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Abstract

The order in which people observe data has an effect on their
subsequent judgments and inferences. While Bayesian mod-
els of cognition have had some success in predicting human
inferences, most of these models do not produce order effects,
being unaffected by the order in which data are observed. Re-
cent work has explored approximations to Bayesian inference
that make the underlying computations tractable, and also pro-
duce order effects in a way that seems consistent with human
behavior. One of the most popular approximations of this kind
is a sequential Monte Carlo method known as a particle fil-
ter. However, there has not been a systematic investigation of
how the parameters of a particle filter influence its predictions,
or what kinds of order effects (such as primacy or recency ef-
fects) these models can produce. In this paper, we use a simple
causal learning task as the basis for an investigation of these
issues. Both primacy and recency effects are seen in this task,
and we demonstrate that both kinds of effects can result from
different settings of the parameters of a particle filter.

Keywords: particle filters; order effects; causal learning; ra-
tional process models

Introduction
How do people make such rapid inferences from the con-
strained available data in the world and with limited cogni-
tive resources? Previous research has provided a great deal
of evidence that human inductive inference can be success-
fully analyzed as Bayesian inference, using rational models of
cognition (Anderson, 1990; Oaksford & Chater, 1998; Grif-
fiths, Chater, Kemp, Perfors, & Tenenbaum, 2010). Ratio-
nal models answer questions at Marr’s (1982) computational
level of analysis, producing solutions to why humans behave
as they do, whereas traditional models from cognitive psy-
chology tend to analyze cognition on Marr’s level of algo-
rithm and representation, focusing instead on how cognitive
processes support these behaviors. Although Bayesian mod-
els have become quite popular in recent years, it remains un-
clear what psychological mechanisms could be responsible
for carrying out these computations. Of particular concern
is that the amount of computation required in these models
becomes intractable in real-world scenarios with many vari-
ables, yet people make rather accurate inferences effortlessly
in their everyday lives. Are people implicitly approximating
these probabilistic computations?

Monte Carlo methods have become a primary candidate
for connecting the computational and algorithmic levels of
analysis (Sanborn, Griffiths, & Navarro, 2006; Levy, Reali,
& Griffiths, 2009; Shi, Feldman, & Griffiths, 2008). The ba-
sic principle underlying Monte Carlo methods is to approxi-
mate a probability distribution using only a finite set of sam-
ples from that distribution. Recent work has focused on two

Monte Carlo methods in particular: importance sampling and
particle filtering. Importance sampling draws samples from
a known proposal distribution and weights these samples to
correct for the difference from the desired target distribu-
tion. Particle filters are a sequential Monte Carlo method that
uses importance sampling recursively. When approximating
Bayesian inference, the posterior distribution is represented
using a set of discrete samples, known as particles, that are
updated over time as more data are observed. These meth-
ods can be shown to be formally related to existing psycho-
logical process models such as exemplar models (Shi et al.,
2008), and can be used to explain behavioral data inconsistent
with standard Bayesian models in categorization (Sanborn et
al., 2006), sentence parsing (Levy et al., 2009), and classical
conditioning experiments (Daw & Courville, 2008). How-
ever, there has not previously been a systematic investigation
of how the parameters of these Monte Carlo methods affect
the predictions they make.

In this paper we explore how the parameters of particle
filters affect the predictions that they make about order ef-
fects, using a simple causal learning task to provide a context
for this exploration. It is a common finding that the order
in which people receive information has an effect on their
subsequent judgments and inferences (Dennis & Ahn, 2001;
Collins & Shanks, 2002). This poses a problem for rational
models based on Bayesian inference as the process of updat-
ing hypotheses in these models is typically invariant to the or-
der in which the data are presented. Previous work has shown
that particle filters can produce order effects similar to those
seen in human learners (e.g., Sanborn et al., 2006). However,
this work has focused on primacy effects, in which initial ob-
servations have an overly strong influence on people’s con-
clusions. In other settings, people produce recency effects,
being more influenced by more recent observations. Causal
learning tasks can result in both primacy and recency effects,
with surprisingly subtle differences in the task leading to one
or the other (Dennis & Ahn, 2001; Collins & Shanks, 2002).
Causal learning thus provides an ideal domain in which to
examine how the parameters of particle filters influence their
predictions, and what kinds of order effects these models can
produce.

