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Abstract
Progress in studying human categorization has typically in-
volved comparing generalization judgments made by people to
those made by models for a variety of training conditions. In
this paper, we explore an alternative method for understand-
ing human category learning—iterated learning—which can
directly expose the inductive biases of human learners and cat-
egorization models. Using a variety of stimulus sets, we com-
pare the results of iterated learning experiments with human
learners to results from two prominent classes of computa-
tional models: prototype models and exemplar models. Our re-
sults indicate that human learning is not perfectly captured by
either type of model, lending support to the theory that people
use intermediate representations between these two extremes.
Keywords: categorization; inductive bias; iterated learning;
Bayesian methods

Introduction
The ability to learn new categories from examples is a basic
component of human cognition, and one of the earliest to be
studied by psychologists (Hull, 1920). This long history of
investigation has resulted in a number of computational mod-
els of category learning, including approaches based on infer-
ring decision rules (Ashby & Gott, 1988), extracting proto-
types (Reed, 1972), memorizing exemplars (Medin & Schaf-
fer, 1978; Nosofsky, 1986), and combinations of these meth-
ods (Nosofsky, Palmeri, & McKinley, 1994; Vanpaemel &
Storms, 2008). This proliferation of models has been com-
plemented by an empirical literature comparing the ability of
different models to account for human behavior. In a typical
experiment, participants are taught the category membership
of a set of training stimuli and then asked to generalize to a
set of test stimuli. Computational models are evaluated on
their ability to predict the resulting patterns of generalization.

Competing models of category learning are commonly pre-
sented in terms of their different assumptions about people’s
mental representations of categories and the processes that
translate these representations into behavior. However, we
can also think about these models more abstractly: as meth-
ods of learning categories that have different inductive biases.
In machine learning, the inductive bias of a learner is defined
to be those factors other than the observed data that lead the
learner to favor one hypothesis over another (Mitchell, 1997).
Different models of category learning favor different kinds
of hypotheses about the structure of categories. For exam-
ple, a prototype model favors hypotheses in which categories
are coherent groups of stimuli, while an exemplar model is

more flexible, and can represent categories that consist of
multiple clusters of stimuli spread out across a stimulus space
(Nosofsky, 1998). Evaluating these models thus becomes a
problem of determining the nature of human inductive biases.

In this paper, we use a novel approach to evaluate different
models of category learning. Rather than studying the gen-
eralizations people make with different training stimuli, we
use an experimental method designed to provide direct access
to people’s and models’ inductive biases. In this experimen-
tal method, iterated learning, each participant is trained with
stimuli that are selected from the responses of the previous
participant. This results in a sequence of category structures
each produced by learning from the previous structure. Math-
ematical analysis of this process shows that as the sequence
gets longer, the structures that emerge will be consistent with
the inductive biases of the learners (Griffiths & Kalish, 2007).
Intuitively, iterated learning magnifies the small effects that
inductive biases have on people’s generalizations, until those
biases are all that is reflected in the data. We use iterated
learning to expose the inductive biases of human learners
and compare them to those of categorization models. Our
work demonstrates that iterated learning complements tradi-
tional categorization experiments and provides a new dataset
against which computational models can be compared.

Models of category learning
A wide range of formal approaches have been used to model
human categorization. In this paper, we organize our analysis
around two of the most prominent models—prototype and ex-
emplar models—illustrating how our approach can be used to
evaluate categorization models by empirically exploring hu-
man inductive biases. In future work, we hope to extend this
analysis to incorporate a more extensive range of models.

Prototype models
Prototype models of categorization represent each category
with a single point—the prototype—which captures the cen-
tral tendency of that category (Reed, 1972). The similarity
of a novel stimulus x to a category j is given by η j(x) =
exp{−d(x,µ j)}, where µ j is the prototype of category j, and
d(·, ·) is some distance metric between stimuli. The distance
metric can be chosen to be more sensitive to certain dimen-
sions, reflecting the fact that category members may have
more or less variance along each dimension. Given a collec-



tion of observed category members, the probability of classi-
fying a novel object x under category j is calculated as

P( j|x) =
β jη j(x)γ

∑ j′ β j′η j′(x)γ
, (1)

where β j is a response bias towards category j, and γ is a
response scaling parameter.

