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Abstract

Models of language evolution have demonstrated how
aspects of human language, such as compositionality,
can arise in populations of interacting agents. This pa-
per analyzes how languages change as the result of a
particular form of interaction: agents learning from one
another. We show that, when the learners are rational
Bayesian agents, this process of iterated learning con-
verges to the prior distribution over languages assumed
by those learners. The rate of convergence is set by
the amount of information conveyed by the data seen
by each generation; the less informative the data, the
faster the process converges to the prior.

Human languages form a subset of all logically pos-
sible communication schemes, with universal properties
shared by all languages (Comrie, 1981; Greenberg, 1963;
Hawkins, 1988). A traditional explanation for these lin-
guistic universals is that they are the consequence of
constraints on the set of learnable languages imposed by
an innate, language-specific, genetic endowment (e.g.,
Chomsky, 1965). Recent research has explored an alter-
native explanation: that universals emerge from evolu-
tionary processes produced by the transmission of lan-
guages across generations (e.g., Kirby, 2001; Nowak,
Plotkin, & Jansen, 2000). Languages change as each gen-
eration learns from that which preceded it. This process
of iterated learning implicitly selects for languages that
are more learnable. This suggests a tantalizing hypoth-
esis: that iterated learning might be sufficient to explain
the emergence of linguistic universals (Briscoe, 2002).

Kirby (2001) introduced a framework for exploring
this hypothesis, called the iterated learning model (ILM).
In the ILM, each generation consists of one or more
learners. Each learner sees some data, forms a hypothe-
sis about the process that produced that data, and then
produces the data which will be supplied to the next
generation of learners, as shown in Figure 1 (a). The
languages that succeed in being transmitted across gen-
erations are those that pass through the “information
bottleneck” imposed by iterated learning. If particular
properties of languages make it easier to pass through
that bottleneck, then many generations of iterated learn-
ing might allow those properties to become universal.

The ILM can be used to explore how different as-
sumptions about language learning influence language
evolution. A variety of learning algorithms have been
examined using the ILM, including a heuristic gram-
mar inducer (Kirby, 2001), associative networks (Smith,

Kirby, & Brighton, 2003), and minimum description
length (Brighton, 2002). Iterated learning with these
algorithms produces languages that possess one of the
most compelling properties of human languages: compo-
sitionality. In a compositional language, the meaning of
an utterance is a function of the meaning of its parts.
The intuitive explanation for these results is that the
regular structure of compositional languages means that
they can be learned from less data, and are thus more
likely to pass through the information bottleneck.

These instances of compositionality emerging from it-
erated learning raise an important question: what lan-
guages will survive many generations of iterated learn-
ing? While the circumstances under which composi-
tionality will emerge from iterated learning with specific
learning algorithms have been investigated (Brighton,
2002; Smith et al., 2003), there are no general results
for arbitrary properties of languages or broad classes
of learning algorithms. In this paper, we analyze iter-
ated learning for the case where the learners are rational
Bayesian agents. A variety of learning algorithms can be
formulated in terms of Bayesian inference, and Bayesian
methods underlie many approaches in computational lin-
guistics (Manning & Schütze, 1999). The assumption
that the learners are Bayesian agents makes it possible to
derive analytic results indicating which languages will be
favored by iterated learning. In particular, we prove the
surprising result that the probability distribution over
languages resulting from iterated Bayesian learning con-
verges to the prior probability distribution assumed by
the learners. This implies that the asymptotic probabil-
ity that a language is used does not depend at all upon
the properties of the language, being determined entirely
by the assumptions of the learner.
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Figure 1: (a) Iterated learning. (b) Dependencies among
variables in iterated iterated Bayesian learning.



Iterated Bayesian learning
Following most of the work applying iterated learning
to language evolution, we will assume that our learners
are faced with a function learning task: given a set of
m inputs, x = {x1, . . . , xm}, and m corresponding out-
puts, y = {y1, . . . , ym}, the learner has to estimate the
probability distribution over y for each x. In a language
learning setting, x is usually taken to be a set of “mean-
ings” or events in the world, and y is taken to be the set
of utterances associated with those events. We will use
X and Y to denote the set of values that x and y can
take on.

Iterated learning begins with some initial data,
(x0,y0), presented to the first learner, who then gener-
ates outputs y1 in response to some new inputs x1. The
second learner sees (x1,y1), and generates y2 in response
to x2. This process continues for each successive gener-
ation, with learner n + 1 seeing (xn,yn) and generating
yn+1 in response to xn+1. The result of this process
depends upon the algorithm used by the learners.