The plan of the paper is as follows. In the next section
we discuss previous empirical and theoretical work on human
causal learning, showing different kinds of observed order ef-
fects and providing the Bayesian framework we will be work-
ing in. We then formally introduce particle filters, followed
by our investigation of how varying certain particle filter pa-



rameters controls order effects. After this, we use our new-
found understanding of the parameters to model different or-
der effects in previous experiments. Finally, we discuss the
implications of our work and future directions for research.

Order Effects in Causal Learning
We focus our investigation of order effects in causal learning
on a pair of studies based on sequences of covarying events.
Dennis and Ahn (2001) presented participants with a series
of trials indicating whether or not a plant was ingested and
whether or not this resulted in an allergic reaction. The se-
quence of trials was split into two equal blocks of covarying
events; one primarily indicating a generative causal relation-
ship between plant and reaction, and the other primarily in-
dicating a preventative relationship. The overall contingency
of the combined blocks was 0. The blocks were presented
one after the other, with the initial block chosen randomly,
and after observing all trials participants were asked to make
a strength judgement (-100 to 100) on the causal relationship
they thought existed between plant and reaction. After an-
swering, the blocks were presented again in reverse order and
the subjects were asked to make another judgement. If the
generative relationship block was presented first, followed by
the preventative block, participants responded with a pref-
erence for a generative relationship (M=17.67, SD=25.66).
However, if the preventative block was presented first, partic-
ipants responded that only a weak preventive causal relation-
ship existed (M=-5.50, SD=22.27). These results indicate a
primacy effect in favor of generative causal relationships.

The primacy effect found by Dennis and Ahn (2001) was
contradictory to previous models of associative strength that
showed recency effects, and a subsequent follow-up study
was conducted that examined the role of judgment frequency
in producing different kinds of order effects (Collins &
Shanks, 2002). In this study, the authors used exactly the
same trial sequence as Dennis and Ahn (2001), but asked the
participants for a causal strength judgment after every 10 tri-
als rather than just one final strength judgement. Making fre-
quent judgments resulted in recency effects, with participants
producing more generative estimates when they saw the gen-
erative data most recently (M=58.4, SD=34.2), and more pre-
ventative estimates when they saw the preventative data most
recently (M=-23.3, SD=39.3).

Causal Learning as Bayesian Inference
We can formulate this causal learning problem as a problem
of Bayesian inference through the use of a causal graphical
model framework similar to that used in Griffiths and Tenen-
baum (2005). In this framework, we assume a single directed
graph structure defined over three binary variables: an effect
E, a potential cause C, and a background cause B which cap-
tures all other causes of E that are not C. Additionally, there
are strengths, s0 and s1, that indicate how strongly B and C
influence the presence, or lack thereof, of E. This graphical
model is shown in Figure 1.
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Figure 1: Directed graph in-
volving three binary variables
– (B)ackground, (C)ause, and
(E)ffect – relevant to causal induc-
tion, and two edge weights – s0
and s1 – indicating how strongly
B and C influence E, respectively.

Using this graphical model we are interested in the condi-
tional probability P(E|B,C) and want to evaluate how well
the strength weights predict the observed data. Motivated
by the models used in Griffiths and Tenenbaum (2005) and
Cheng (1997), we define the conditional probability using
the noisy-OR and noisy-AND-NOT functions for generative
and preventative causes respectively. Assuming a background
cause is always present (ie. B = 1), we will get a sequence of
events in the form “Cause was (C = 1) or was not (C = 0)
present and an effect did (E = 1) or did not (E = 0) occur”.
This gives us four possible conditions to evaluate. Depending
on the sign of s1 – the strength of C causing/preventing E, we
compute either the noisy-OR (s1 ≥ 0, a generative cause) or
the noisy-AND-NOT (s1 < 0, a preventative cause). Table 1
presents the resulting probabilities.

Table 1: The noisy-OR (s1 is positive) and noisy-AND-NOT
(s1 is negative) functions

C E s1 is positive s1 is negative
1 1 s0 + s1− s0s1 s0(1+ s1)
1 0 1− (s0 + s1− s0s1) 1− [s0(1+ s1)]
0 1 s0 s0
0 0 1− s0 1− s0

To complete the definition of this Bayesian model, we
need to specify the prior distribution that is assumed on the
strengths s0 and s1. Our starting assumption is that these
weights are each drawn from a uniform prior over their en-
tire range, with s0 ∼Uniform(0,1) and s1 ∼Uniform(−1,1),
where negative values of s1 imply a preventative cause, as de-
tailed above. This basic model assumes that s0 and s1 remain
constant over time. A slightly more complex model would
allow the strength of causes to drift, taking on a value that is
close to the value on the previous trial but with some stochas-
tic variation. We can do this by assuming that s0 and s1 have
a prior on each trial that is based on their value on the pre-
vious trial. We assume that s0 follows a Beta distribution,
Beta(λs + 1,λ(1− s) + 1) where s is the value on the pre-
vious trial and λ controls the rate of drift, with large values
indicating a slow drift. We assume that s1 preserves its sign
(and is thus fixed as generative or preventative), but its abso-
lute value is drawn from a Beta distribution in the same way.
For the first trial, s0 and s1 are assumed to follow the uniform
prior distributions given above.