Exemplar models
Exemplar models (Medin & Schaffer, 1978; Nosofsky, 1986)
represent a category with all of its observed members. Rather
than calculating a single prototype for each category, exem-
plar models sum over all previously observed examples, the
exemplars. The similarity of a novel stimulus to category j is
given by η j(x) = ∑y∈ j exp{−d(x,y)}, where y is an exemplar
belonging to category j, and d(·, ·) is again some suitable dis-
tance metric between stimuli. Given a collection of categories
and observations, the probability of classifying a novel object
x under category j is the same as in the prototype models,
given by Equation 1.

Interpolating between prototypes and exemplars
Prototype and exemplar models can be viewed as opposite
ends of a spectrum of models which vary in the complexity of
their representations. Prototype models use the simplest rep-
resentation: a single point for each category, while exemplar
models use the most complex representation: all observed
category members. Recently, models have been developed
which interpolate between these extremes by grouping the
observed stimuli into clusters and representing each cluster
using a single point. These models adopt a flexible represen-
tation where clusters are added as warranted by the data. Ex-
amples include SUSTAIN (Love, Medin, & Gureckis, 2004),
the varying abstraction model (Vanpaemel & Storms, 2008),
the rational model of categorization (Anderson, 1991), and
the hierarchical Dirichlet process (Griffiths, Canini, Sanborn,
& Navarro, 2007; Teh, Jordan, Beal, & Blei, 2006). Because
these models can behave like prototype models, exemplar
models, or anything in-between, they can potentially explain
experimental results that suggest that people use flexible rep-
resentations to learn categories.

Iterated learning
The categorization models introduced in the previous section
correspond to learners with different capabilities and pref-
erences for category representations. In categorization re-
search, comparisons of different models typically proceed by
presenting each model (as well as human participants) with
a set of training data and comparing the generalization pre-
dictions made by the learners. While this method allows us
to quantitatively measure the degree to which each model ex-
plains the human data, it does not directly expose the under-
lying inductive biases of the learners. Iterated learning is an
experimental method designed to give a pure estimate of in-
ductive biases (Griffiths & Kalish, 2007).

The central concept of the iterated learning framework is
that the training data given to a learner (either a human par-
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Figure 1: Stimuli used in the experiment. (a) Shepard circles,
(b) rectangles, (c) Cortese blobs, and (d) Shepard blobs.

ticipant or a learning model) are not directly specified by the
experimental design; rather, they are sampled from a previous
learner’s generalization responses. The learners are arranged
into a chain, where the responses from the first learner are
used as training data for the second learner, and so on. Be-
cause each learner’s responses depend only on the previous
learner’s, the chain is formally a Markov process, and there-
fore the responses will converge to a stationary distribution.

Griffiths and Kalish (2007) provided an analysis of iterated
learning under the assumption that learners use Bayesian in-
ference, sampling hypotheses from the posterior distribution
given by Bayes’ rule: P(h|d) ∝ P(h)P(d|h). In this case, the
observed responses in the iterated learning chain will con-
verge to the prior distribution P(h), therefore allowing us to
directly expose the inductive biases of the learners in the form
of the prior over hypotheses.

Exploring human inductive biases
Using the iterated learning methodology, we performed a cat-
egorization experiment to explore the inductive biases of both
people and models and to create a new dataset which can be
used as a resource by other researchers.

Method
Participants The experimental participants included 640
workers from Amazon Mechanical Turk, who received a pay-
ment of $0.50, and 160 students at the University of Cali-
fornia, Berkeley, who received course credit, for a total of
800. The experiment had 16 conditions, resulting from the
combination of four stimulus sets and four initial category
structures. The eight conditions with the Cortese blobs and
Shepard circles were each replicated six times, and the eight
conditions with the other two stimulus sets were each repli-
cated four times. Each replication of each condition consisted
of an iterated learning chain of 10 generations. Each partic-
ipant was randomly assigned to a chain in their pool (either
Mechanical Turk or Berkeley students), occupying the next
available generation in the chain.

