shared features and the
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values of these features.

Following the notation of Ghahramani et al., the K × 1 latent feature vector for subject

i is denoted f i = (fi1, . . . , fiK)′, with fik = zikvik, where zik = 1 if subject i has feature k and

zik = 0 otherwise, and vik is the value of the feature. There are then two important aspects

of the specification for an infinite latent feature model: (1) the prior on the N ×K binary

matrix Z = {zik}, with K →∞; and (2) the prior on the N ×K matrix V = {vik}.

The focus of Ghahramani et al. is on the prior for Z, proposing an Indian Buffet Process

(IBP) specification. The IBP follows in a straightforward but elegant manner from the

following assumptions: (i) the elements of Z are independent and Bernoulli distributed given

πk, the probability of occurrence of the kth feature; and (ii) πk ∼ beta(α/K, 1). Because the

features are treated as exchangeable in this specification, it is necessary to introduce a left

ordering function, so that it is possible to base inference on a finite approximation focusing

only on the more common features.

In this discussion, I briefly consider the more general problem of nonparametric modeling

of both Z and V, proposing an exponentiated gamma Dirichlet process (EGDP) prior. The

exponentiated gamma (EG) is used as an alternative to the IBP, with some advantages,

while the Dirichlet process (DP) (Ferguson, 1973; 1974) is used for nonparametric modeling

of the feature scores among subjects possessing a feature.

2 Exponentiated Gamma Dirichlet Process

To provide motivation, I focus on an epidemiologic application in which an ILF model is

clearly warranted. In the Agricultural Health Study (Kamel et al., 2005), interest focused

on studying factors contributing to neurological symptom (headaches, dizziness, etc) occur-

rence in farm workers. Individual i is asked through a questionnaire to record the frequency

of symptom occurrence for p different symptom types, resulting in the response vector,
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yi = (yi1, . . . , yip)
′. It is natural to suppose that the symptom frequencies, yi, provide mea-

surements of latent features, fi = (fi1, . . . , fiK)′. Here, fik = zikvik, with zik = 1 if individual

i has latent risk factor k and 0 otherwise, while vik denotes the severity of risk factor k for

individual i. For example, feature k may represent the occurrence of an undiagnosed mild

stroke, while vik represents how severe the stroke is, with more severe stroke resulting in

more frequent neurological problems.

Such data would not be well characterized with a typical latent class model, which

requires individuals to be grouped into a single set of classes. However, the approach of

Ghahramani et al. is also not ideal in this case, as there are two important drawbacks.

First, the assumption of feature exchangeability makes inferences on the latent features

awkward. Thus, across posterior samples collected using an MCMC algorithm, the feature

index changes meaning. This label ambiguity also also occurs in DPM models. A solution

in the setting of ILF models is to choose a prior that explicitly orders the features by

their frequency of occurrence, with feature one being the most common. Second, one can

potentially characterize the data using fewer features by modeling the feature scores {vik}

nonparametrically. This also provides a more realistic characterization of the data. By

assuming a parametric model, one artificially inflates the number of features needed to fit

the data, making the latent features less likely to characterize a true unobserved risk factor.

An exponentiated gamma Dirichlet process (EGDP) prior can address both of these

issues. I first define the exponentiated gamma (EG) component of the prior, which provides

a probability model for the random matrix, Z. Without loss of generality, the features are

ordered, so that the first trait tends to be more common in the population, and the features

decrease stochastically in population frequency with increasing index h. This is accomplished

by letting

πh = 1− exp(−γh), γh
ind∼ G(1, βh), for h = 1, . . . ,∞, (1)
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where γ = {γh, h = 1, . . . ,∞} is a stochastically decreasing infinite sequence of independent

gamma random variables, with the stochastic decreasing constraint ensured by letting β1 <

β2 < . . . < β∞. Marginalizing over the prior for γ, we obtain

Pr(Zih = 1 |β) = 1−
∫ ∞

0
exp(−γh) βh exp(−γhβh) dγh

=
1

1 + βh

, (2)

which is decreasing in h for increasing β = {βh, h = 1, . . . ,∞}.