We will assume that our learners are Bayesian agents,
supplied with a finite discrete1 hypothesis space H and
a prior probability distribution p(h) for each hypothe-
sis h ∈ H. In a function learning task, each hypothesis
h corresponds to a conditional probability distribution
p(y|x, h), specifing the distribution over all sets of out-
puts for any set of inputs. In the learning step of the pro-
cess illustrated in Figure 1 (a), learner n+1 sees (xn,yn),
and computes a posterior distribution over hn+1 using
Bayes’ rule

p(hn+1|xn,yn) =
p(yn|xn, hn+1)p(hn+1)

p(yn|xn)

where
p(yn|xn) =

∑

h∈H

p(yn|xn, h)p(h).

We will assume that the learners consider each yi inde-
pendent given xi and h, so p(y|x, h) =

∏

i p(yi|xi, h). In
the production step, learner n + 1 sees xn+1, generated
from a distribution q(xn) that is independent of all other
variables. The change in notation is a reminder that un-
like all of the other distributions we have mentioned,
q(x) expresses the objective probability of an event in
the world, rather than a subjective probability assessed
by the learner. Given xn+1, the learner samples a hy-
pothesis, hn+1, from p(hn+1|xn,yn), and generates yn+1

from the distribution p(yn+1|xn+1, hn+1).

A Markov chain on hypotheses
The stochastic process that iterated Bayesian learning
defines on x, y, and h has the dependency structure
shown in Figure 1 (b). It is straightforward to analyze
the properties of this stochastic process. In particular, if
we sum over the data (xn,yn) we obtain the distribution

p(hn+1|hn) =
∑

x∈X

∑

y∈Y

p(hn+1|x,y)p(y|x, hn)q(x), (1)

1This assumption is not necessary for our results to hold.
Similar results can be obtained with continuous hypothesis
spaces, but the proofs are more involved.

defining a sequence of random variables in which hn+1

is independent of all previous hypotheses given hn. This
is a Markov chain, with state space H and transition
matrix T (hn, hn+1) = p(hn+1|hn).2

Markov chains are a common form of stochastic pro-
cess with well-understood properties (see Norris, 1997).
In particular, identifying a process as a Markov chain im-
mediately provides insight into its asymptotic behavior.
If a Markov chain with transition matrix T (hn, hn+1) is
ergodic, then it will converge to a stationary distribution
π(h) satisfying the equation

π(hn+1) =
∑

hn∈H

T (hn, hn+1)π(hn) (2)

for all hn+1. Intuitively, convergence to the stationary
distribution means that regardless of the initial state h1

(or, in our setting, the data on which that hypothesis is
based), the probability distribution over hn approaches
π(hn) as n → ∞. Equation 2 indicates why π(hn) is the
“stationary” distribution: if hn follows this distribution,
then so will hn+1, and likewise for every hn+k for k > 0.

The conditions for ergodicity are given in Norris
(1997). The most important condition in our setting is
irreducibility: for every pair of hypotheses h and h′, there
must be some k such that the probability of going from
h to h′ in k steps is greater than zero. If this condition is
violated, it is possible to enter sets of states from which
there is no departure, preventing the chain from visiting
all of the states which have some probability under the
stationary distribution.

The stationary distribution, π(h), for the Markov
chain with transition matrix T (hn, hn+1) = p(hn+1|hn)
satisfies the equation

π(hn+1) =
∑

hn∈H

p(hn+1|hn)π(hn).

If we take π(h) = p(h), we obtain

p(hn+1) =
X

hn∈H
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The two sums on the last line evaluate to 1, showing
that p(h) is the stationary distribution of this chain.
Consequently, provided the underlying Markov chain is
ergodic, the distribution over hypotheses entertained by
Bayesian learners engaged in iterated learning will con-
verge to the prior over hypotheses held by the learners.

2The process can also be reduced to a Markov chain on
data, (xn,yn), by summing out the hypotheses, hn. Similar
results hold for this chain, but we omit them due to space.



An example: evolving compositionality

The results in the previous section imply that the asymp-
totic probability with which a language is spoken de-
pends only upon its prior probability, and is not affected
by any of the properties of the language. This result
is counter-intuitive, particularly in the light of previous
results indicating that iterated learning seems to favor
particular properties of languages, such as composition-
ality. To gain a deeper understanding of our results, we
examined the consequences of iterated Bayesian learn-
ing in a simplified version of the scenario used by Kirby
(2001), Smith et al. (2003), and Brighton (2002) for ex-
ploring the evolution of compositionality.

