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Abstract

We present a probabilistic approach to language change in which word forms
are represented by phoneme sequences that undergo stochastic edits along the
branches of a phylogenetic tree. This framework combines the advantages of
the classical comparative method with the robustness of corpus-based probabilis-
tic models. We use this framework to explore the consequences of two differ-
ent schemes for defining probabilistic models of phonological change, evaluating
these schemes by reconstructing ancient word forms of Romance languages. The
result is an efficient inference procedure for automatically inferring ancient word
forms from modern languages, which can be generalized to support inferences
about linguistic phylogenies.

1 Introduction

Languages evolve over time, with words changing in form, meaning, and the ways in which they can
be combined into sentences. Several centuries of linguistic analysis have shed light on some of the
key properties of this evolutionary process, but many open questions remain. A classical example is
the hypothetical Proto-Indo-European language, the reconstructed common ancestor of the modern
Indo-European languages. While the existence and general characteristics of this proto-language are
widely accepted, there is still debate regarding its precise phonology, the original homeland of its
speakers, and the date of various events in its evolution. The study of how languages change over
time is known as diachronic (or historical) linguistics (e.g., [4]).

Most of what we know about language change comes from the comparative method, in which words
from different languages are compared in order to identify their relationships. The goal is to identify
regular sound correspondences between languages and use these correspondences to infer the forms
of proto-languages and the phylogenetic relationships between languages. The motivation for basing
the analysis on sounds is that phonological changes are generally more systematic than syntactic or
morphological changes. Comparisons of words from different languages are traditionally carried
out by hand, introducing an element of subjectivity into diachronic linguistics. Early attempts to
quantify the similarity between languages (e.g., [15]) made drastic simplifying assumptions that
drew strong criticism from diachronic linguists. In particular, many of these approaches simply
represent the appearance of a word in two languages with a single bit, rather than allowing for
gradations based on correspondences between sequences of phonemes.

We take a quantitative approach to diachronic linguistics that alleviates this problem by operating
at the phoneme level. Our approach combines the advantages of the classical, phoneme-based,
comparative method with the robustness of corpus-based probabilistic models. We focus on the
case where the words are etymological cognates across languages, e.g. French faire and Spanish
hacer from Latin facere (to do). Following [3], we use this information to estimate a contextualized
model of phonological change expressed as a probability distribution over rules applied to individual
phonemes. The model is fully generative, and thus can be used to solve a variety of problems. For
example, we can reconstruct ancestral word forms or inspect the rules learned along each branch of
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a phylogeny to identify sound laws. Alternatively, we can observe a word in one or more modern
languages, say French and Spanish, and query the corresponding word form in another language,
say Italian. Finally, models of this kind can potentially be used as a building block in a system for
inferring the topology of phylogenetic trees [3].

In this paper, we use this general approach to evaluate the performance of two different schemes for
defining probability distributions over rules. The first scheme, used in [3], treats these distributions
as simple multinomials and uses a Dirichlet prior on these multinomials. This approach makes it
difficult to capture rules that apply at different levels of granularity. Inspired by the prevalence
of multi-scale rules in diachronic phonology and modern phonological theory, we develop a new
scheme in which rules possess a set of features, and a distribution over rules is defined using a log-
linear model. We evaluate both schemes in reconstructing ancient word forms, showing that the new
linguistically-motivated change can improve performance significantly.

2 Background and previous work

Most previous computational approaches to diachronic linguistics have focused on the reconstruc-
tion of phylogenetic trees from a Boolean matrix indicating the properties of words in different
languages [10, 6, 14, 13]. These approaches descend from glottochronology [15], which measures
the similarity between languages (and the time since they diverged) using the number of words in
those languages that belong to the same cognate set. This information is obtained from manually
curated cognate lists such as the data of [5]. The modern instantiations of this approach rely on so-
phisticated techniques for inferring phylogenies borrowed from evolutionary biology (e.g., [11, 7]).
However, they still generally use cognate sets as the basic data for evaluating the similarity between
languages (although some approaches incorporate additional manually constructed features [14]).