With our Bayesian model of causal learning defined, we



now turn to the problem of inference. In the next two sections
we introduce the general schema for a particle filter and then
indicate how it can be applied to the specific model of causal
learning we have outlined in this section.

Particle Filters
A particle filter is a sequential Monte Carlo method that can
be used to approximate a sequence of posterior distributions,
as is necessary when performing Bayesian inference repeat-
edly in response to a sequence of observations (Doucet, Fre-
itas, & Gordan, 2001). When using a particle filter, it is
typically assumed we have a sequence of unobserved latent
variables z1, . . . ,zt , where z0:t is modeled as a Markov pro-
cess with prior distribution P(z0) and transition probability
P(zt |zt−1). We then have a sequence of observed variables
y1, . . . ,yt , and are attempting to estimate the posterior distri-
bution P(z0:t |y1:t). The posterior is given by Bayes’ rule, for
any time t, as:

P(z0:t |y1:t) ∝ P(y1:t |z0:t)P(z0:t).

We can obtain a recursive formula for this as:

P(z0:t+1|y1:t+1) ∝ P(z0:t |y1:t)P(yt+1|zt+1)P(zt+1|zt).

Assuming we have a set of samples from P(z0:t |y1:t), im-
portance sampling can be used to approximate this pos-
terior distribution by sampling from P(zt+1|zt) for each
value of zt in our sample, weighting each value of zt+1 by
P(yt+1|zt+1), and then resampling from this weighted distri-
bution. The result will be a set of samples that approximate
P(z0:t+1|y1:t+1). The recursive nature of this approximation,
where we can obtain samples from P(z0:t |y1:t) given samples
from P(z0:t−1|y1:t−1), leads to a natural algorithm. This algo-
rithm, in which a set of samples is constantly updated to re-
flect the information provided by each observation, is known
as a particle filter. The samples are referred to as particles.

Particle Filter Template
We will examine variants of a particle filter based on the boot-
strap filter presented in Doucet et al. (2001). There are three
steps to this filter:
Initialization (t = 0): A set of N particles and associated
importance weights are initialized,

z(i)0 ∼ P(z0) w(i)
0 = 1/N

for i = (1, . . . ,N).
Importance Sampling: After each observation, a new set of
particles is proposed based on the previous set of particles
and the importance weights are computed,

z̃(i)t ∼ P(zt |zt−1) w(i)
t = w(i)

t−1P(yt |z̃
(i)
t )

for i = (1, . . . ,N).
Selection: A new set of particles is sampled with replace-
ment from a distribution based on the normalized importance

weights, and the weights are reset,

z(i)t ∼∑
j

w( j)
t δ(z̃( j)

t ) w(i)
t = 1/N

for i = (1, . . . ,N), where where δ(z̃) is a distribution that puts
all its mass on z̃.

At the final time T we have an approximation to the pos-
terior P(z0:T |y1:T ), corresponding to the discrete distribution
obtained by assigning each particle its normalized weight.

Parameters of Particle Filters
We can introduce variation into this algorithm by exploring
different methods of particle selection. Resampling with re-
placement after every observation quickly reduces the diver-
sity in the set of particles, as a few highly weighted parti-
cles can take over the population. Thus, a common addition
to the bootstrap filter is to vary how often resampling takes
place, using some measure of the amount of variability seen
in the weights of the particles. Resampling with replacement
can also result in identical copies of particles. Markov chain
Monte Carlo (MCMC) is often used in conjunction with re-
sampling as a rejuvenation step to restore diversity into the
set of particles (Chopin, 2002).

These choices about how to implement a particle filter have
implications for the way that it behaves, but the consequences
of manipulating these parameters on sensitivity to trial order
have not been systematically explored. In the following sec-
tion, we set up a particle filter for our Bayesian model of
causal learning, and use it to investigate how different re-
sampling methods affect our predictions. This investigation
seems particularly interesting given the potential psychologi-
cal interpretation of each of these parameters: resampling and
rejuvenation require greater computation than simply contin-
uing to update the weights on particles, and might thus be
used strategically as a form of more deliberative reasoning
that is triggered by some aspect of the state of the learner, or
the task they are performing.