In our scenario, meanings and utterances each vary
along two binary dimensions. This yields a total of four
meanings and four utterances, each corresponding to the
set {00, 01, 10, 11}. In a holistic language, the mapping
between meanings and utterances is arbitrary, and a sin-
gle word is chosen to represent each meaning without any
constraints. There are 44 = 256 such languages. In a
compositional language, the mapping between meanings
and utterances depends upon their parts: the two dimen-
sions of meanings are mapped onto the two dimensions
of utterances (for simplicity, we assume that the order is
preserved), and the only uncertainty is in which values
map to one another. There are 22 = 4 such languages.

The hypothesis space H thus contains 260 hypotheses,
each a mapping between meanings and utterances. For
each h ∈ H, we defined the probability distribution over
outputs y given the input x to be

p(y|x, h) =

{

1 − ǫ x maps to y in h
ǫ
3 otherwise

(3)

where ǫ is the “error rate” of production. The prior
probability of each hypothesis was

p(h) =

{

α
4 h is compositional

1−α
256 h is holistic

. (4)

This is a hierarchical prior, allocating a probability of α
to the set of compositional languages and 1−α to the set
of holistic languages, and then spreading this probability
uniformly over the hypotheses within those sets.

Since every language is simply a mapping from mean-
ings to utterances, our hypothesis space includes four
holistic languages that each give the same mapping as
one of the four compositional languages. These lan-
guages make the same predictions about inputs and out-
puts, as determined by Equation 3, and thus cannot
be discriminated by any data. The advantage of the
compositional languages over their holistic counterparts
results from the prior defined in Equation 4. If com-
positional and holistic languages are equally probable
a priori (α = 0.5), then the relatively small number of
compositional languages means that any particular com-
positional language is more probable than any particu-
lar holistic language. Consequently, it would be very
unlikely to see a holistic language that just happened
to produce a compositional mapping. As α becomes

smaller, it becomes less likely that one would see a com-
positional language at all, and a holistic language that
just happened to produce a compositional mapping be-
comes more plausible. However, the number of holistic
languages grows much faster than the number of com-
positional languages as the space of meanings and utter-
ances becomes larger, so the value of α needed to over-
whelm the advantage of compositional languages rapidly
becomes extremely small.

The matrix of transition probabilities p(hn+1|hn) can
be obtained by summing over all (x,y) pairs, as shown
in Equation 1. Since there are (2222)m such pairs, this
is intractable for large m. Consequently, matrices for
m > 4 were computed approximately using a Monte
Carlo method with 1000 samples for each hypothesis.
We computed transition matrices for α ∈ {0.01, 0.5},
ǫ ∈ {0.01, 0.05}, and m ∈ {1, 2, . . . , 10}. The first col-
umn of Figure 2 shows a portion of some of these tran-
sition matrices.

The effect of priors
The second column of Figure 2 shows 1000 iterations
sampled from four Markov chains (initialized by choosing
h1 at random), while the third and fourth columns (la-
belled “Chain” and “Prior”) show the distribution over
hypotheses from a single sample of 10000 iterations from
those chains and the prior p(h) respectively. The results
in (a)-(c) all use α = 0.5 and ǫ = 0.05, giving equal prior
probability to compositional and holistic languages and
allowing a reasonable amount of error. The number of
datapoints seen by the learners varies, with m = 1 in
(a), m = 3 in (b), and m = 10 in (c). While the Markov
chain develops a greater tendency to remain in the same
state as m increases, indicated by the strong diagonal
in the transition matrices and the length of the streaks
in the samples, it maintains the same distribution over
hypotheses, as shown in the “Chain” column. This dis-
tribution matches the prior over hypotheses, consistent
with our mathematical analysis.

The results shown in Figure 2 (d) illustrate how chang-
ing the prior changes the stationary distribution. Keep-
ing ǫ and m at the same values as in (b), α is set to
0.01, giving extremely low prior probability to the set
of compositional languages. Consequently, each holis-
tic language has a slightly higher probability than any
compositional language. The distribution over hypothe-
ses produced by the Markov chain is markedly different
from that in (b), and matches the prior. If compositional
languages have low prior probability, then they do not
emerge as a result of iterated learning.