As an example of a cognate set encoding, consider the meaning “eat”. There would be one column
for the cognate set which appears in French as manger and Italian as mangiare since both descend
from the Latin mandere (to chew). There would be another column for the cognate set which appears
in both Spanish and Portuguese as comer, descending from the Latin comedere (to consume). If
these were the only data, algorithms based on this data would tend to conclude that French and Italian
were closely related and that Spanish and Portuguese were equally related. However, the cognate
set representation has several disadvantages: it does not capture the fact that the cognate is closer
between Spanish and Portuguese than between French and Spanish, nor do the resulting models let
us conclude anything about the regular processes which caused these languages to diverge. Also,
curating cognate data can be expensive. In contrast, each word in our work is tracked using an
automatically obtained cognate list. While these cognates may be noisier, we compensate for this
by modeling phonological changes rather than Boolean mutations in cognate sets.

Another line of computational work has explored using phonological models as a way to capture
the differences between languages. [16] describes an information theoretic measure of the distance
between two dialects of Chinese. They use a probabilistic edit model, but do not consider the recon-
struction of ancient word forms, nor do they present a learning algorithm for such models. There
have also been several approaches to the problem of cognate prediction in machine translation (es-
sentially transliteration), e.g., [12]. Compared to our work, the phenomena of interest, and therefore
the models, are different. [12] presents a model for learning “sound laws,” general phonological
changes governing two completely observed aligned cognate lists. This model can be viewed as a
special case of ours using a simple two-node topology.

3 A generative model of phonological change

In this section, we outline the framework for modeling phonological change that we will use through-
out the paper. Assume we have a fixed set of word types (cognate sets) in our vocabulary V and a set
of languages L. Each word type i has a word form wil in each language l ∈ L, which is represented
as a sequence of phonemes which might or might not be observed. The languages are arranged
according to some tree topology T (see Figure 2(a) for examples). It is possible to also induce the
topology or cognate set assignments, but in this paper we assume that the topology is fixed and
cognates have already been identified.
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For each word i ∈ V :
wiROOT ∼ LanguageModel

For each branch (k → l) ∈ T :
θk→l ∼ Rules(σ2) [choose edit parameters]
For each word i ∈ V :

wil ∼ Edit(wik, θk→l) [sample word form]

(a) Generative description

# C V C V C #

# f o k u s #

# f w O k o #

# C V V C V #

f → f / # V
o → w O / C C
k → k / V V
u → o / C C
s → / V #

Edits applied Rules used
(b) Example of edits

· · ·

wiA

wiB

wiC wiD

· · · · · ·
word type i = 1 . . . |V |

eiA→BθA→B

eiB→CθB→C eiB→D θB→D

(c) Graphical model

Figure 1: (a) A description of the generative model. (b) An example of edits that were used to transform
the Latin word focus (/fokus/) into the Italian word fuoco (/fwOko/) (fire) along with the context-specific rules
that were applied. (c) The graphical model representation of our model: θ are the parameters specifying the
stochastic edits e, which govern how the words w evolve.

The probabilistic model specifies a distribution over the word forms {wil} for each word type i ∈ V
and each language l ∈ L via a simple generative process (Figure 1(a)). The generative process
starts at the root language and generates all the word forms in each language in a top-down manner.
The w ∼ LanguageModel distribution is a simple bigram phoneme model. A root word form w
consisting of n phonemes x1 · · ·xn is generated with probability plm(x1) =

∏n
j=2 plm(xj | xj−1),

where plm is the distribution of the language model. The stochastic edit model w′ ∼ Edit(w, θ)
describes how a single old word form w = x1 · · ·xn changes along one branch of the phylogeny
with parameters θ to produce a new word form w′. This process is parametrized by rule probabilities
θk→l, which are specific to branch (k → l).

The generative process used in the edit model is as follows: for each phoneme xi in the old word
form, walking from left to right, choose a rule to apply. There are three types of rules: (1) deletion
of the phoneme, (2) substitution with some phoneme (possibly the same one), or (3) insertion of
another phoneme, either before or after the existing one. The probability of applying a rule depends
on the context (xi−1, xi+1). Context-dependent rules are often used to characterize phonological
changes in diachronic linguistics [4]. Figure 1(b) shows an example of the rules being applied. The
context-dependent form of these rules allows us to represent phenomena such as the likely deletion
of s in word-final positions.