Particle Filter Parameters and Order Effects
With our Bayesian model of causal learning defined and an
algorithm for a general purpose particle filter proposed, we
now turn to exploring the effects of varying the parameters of
the particle filter. We first modify the template given above to
fit our problem:
Initialization (t = 0): A set of N particles, where each par-
ticle z(i)0 holds a pair of strength estimates (s0,s1), and asso-
ciated importance weights is initialized. s0 and s1 are drawn
from the prior defined above, and the weights are set to be
uniform, w(i)

0 = 1/N.
Importance Sampling: After each observation, a new set of
particles is proposed from the Beta distribution defined above,
and the importance weights are computed using Table 1.
Selection: This step is where the four models we analyze
diverge. In Model 1, we never resample, simply letting the
importance weights determine the strength estimates. In the



other models, we resample particles based on a multinomial
distribution defined on the importance weights. In Model 2,
we resample at each trial t. In Models 3 and 4, we resam-
ple only if the variance of the weights is too large as defined
by the Effective Sample Size (ESS). The ESS is ≈‖ wt ‖−2,
and we set a threshold at 0.10N, ten percent of the num-
ber of particles. Model 4 has an extra step after resampling
where we perform rejuvenation on the particles. We per-
form 10 iterations of Metropolis-Hastings with new values
for (s0,s1) drawn from a from a Normal distribution centered
on (sold

0 ,sold
1 ) with a standard deviation of 0.10 and accept the

proposed (snew
0 ,snew

1 ) pairs following the Metropolis-Hastings
acceptance rule.

Results on the Causal Learning Task
We applied all four models to a simulated version of the
causal learning task of Dennis and Ahn (2001), using the
same contingencies they listed for Experiment 3. For each
of the four different resampling methods, we averaged per-
formance over 500 runs, varied the number of particles from
1 to 1000, and set λ = 10,000. We presented the generative-
preventative sequence first, and then re-initialized the particle
filters and ran the preventative-generative sequence. The re-
sults are depicted in Figure 2.
Model 1 - Never Resample: In Figure 2 (a), we see that this
model predicts a strength of 0 because the importance weights
will average out over the trials. At first the particles with pos-
itive strengths will have higher weights but will drop when
the negative trials begin. The opposite effect occurs for parti-
cles with negative strengths. At the end of the simulation the
average of the weights goes to 0 since the overall contingency
between C and E in the combined sequence is 0.
Model 2 - Always Resample: As shown in Figure 2 (b),
this model exhibits a strong primacy effect, with strength es-
timates ending up at values consistent with the first block
presented (positive for generative, negative for preventative)
across a wide range of numbers of particles. This happens be-
cause particles with opposite strength to the current trial are
replaced very early in the sequence. This destroys diversity in
the particle set and only particles with strengths in common
with the first few trials of the particular sequence remain.
Model 3 - ESS Resample: Figure 2 (c) shows that when
we resample the particle set only once the variance in parti-
cle weights becomes high, we see primacy effects for smaller
numbers of particles and then a convergence to 0 with larger
numbers of particles. Since the ESS threshold is based on
a percentage of the number of particles, smaller numbers of
particles are more likely to lead to frequent resampling be-
cause it is less likely they will contain a good set of candidate
strength values. Larger populations take a longer time to meet
the ESS threshold, producing behavior that is more similar to
Model 1. We get a better understanding of this model’s be-
havior by focusing on the predictions of 50 particles at each
trial. Figure 3 (a) shows that after resampling, the diversity of
the particle set narrows. This results in a primacy bias, albeit
a smaller effect than Model 2 due to infrequent resampling.

Model 4 - ESS Resample with Rejuvenation: The results
in Figure 2 (d) show that this model rises and falls in its sen-
sitivity to order as a function of the number of particles, as
in Model 3. However, the Metropolis-Hastings rejuvenation
step produces a wider range of particle strengths after resam-
pling. This is illustrated in Figure 3 (b) where we focus on
this model’s behavior at each trial for a set of 50 particles.
After resampling and rejuvenation, the diversity of particles
is much broader than simply resampling; resulting in the pre-
dictions following the most recent trials.