Stimuli The experiment involved four different sets of stim-
uli, each of which varied on two dimensions (see Figure 1).
Two of the stimulus sets had separable dimensions, meaning
the dimensions on which they varied are easily differentiated.
These were rectangles that varied in their width and height,
and “Shepard circles” (Shepard, 1964): circles of a varying
diameter with a radius drawn at a varying angle. The other
two stimulus sets had integral dimensions: their dimensions
are not readily apparent, leaving no preferred coordinate sys-



(a) Shepard circles (b) Rectangles

(c) Cortese blobs (d) Shepard blobs

Figure 2: Samples of human data from the experiment. Each row is an iterated learning chain; two replications of each
condition are shown. Black vs. gray pixels indicate category membership, and each image is the generalization responses of
a single learner. Each learner learned from examples from the categories shown to the immediate left. In (a), the y-axis is the
circle’s diameter and the x-axis is the angle of its radius. In (b), the y-axis is the rectangle’s width and the x-axis is its height.

tems for these stimuli in psychological space. These were
both amoeba-like shapes, one from Cortese and Dyre (1996)
which we call “Cortese blobs”, and the other from Shepard
and Cermak (1973) which we call “Shepard blobs”. The
construction of both of these stimulus sets involves varying
the amplitudes and phase-shifts of components of periodic,
trigonometric functions, which are then converted to closed
loops. For each stimulus set, we constructed an equal-spaced,
8-by-8 grid of stimuli and used these 64 to train and test the
human learners.

Procedure Each participant completed a training phase and
a test phase. In the training phase, the participant was trained
to reproduce the category memberships of a random selec-
tion of 32 of the 64 stimuli. In the test phase, each participant
classified all 64 items in random order without feedback. In
each training trial, the participant classified a single stimu-
lus from the training set with feedback. For first-generation
learners, this feedback was based on one of four initial cate-
gory structures, which are shown in the first columns of Fig-
ure 2. Two of the initializations—the first and third distinct
ones—are simple linear boundaries compatible with a proto-
type model. The other two are discretized versions of cate-
gory structures described by McKinley and Nosofsky (1995).
For the remaining generations, feedback was provided ac-
cording to the test phase responses of the participant in the
previous generation. Participants were not made aware that
their test responses would be used in later generations and

did not have any contact with other learners from different
generations. The training phase was organized into blocks
containing 32 trials each, with the order of presentation of
the stimuli randomized within each block.

If the participant correctly answered at least 22 of the 32
training trials1 in any training block, they continued to the
test phase. Otherwise, they completed another block of the
training phase. If after 20 blocks or 25 minutes, a participant
had not yet reached the learning threshold, the experiment
was ended, and the data collected so far were not included
in further analyses. There were 21 participants who reached
the maximum number of blocks and 16 who reached the time
limit without achieving the criterion. These participants were
replaced by others to fill in their positions in the chains.

Results
No significant differences were found between the two partic-
ipant pools, so their data were combined in all further analy-
ses. Figure 2 shows two representative chains of 10 genera-
tions for each of the 16 conditions, with gray vs. black pixels
indicating category membership.2 In each row, the first panel
shows the initial category structure, and all other panels show
the category assignments made by a learner in the test phase

122/32 correct responses indicates with p < 0.05 that the re-
sponses are not purely random, according to an exact Binomial test.

2To promote further exploration of the results by other
researchers, the full set of results is available online at
http://cocosci.berkeley.edu/iteratedCatData/.



Prototype model Exemplar model
Stimulus set Dimensions Distribution* Covariance* γ ε r* c γ ε

Shepard circles Separable Laplace independent 1.3731 0.1516 1 0.8245 2.0678 0.1448
Rectangles Separable Laplace independent 0.9034 0.1662 1 0.9257 1.5144 0.1651

Cortese blobs Integral Normal full 0.6516 0.0434 2 0.3717 3.7737 0.0417
Shepard blobs Integral Normal full 1.0195 0.5093 2 0.8171 1.1993 0.3096

Table 1: The model parameters fit to the human data. * shows parameters fixed by the experimenter rather than fit to the data.
γ are response scaling parameters, ε are noise mixture parameters, r is the exponent of the distance metric, and c is specificity.

after being trained on the category structure to its left.
Most of the Shepard circle chains converged to fairly sim-

ple structures using categorization boundaries aligned with
one of the dimensions. For the rectangles, people seem to
prefer three main types of category structures: one with a
category of items on or near the main diagonal (correspond-
ing to squares and square-like rectangles), one with a bound-
ary between the categories along the main diagonal (corre-
sponding to wide vs. tall rectangles), and one with a category
along the top and left borders (corresponding to very narrow
or very short rectangles). The Cortese blob chains seem to
favor boundaries which are roughly aligned with the horizon-
tal axis, but with some variability in their curvature. The re-
sults for the Shepard blobs seem quite noisy. Perhaps people
interpreted these stimuli in feature spaces which are rather
different from the dimensions we used to plot the results, or
perhaps because these stimuli are difficult to interpret, peo-
ple’s inductive biases about them are very weak.