4 Defining distributions over rules

In the model defined in the previous section, each branch (k → l) ∈ T has a collection of context-
dependent rule probabilities θk→l. Specifically, θk→l specifies a collection of multinomial distribu-
tions, one for each C = (cl, x, cr), where cl is left phoneme, x is the old phoneme, cr is the right
phoneme. Each multinomial distribution is over possible right-hand sides α of the rule, which could
consist of 0, 1, or 2 phonemes. We write θk→l(C,α) for the probability of rule x→ α / c1 c2.

Previous work using this probabilistic framework simply placed independent Dirichlet priors on
each of the multinomial distributions [3]. While this choice results in a simple estimation procedure,
it has some severe limitations. Sound changes happen at many granularities. For example, from
Latin to Vulgar Latin, u→ o occurs in many contexts while s→ ∅ occurs only in word-final con-
texts. Using independent Dirichlets forces us to commit to a single context granularity for C. Since
the different multinomial distributions are not tied together, generalization becomes very difficult,
especially as data is limited. It is also difficult to interpret the learned rules, since the evidence
for a coarse phenomenon such as u→ o would be unnecessarily fragmented across many different
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context-dependent rules. We would like to ideally capture a phenomenon using a single rule or fea-
ture. We could relate the rule probabilities via a simple hierarchical Bayesian model, but we would
still have to define a single hierarchy of contexts. This restriction might be inappropriate given that
sound changes often depend on different contexts that are not necessarily nested.

For these reasons, we propose using a feature-based distribution over the rule probabilities. Let
F (C,α) be a feature vector that depends on the context-dependent rule (C,α), and λk→l be the
log-linear weights for branch (k → l). We use a Normal prior on the log-linear weights, λk→l ∼
N (0, σ2I). The rule probabilities are then deterministically related to the weights via the softmax
function:

θk→l(C,α;λk→l) =
eλ

T
k→lF (C,α)∑

α′ e
λT

k→lF (C,α′)
. (1)

For each rule x→ α / cl cr, we defined features based on whether x = α (i.e. self-substitution),
and whether |α| = n for each n = 0, 1, 2 (corresponding to deletion, substitution, and insertion).
We also defined sets of features using three partitions of phonemes c into “natural classes”. These
correspond to looking at the place of articulation (denoted A2(c)), testing whether c is a vowel,
consonant, or boundary symbol (A1(c)), and the trivial wildcard partition (A0(c)), which allows
rules to be insensitive to c. Using these partitions, the final set of features corresponded to whether
Akl

(cl) = al and Akr
(cr) = ar for each type of partitioning kl, kr ∈ {0, 1, 2} and natural classes

al, ar.

The move towards using a feature-based scheme for defining rule probabilities is not just motivated
by the greater expressive capacity of this scheme. It also provides a connection with contemporary
phonological theory. Recent work in computational linguistics on probabilistic forms of optimality
theory has begun to use a similar approach, characterizing the distribution over word forms within a
language using a log-linear model applied to features of the words [17, 9]. Using similar features to
define a distribution over phonological changes thus provides a connection between synchronic and
diachronic linguistics in addition to a linguistically-motivated method for improving reconstruction.

5 Learning and inference

We use a Monte Carlo EM algorithm to fit the parameters of both models. The algorithm iterates
between a stochastic E-step, which computes reconstructions based on the current edit parameters,
and an M-step, which updates the edit parameters based on the reconstructions.

5.1 Monte Carlo E-step: sampling the edits

The E-step computes the expected sufficient statistics required for the M-step, which in our case is
the expected number of times each edit (such as o → O) was used in each context. Note that the
sufficient statistics do not depend on the prior over rule probabilities; in particular, both the model
based on independent Dirichlet priors and the one based on a log-linear prior require the same E-step
computation.

An exact E-step would require summing over all possible edits involving all languages in the phy-
logeny (all unobserved {e}, {w} variables in Figure 1(c)), which does not permit a tractable dynamic
program. Therefore, we resort to a Monte Carlo E-step, where many samples of the edit variables
are collected, and counts are computed based on these samples. Samples are drawn using Gibbs
sampling [8]: for each word form of a particular language wil, we fix all other variables in the
model and sample wil along with its corresponding edits.