Note that, unlike for the IBP, the exponentiated gamma (EG) process defined in (1)

does not result in a Poisson distribution for Si =
∑∞

h=1 Zih, the number of traits per sub-

ject. Instead Si is defined as the convolution of independent but not identically distributed

Bernoulli random variables. A convenient special case corresponds to

βh = exp{ψ1 + ψ2(h− 1)}, h = 1, 2, . . . ,∞, (3)

which results in a logistic regression model for the frequency of trait occurrence upon

marginalizing out γ. In this case, two hyperparameters, ψ1 and ψ2, characterize the EG pro-

cess, with ψ1 controlling the frequency of trait one and ψ2 controlling how rapidly traits de-

crease in frequency with the index h. The restriction ψ2 > 0 ensures that β1 < β2 < . . . < β∞.

Assuming (1) and (3), it is straightforward to show that the distribution of Si can be ac-

curately approximated by the distribution of SiT =
∑T

i=1 Zih for sufficiently large T . In

most applications, a sparse representation with few dominant features (expressed by choos-

ing ψ ≥ 1) may be preferred. In such cases, an accurate truncation approximation can be

produced by replacing F = Z
⊗

V with FT = ZT
⊗

VT , with
⊗

denoting the element-wise

product, and AT denoting the submatrix of A consisting of the first T columns. Here, T is

a finite integer, e.g., T = 20 or T = 50.

Expressions (1) and (3) provide a prior for the random binary matrix, Z, allocating

features to subjects. In order to complete the EGDP specification, we let vih = 0 if zih = 0
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and otherwise

(vih | zih = 1) ∼ Gh, Gh ∼ DP (αG0). (4)

Here, Gh represents a random probability measure characterizing the distribution of the hth

latent feature score among those individuals with the feature. This probability measure is

drawn from a Dirichlet process (DP) with base measure G0 and precision α.

3 Nonparametric Latent Factor Models

To illustrate the EGDP, we focus on a nonparametric extension of factor analysis. For

subjects i = 1, . . . , n, let yi = (yi1, . . . , yip)
′ denote a multivariate response vector. Then, a

typical factor analytic model can be expressed as:

yi = µ+ Λfi + εi, εi ∼ Np(0,Σ), (5)

where µ = (µ1, . . . , µp)
′ is a mean vector, Λ is a p × K factor loadings matrix, fi =

(fi1, . . . , fiK)′ is a K × 1 vector of latent factors, and εi is a normal residual with diago-

nal covariance Σ (see, for example, Lopes and West, 2004). In a parametric specification,

one typically assumes fih ∼ N(0, 1), while constraining the factor loadings matrix Λ to

ensure identifiability.

Instead we let fi ∼ F , with F ∼ EGDP (ψ, α,G0), where F denotes the unknown

distribution of fi and EGDP (ψ, α,G0) is shorthand notation for the exponentiated gamma

Dirichlet process prior with hyperparameters ψ = (ψ1, ψ2)
′, α and G0. Due to the constraint

that the higher numbered factors correspond to rarer features that are less frequent in the

population, we avoid the need to constrain Λ. To remove sign ambiguity, we instead restrict

G0 to have strictly positive support, ensuring that fih ≥ 0 for all i, h.

Note that this characterization has several appealing properties. First, the distributions

of the factor scores are modelled nonparametrically, with subjects automatically clustered
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into groups separately for each factor. One of these groups corresponds to the cluster of

subjects not having the factor, while the others are formed through the discreteness property

of the DP. Second, the formulation automatically allows an unknown number of factors

represented among the subjects in the sample. Thus, uncertainty in the number of factors

is accommodated in a very different manner from Lopes and West (2004). Third, for G0

chosen to be truncated normal, posterior computation can proceed efficiency via a data

augmentation MCMC algorithm. Using a truncation approximation (say with T = 20), the

algorithm alternately updates: (i) µ,Λ,Σ conditionally on F using Gibbs sampling steps;

(ii) the elements of Z by sampling from the Bernoulli full conditional posterior distributions;

(iii) {γh, h = 1, . . . , T} with a data augmentation step (relying on an approach similar to

Dunson and Stanford, 2005 and Holmes and Held, 2006); (iv) V using standard algorithms

for DPMs (MacEachern and Müller, 1998). Details are excluded given space considerations.
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