Convergence analysis For all of the stimulus sets, the
chains appear to have converged to their stationary distribu-
tions. To quantitatively verify this, we performed a clustering
analysis of the test phase data. The category structures from
each generation of each chain were clustered using the k-
means algorithm, with the variation of information (VI) met-
ric (Meila, 2003) used as the distance function between pairs
of category structures. The VI metric is a measure of the dis-
tance between partitions, so it depends only on how stimuli
are classified, and not the locations of those stimuli in the
feature space. The VI metric is invariant to relabelings of the
categories, so two structures which are identical but switch
the category labels would have a VI distance of zero.

Clustering the results from all conditions and generations
of human data, we found that using 10 clusters gave a rea-
sonable result. We used a χ2 test on the histograms of the
number of responses in each of the 10 clusters, comparing
across pairs of generations in all the chains. We found sta-
tistically significant differences (p < 0.05) between the ini-
tial category structures and all others, as well as between the
first generation of learners and each of the last two genera-
tions. This analysis suggests that the overall distribution of
responses has converged to the stationary distribution by the
second generation. To be conservative, we used only the last
five generations of human data in our further evaluations.

Comparing human and model inductive biases
The experimental results described above give a picture of the
inductive biases of human learners for various stimulus sets.

To evaluate whether human inductive biases are consistent
with those of the categorization models, we performed the
same iterated learning procedure using the models.

Deriving the inductive biases of the models
We first set the various model parameters, fixing some based
on the properties of the stimulus sets and fitting others to
the human data. The results of the experiment with human
learners using the rectangle stimulus set suggest that people
prefer an alternative set of dimensions: the logarithms of the
area (width × height) and aspect ratio (width ÷ height) of
the rectangles. These dimensions roughly correspond to the
main diagonals in the plots in Figure 2(b). Indeed, previous
work indicates that the logarithms of the area and aspect ratio
are more psychologically salient dimensions than width and
height (Krantz & Tversky, 1975). Correspondingly, we per-
formed the model fitting and subsequent analyses using this
alternative feature space for the rectangle stimulus set.

For stimuli with separable dimensions, it is appropriate
to use an `1 (city-block) distance metric, while for stimuli
with integral dimensions, an `2 (Euclidean) distance metric
is appropriate (Shepard, 1964). Therefore, for the separable
stimuli, the prototype model’s similarity function was cho-
sen to be the product of Laplace distribution functions on
each dimension d: η j(x) = ∏d exp{−|xd−µ j,d |/b j,d}/2b j,d ,
where µ j,d and b j,d are the parameters of the category pro-
totype. This implies the distance function d(x,(µ j,b j)) =

∑d(|xd − µ j,d |/b j,d − 2b j,d). The prototype parameter µ j,d
was set as the sample median of the observed values on di-
mension d, and we set b j,d = 1/N j ∑i |xi,d − µ j,d |, the aver-
age absolute difference between the category members and
the median µ j,d . These correspond to maximum likelihood
parameters for the Laplace distribution. For the integral stim-
uli, the prototype model’s similarity function was chosen to
be the multivariate normal distribution, using the maximum
likelihood estimates for the mean and covariance matrix pa-
rameters. For all stimuli, we set the response biases β j =

1
2 .

The distance function of the exemplar model was set to
d(x,y) = c(∑d |xd − yd |r)1/r, with r = 1 for the separable
stimulus sets and r = 2 for the integral sets, corresponding
to `1 and `2 distance metrics, respectively. The parameter c
is the model’s specificity—analogous to the variance-tuning
parameters in the prototype models—and was fit to the hu-
man data separately for each stimulus set. The response bias
β j was set to be 1/N j, the inverse of the number of cate-
gory members, to remove the inherent bias of the exemplar
model to prefer categories with more observed members, a
bias which is not present in the prototype model and would