Consider the simple four-language topology in Figure 1(c). Suppose that the words in languages A,
C andD are fixed, and we wish to sample the word at languageB along with the three corresponding
sets of edits (remember that the edits fully determine the words). While there are an exponential
number of possible words/edits, we can exploit the Markov structure in the edit model to consider
all such words/edits using dynamic programming, in a way broadly similar to the forward-backward
algorithm for HMMs. See [3] for details of the dynamic program.
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la

es it

la

vl

ib

es pt

it

Topology 1 Topology 2

(a) Topologies

Experiment Topology Model Heldout
Latin reconstruction (6.1) 1 Dirichlet la:293

1 Log-linear la:293
Sound changes (6.2) 2 Log-linear None

(b) Experimental conditions

Figure 2: Conditions under which each of the experiments presented in this section were performed. The
topology indices correspond to those displayed at the left. The heldout column indicates how many words, if
any, were held out for edit distance evaluation, and from which language. All the experiments were run on a
data set of 582 cognates from [3].

5.2 M-step: updating the parameters

In the M-step, we estimate the distribution over rules for each branch (k → l). In the Dirichlet
model, this can be done in closed form [3]. In the log-linear model, we need to optimize the feature
weights λk→l. Let us fix a single branch and drop the subscript. Let N(C,α) be the expected
number of times the rule (C,α) was used in the E-step. Given these sufficient statistics, the estimate
of λ is given by optimizing the expected complete log-likelihood plus the regularization penalty
from the prior on λ,

O(λ) =
∑
C,α

N(C,α)
[
λTF (C,α)− log

∑
α′

eλ
TF (C,α′)

]
− ||λ||

2

2σ2
. (2)

We use L-BFGS to optimize this convex objective. which only requires the partial derivatives:

∂O(λ)
∂λj

=
∑
C,α

N(C,α)
[
Fj(C,α)−

∑
α′

θ(C,α′;λ)Fj(C,α′)
]
− λj
σ2

(3)

= F̂j −
∑
C,α′

N(C, ·)θ(C,α′;λ)Fj(C,α′)−
λj
σ2
, (4)

where F̂j
def=

∑
C,αN(C,α)Fj(C,α) is the empirical feature vector and N(C, ·) def=

∑
αN(C,α)

is the number of times context C was used. F̂j and N(C, ·) do not depend on λ and thus can be
precomputed at the beginning of the M-step, thereby speeding up each L-BFGS iteration.

6 Experiments

In this section, we summarize the results of the experiments testing our different probabilistic models
of phonological change. The experimental conditions are summarized in Table 2. Training and test
data sets were taken from [3].

6.1 Reconstruction of ancient word forms

We ran the two models using Topology 1 in Figure 2 to assess the relative performance of Dirichlet-
parametrized versus log-linear-parametrized models. Half of the Latin words at the root of the tree
were held out, and the (uniform cost) Levenshtein edit distance from the predicted reconstruction to
the truth was computed. While the uniform-cost edit distance misses important aspects of phonol-
ogy (all phoneme substitutions are not equal, for instance), it is parameter-free and still seems to
correlate to a large extent with linguistic quality of reconstruction. It is also superior to held-out
log-likelihood, which fails to penalize errors in the modeling assumptions, and to measuring the
percentage of perfect reconstructions, which ignores the degree of correctness of each reconstructed
word.
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Model Baseline Model Improvement
Dirichlet 3.59 3.33 7%
Log-linear (0) 3.59 3.21 11%
Log-linear (0,1) 3.59 3.14 12%
Log-linear (0,1,2) 3.59 3.10 14%

Table 1: Results of the edit distance experiment. The language column corresponds to the language held out for
evaluation. We show the mean edit distance across the evaluation examples. Improvement rate is computed by
comparing the score of the algorithm against the baseline described in Section 6.1. The numbers in parentheses
for the log-linear model indicate which levels of granularity were used to construct the features (see Section 4).

/dEntis/

/djEntes/ /dEnti/

i → E
E→ j E

s→

Figure 3: An example of the proper Latin reconstruction given the Spanish and Italian word forms. Our model
produces /dEntes/, which is nearly correct, capturing two out of three of the phenomena.