Convergence rates
The rate at which a discrete Markov chain converges to
its stationary distribution is determined by the second
eigenvalue of the transition matrix, λ2, with smaller val-
ues of λ2 resulting in faster convergence (Norris, 1997).
Figure 3 (a) shows how λ2 is affected by α, ǫ, and m.
As α brings p(h) away from uniformity, it increases the
probability that learners n and n+1 will share the same
hypothesis. Thus, increasing α increases λ2. Changing
ǫ and m decreases the rate of convergence as the data
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Figure 2: Markov chains on hypotheses for the evolution of compositionality. Different rows correspond to different
parameter values. For each set of parameters, the first column shows a portion of the transition matrix, with
four compositional languages (C) and four holistic languages (H). Columns are hn, rows are hn+1, and darker grey
indicates a higher value of p(hn+1|hn). The second column shows a sample of 1000 iterations from this matrix, the
third shows the relative frequency of hypotheses across 10000 iterations, and the fourth shows the prior, p(h).

received by each learner become more informative. De-
creasing ǫ increases the fidelity with which information
is transferred between generations, increasing the corre-
spondence between the hypotheses of successive learn-
ers and thus increasing λ2. Increasing m increases the
amount of information language production provides for
language learning, and thus the probability that learner
n + 1 will acquire the language of learner n, increasing
λ2. With large m, it is likely that a single hypothesis
will be maintained across several generations. The effect
of large m is demonstrated in Figure 2 (c), where some
compositional hypotheses are dominant over hundreds of
iterations.

The information bottleneck

In applications of the ILM, it is common to explain
the emergence of languages with particular properties
in terms of the “information bottleneck” imposed by
transmission of a language across generations. This bot-
tleneck provides a selection pressure for languages which

are more learnable. For example, Kirby (2001) explained
the emergence of compositionality in terms of the rela-
tive ease of transmitting a compositional language: lan-
guages that contain more generalizations are more com-
pressible, and can thus be learned from smaller amounts
of data. In support of this claim, Smith et al. (2003)
showed that tightening the information bottleneck, by
reducing the amount of data a learner saw, increased
the advantage in stability for compositional languages
over holistic languages with their learning algorithms.

Figure 3 (b) shows how the relative stability of compo-
sitional and holistic languages changes as a function of α,
ǫ, and m. The relative stability was assessed by comput-
ing the ratio of the mean probability that a particular
compositional language would appear as both hn and
hn+1 to the mean probability that a particular holistic
language would appear as both hn and hn+1. The fig-
ure shows that this stability ratio is strongly affected by
α: if the prior probability of a compositional language
is high, it is more likely that a learner will acquire that
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Figure 3: Quantities derived from Markov chains on hypotheses as a function of number of datapoints, m, prior on
composite languages, α, and error rate, ǫ. (a) Second eigenvalue of transition matrix, λ2. (b) Stability ratio. The
dotted line shows the stability ratio as m → ∞. Lower values of m constitute a tighter “information bottleneck”.

language, and consequently that language is more sta-
ble. The magnitude of this effect is modulated by the
number of datapoints, m, with α having the greatest ef-
fect when m is small. As m increases, the data begin to
overcome the influence of the prior.3

The results shown in Figure 3(b) are evocative of those
of Smith et al. (2003): tightening the information bot-
tleneck produces a greater advantage for compositional
languages when each of those languages has higher prior
probability than any holistic language. The explanation
is the same: a tight bottleneck favors more learnable lan-
guages. For a Bayesian, an important aspect of learn-
ability is consistency with the prior.

Discussion

Our results provide simple conditions for determining
when a particular property of languages will emerge
through iterated Bayesian learning: languages will ap-
pear in proportion to their prior probability, provided
the Markov chain defined by the learners is ergodic. In
closing, we will consider connections between these re-
sults and previous work on iterated learning, how they
bear upon the issue of linguistic universals, and their im-
plications for understanding the diversity and dynamics
of human languages.

3A small influence of the prior remains even at asymptote
due to the presence of holistic hypotheses that are equivalent
to compositional hypotheses. These hypotheses cannot be
separated by any amount of data, so the stability ratio ap-
proaches 64

62+1/α
as m → ∞. If H did not include hypotheses

that make equivalent predictions about the data, the stabil-
ity ratio would approach 1 as m → ∞. Consequently, the
decrease in the stability ratio as a function of m for the cases
where α = 0.01 is due to the specific structure of H, rather
than being a general trend.

Previous work on iterated learning

We view our results as broadly consistent with previ-
ous work on iterated learning, but suggesting a differ-
ent approach to understanding its consequences. With
Bayesian learners, iterated learning results in conver-
gence to the prior distribution over hypotheses. Conse-
quently, the iterated learning process is only the engine
by which languages with particular properties emerge:
the real object of analysis should be the assumptions
behind the algorithms used by the learners. This con-
clusion is quite different from that of previous work, in
which the emphasis is placed upon the learning process
itself as the source of linguistic universals.