(a) Prototype model: Shepard circles (b) Exemplar model: Shepard circles

(c) Prototype model: Rectangles (d) Exemplar model: Rectangles

(e) Prototype model: Cortese blobs (f) Exemplar model: Cortese blobs

(g) Prototype model: Shepard blobs (h) Exemplar model: Shepard blobs

Figure 3: Fitted model simulations. The format is the same as Figure 2. One replication per condition and model is shown. The
rectangle stimuli were presented to the models using the alternative dimensions of log-area and log-aspect ratio, but the plots
above use height and width as the x and y axes.

otherwise introduce a confounding factor in their comparison.
The response scaling parameter γ was fit to the human data

separately for each stimulus set and each model. Addition-
ally, we found that a certain proportion of the human learners
appeared to be responding at random during the test phase, so
all models were mixed with a noise component, from which
responses were assumed to be generated uniformly at ran-
dom. Participants were probabilistically assigned to the noise
component using the expectation-maximization (EM) algo-
rithm, with the prior probability ε of noise component mem-
bership being fit to the data. The results of the model fitting
procedures are summarized in Table 1.

The fitted models were run through the same iterated learn-
ing experimental framework as the human learners, with four
replications of each condition. As with the human data, only
the last five generations of each chain were used for analysis.
A sample of the results is shown in Figure 3.

Evaluation of human and model results
To quantitatively compare the human data to the model re-
sults, we fit a Dirichlet process mixture model (DPMM)
(Ferguson, 1973) to each set of responses. The DPMM is a
model which probabilistically clusters a set of observed data,
where the number of clusters is inferred from the data rather
than specified as a parameter. One of its hyperparameters, α,
indirectly controls the number of inferred clusters by making

additional clusters more or less likely. When α is large, more
clusters are inferred, and in the limit α→ ∞, each datapoint
is assigned to its own cluster. When α is small, fewer clusters
are inferred, and in the limit α→ 0, only a single cluster is
inferred. In this way, the DPMM generalizes both the pro-
totype and exemplar models, depending on the choice of α

(Sanborn, Griffiths, & Navarro, 2006). By specifying a prior
distribution, the value of α can be inferred from the observed
data rather than being set at a fixed value.

While the DPMM is a useful model of categorization
(Griffiths et al., 2007), it also provides us a way of analyzing
the responses of human category learners and categorization
models by inspecting the inferred number of clusters in their
category structures. Using a Gibbs sampling procedure, we
fit a DPMM to each set of responses from the human data
and model results, collecting a set of samples from the poste-
rior distribution over the number of clusters and the value of
α. The results of this analysis are summarized in Figure 4.

For the Shepard circles, the prototype model seems to pro-
vide a better fit to the human data, while for the Shepard
blobs, the exemplar model is a better match. For the rectan-
gles, neither model seems to capture the inductive bias of hu-
man learners, and the results suggest that a model using inter-
mediate representations might be a better fit. For the Cortese
blobs, the prototype model produces results which have more
clusters than either the human data or the exemplar results;
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Figure 4: Evaluation results for the human data and model simulations. Error bars have length twice the standard error. The
bars labeled “Human(0+1+2)” reflect all the human data, “Human(0+1)” are participants assigned to the noise component of at
most one model, and “Human(0)” are those not assigned to the noise component of either model.

this can be explained by the relatively low response scaling
parameter that was fit for this stimulus set (see Table 1). A
more psychologically plausible feature space might improve
the modeling results for the Cortese blobs.

Conclusions and future work
As a whole, our results suggest that the human learners’ in-
ductive biases are not always consistent with those of proto-
type or exemplar models, but can vary depending on the stim-
uli. This supports the notion that models which use more flex-
ible representations and can interpolate between the behavior
of prototypes and exemplars provide a better explanation of
the variable nature of human categorization. However, per-
haps our most significant contribution is the creation of a new
dataset for evaluating categorization models, which we hope
will be subjected to further analyses by other researchers.

In future work, we plan to conduct analyses using more
psychologically plausible feature spaces for these stimuli,
which can be obtained through multidimensional scaling
studies. We also plan to extend our analysis to include in-
termediate models of categorization mentioned earlier, which
interpolate between prototypes and exemplars. Work by
Griffiths et al. (2007) has shown that in traditional catego-
rization studies, the hierarchical Dirichlet process is capable
of explaining human data that neither prototypes nor exem-
plars adequately model; we hope that these results can also be
replicated using the iterated learning experimental method.
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