Modeling Order Effects in Causal Learning
Now that we have established the effects of different pa-
rameters of the particle filter, we can consider what settings
are required to reproduce the empirical data from the causal
learning experiments discussed earlier in the paper. We show
that both primacy and recency effects can be produced using
the sequence of 80 trials presented in both Dennis and Ahn
(2001) and Collins and Shanks (2002), if the particle filter
parameters are selected to reflect the difference in the proce-
dures used in these two experiments.

Dennis and Ahn (2001): Primacy Effect
Using the ESS resampling model (Model 3) with a stronger
prior for positive s1 strengths, we can observe that the per-
formance of the particle filter with a small number of parti-
cles predicts similar primacy effects to those found in Dennis
and Ahn (2001). Our use of a stronger prior was motivated
by Schustack and Sternberg (1981), where it was found that
people weight generative evidence higher than inhibitory evi-
dence. Figure 4 (a) presents these results, where it is apparent
that the generative-block first performance shows more of a
primacy effect than than preventative-block first.

Collins and Shanks (2002): Recency Effects
We observed recency effects with our ESS resampling with
rejuvenation model (Model 4), however, to maintain con-
sistency in our modeling efforts we use the modified ESS
resampling model defined above with the addition that ev-
ery 10 trials we resample with rejuvenation. This resam-
pling scheme is motivated by the procedure in the Collins and
Shanks (2002) experiment, where participants were asked to
estimate the strength of the relationship every 10 trials. Mak-
ing such a judgment could trigger the kind of deliberative rea-
soning that resampling and rejuvenation reflect. Figure 4 (b)
shows that the performance of this model more accurately
predicts the recency effects with a small number of particles.
We observe too that the recency effect occurs much sooner
under this resampling scheme than in our original simulation
with Model 4.

General Discussion and Conclusions
While Bayesian models have become quite popular as ratio-
nal explanations of human inductive inference, a number of
significant criticisms remain unresolved. In particular, it is
not clear how these computational level analyses connect to
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Figure 2: The performance of different resampling methods in our particle filter. The strength estimate produced for the
generative-preventative (blue) and preventative-generative (red) versions of the contingencies is plotted against the number of
particles used for each of four models: (a) never resample, (b) always resample, (c) resample only when the effective sample
size (ESS) falls below a threshold, and (d) resample based on the ESS, and rejuvenate the particles (see text for details). The
mean across 500 runs is shown with a heavy line, and the shaded fill indicates the standard deviation.

the algorithmic level of analysis that characterizes existing
psychological process models. Using Monte Carlo methods
to approximate Bayesian inference while also linking to mod-
els of psychological processes creates a new approach to the
question of human inductive inference, resulting in what have
been termed rational process models (Shi et al., 2008).

We have demonstrated how different resampling methods
in a particle filter can produce different order effects in a
causal learning task, potentially expanding the scope of the
effects that can be explained using these models. Using a
model with a bias for generative relationships and a sam-
pling scheme that resamples only after the variance in particle
weights becomes too high resulted in primacy effects similar
to the results in Dennis and Ahn (2001) for small numbers of
particles. Adding a rejuvenation step to this model after every
10 trials to match the experimental procedures of Collins and
Shanks (2002) gives way to the observed recency effects in
the literature.

These particle filter approximations to a Bayesian model
of causal learning provide a more consistent explanation of
the observed order effects in behavioral data. Our analysis is
the first attempt at modeling order effects in causal learning
using particle filters. We aim to explore other causal learn-
ing and contingency learning data with particle filter approx-
imations in the future. This will include work to model not
just how people estimate causal strength, but how they infer
causal structure. We are currently conducting laboratory ex-
periments to further explore how particle filter performance
degrades with fewer particles in comparison to human per-
formance degrading with higher cognitive load.
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Figure 3: The performance of our particle filter over time for (a) Model 3, and (b) Model 4. The strength estimates produced
by 50 particles for the generative-preventative data are plotted over trial number. The particles are represented as blue dots with
the size of each dot a non-linear transformation of a particle’s weight (for presentation purposes). The mean strength estimate
over the set of particles for each trial event is given as a black curve.
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Figure 4: (a): The predictions of the modified ESS resampling particle filter on the contingency data from Dennis and Ahn
(2001), and (b): the modified ESS resampling with rejuvenation particle filter on the task of Collins and Shanks (2002). The
strength estimates produced for the generative-preventative (blue curves) and preventative-generative (red curves) versions of
each task are plotted against the number of particles used, together with a shaded fill showing the standard deviation.
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