Interpreting previous results in terms of our frame-
work is not straightforward, as the learning algorithms
used in most previous analyses do not have a clean
Bayesian interpretation. It is also not clear whether
these algorithms satisfy the requirements for the under-
lying Markov chain to be ergodic: in many cases, the
criterion for ending simulations was reaching a steady
state, which is not something that should happen with
an irreducible Markov chain. To the extent that our
results are applicable, they suggest that the algorithms
that Kirby (2001), Brighton (2002), and Smith et al.
(2003) used to demonstrate the emergence of compo-
sitionality through iterated learning implicitly define a
prior distribution over hypotheses that favors composi-
tional languages. Making these connections explicit is
an important direction for future work.

Prior probabilities and linguistic universals

By tying the probability of a language emerging through
iterated learning to its prior probability, our analysis lo-
cates the stability of languages firmly in the algorithm
applied by the learners. The structure of languages has
no effect on their stability, except insofar as it determines



prior probability. From this perspective, linguistic uni-
versals simply manifest the prior probability distribution
over languages entertained by the learner. Explaining
linguistic universals thus requires explaining why partic-
ular properties of language have high prior probability.

The statement that linguistic universals result from
the priors of learners initially seems consistent with tra-
ditional explanations, with innate, language-specific, ge-
netic endowment providing these priors. This need not
be the case. The priors that a Bayesian agent brings to
a learning task reflect their general cognitive capacities,
and the expectations yielded by their experience with
all other independent sources of evidence. Furthermore,
priors can be motivated by a priori symmetry arguments
– such as the belief that holistic and compositional lan-
guages should be equally likely – or information theoretic
constraints – such as the relative difficulty of encoding
languages (c.f. Brighton, 2002). Either of these latter
considerations would be sufficient to explain the evolu-
tion of compositionality. Framing the explanation of lin-
guistic universals in terms of accounting for the prior
probability distribution entertained by language learn-
ers provides a well-defined formal setting in which to
explore these issues.

Language change and regularization

If we take the idea that language evolves through iterated
Bayesian learning seriously, it has several interesting im-
plications for understanding the diversity and dynam-
ics of language. First, if iterated learning is the only
force influencing language change, then all languages
used by human beings should be considered samples from
the prior probability distribution over languages. Even
though the assumption that no other selective pressures
are at work in language evolution – such as the relative
communicative utility of speaking one language rather
than another – is probably false, this result provides a
direct connection between the mind and world that is
provocative. It provides a formal justification for the
idea that examining the diversity of human languages
has the potential to reveal interesting properties of the
human mind.

A second implication of this view of language evolution
is that language change should be viewed as a random
walk through this prior probability distribution. Once
a Markov chain has converged, it will move through its
state space in a fashion determined by its dynamics, vis-
iting each state with probability determined by the sta-
tionary distribution. If a language is well-determined by
the evidence available to a learner (together with their
prior probabilities), the rate at which this random walk
moves between states should be very low, as in Figure
2 (c). However, examining the dynamics of language
change can shed further light on the structure of the
prior, and the transition probabilities.

Finally, the development of new languages can be un-
derstood in terms of convergence to this prior. Cases like
creolization (e.g., Bickerton, 1981) are striking in terms
of the sudden regularization introduced by a single gen-
eration of learners. Similarly, a Markov chain initialized

in a state with very low probability under the stationary
distribution will rapidly move towards states with higher
probability. By studying how new languages develop, we
have the opportunity to map out languages with low and
high prior probability, and to estimate the rate at which
the Markov chain converges.

Conclusion
We have presented a novel mathematical framework for
exploring the consequences of iterated learning, based
upon the assumption that learners are rational Bayesian
agents. Making this assumption allows us to obtain pre-
cise results that characterize the circumstances under
which iterated learning will produce languages with par-
ticular properties. These results have the potential to
provide connections between the formal and functional
approaches to explaining the existence of linguistic uni-
versals, showing that the results of iterated learning –
a process that would seem to emphasize the functional
properties of languages – do not depend upon the struc-
ture of the languages involved, except insofar as that
structure determines their prior probability. We antici-
pate that this framework will prove useful in the further
study of language evolution by iterated learning, as well
as in other settings. Iterated learning provides a natural
model of cultural evolution, suggesting that our frame-
work could be applied to a range of cultural phenomena
other than language. Our results demonstrate that it-
erated learning also provides a means of assessing the
priors of learners, which could be exploited in a labora-
tory setting as a means of determining learning biases.
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