We ran EM for 10 iterations for each model, and evaluated performance via a Viterbi derivation pro-
duced using these parameters. Our baseline for comparison was picking randomly, for each heldout
node in the tree, an observed neighboring word (i.e., copy one of the modern forms). Both mod-
els outperformed this baseline (see Figure 3), and the log-linear model outperformed the Dirichlet
model, suggesting that the featurized system better captures the phonological changes. Moreover,
adding more features further improved the performance, indicating that being able to express rules
at multiple levels of granularity allows the model to capture the underlying phonological changes
more accurately.

To give a qualitative feel for the operation of the system (good and bad), consider the example
in Figure 3, taken from the Dirichlet-parametrized experiment. The Latin dentis /dEntis/ (teeth) is
nearly correctly reconstructed as /dEntes/, reconciling the appearance of the /j/ in the Spanish and
the disappearance of the final /s/ in the Italian. Note that the /is/ vs. /es/ ending is difficult to predict
in this context (indeed, it was one of the early distinctions to be eroded in Vulgar Latin).

6.2 Inference of phonological changes

Another use of this model is to automatically recover the phonological drift processes between
known or partially-known languages. To facilitate evaluation, we continued in the well-studied Ro-
mance evolutionary tree. Again, the root is Latin, but we now add an additional modern language,
Portuguese, and two additional hidden nodes. One of the nodes characterizes the least common an-
cestor of modern Spanish and Portuguese; the other, the least common ancestor of all three modern
languages. In Figure 2, Topology 2, these two nodes are labeled vl (Vulgar Latin) and ib (Proto-
Ibero Romance), respectively. Since we are omitting many other branches, these names should not
be understood as referring to actual historical proto-languages, but, at best, to collapsed points rep-
resenting several centuries of evolution. Nonetheless, the major reconstructed rules still correspond
to well-known phenomena and the learned model generally places them on reasonable branches.

Figure 4 shows the top four general rules for each of the evolutionary branches recovered by the
log-linear model. The rules are ranked by the number of times they were used in the derivations
during the last iteration of EM. The la, es, pt, and it forms are fully observed while the vl and
ib forms are automatically reconstructed. Figure 4 also shows a specific example of the evolution
of the Latin VERBUM (word), along with the specific edits employed by the model.

For this particular example, both the Dirichlet and the log-linear models produced the same recon-
struction in the internal nodes. However, the log-linear parametrization makes inspection of sound
laws easier. Indeed, with the Dirichlet model, since the natural classes are of fixed granularity, some
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r → R / * *
e → / ALV #

t → d / * *
Ù → s / * *

u → o / * *
o → o s / C #

v → b / * *
t → t e / * *

/werbum/ (la)

/verbo/ (vl)

/veRbo/ (ib)

/beRbo/ (es) /veRbu/ (pt)

/vErbo/ (it)

s → / * #

m → / * #

i → / * V

ï → n / * VELAR

u → o / * *
e → E / * *
i → / C V

a → j a / * *

n → m / * *
a → 5 / * *
o → u / * *
e → 1 / * *

m →
u → o
w → v

r → R

v → b o → u

e → E

Figure 4: The tree shows the system’s hypothesized transformation of a selected Latin word form, VERBUM
(word) into the modern Spanish, Italian, and Portuguese pronunciations. The Latin root and modern leaves were
observed while the hidden nodes as well as all the derivations were obtained using the parameters computed
by our model after 10 iterations of EM. Nontrivial rules (i.e. rules that are not identities) used at each stage are
shown along the corresponding edge. The boxes display the top four nontrivial rules corresponding to each of
these evolutionary branches, ordered by the number of times they were applied during the last E step. These
are grouped and labeled by their active feature of highest weight. ALV stands for alveolar consonant.

rules must be redundantly discovered, which tends to flood the top of the rule lists with duplicates.
In contrast, the log-linear model groups rules with features of the appropriate degree of generality.

While quantitative evaluation such as measuring edit distance is helpful for comparing results, it is
also illuminating to consider the plausibility of the learned parameters in a historical light, which we
do here briefly. In particular, we consider rules on the branch between la and vl, for which we have
historical evidence. For example, documents such as the Appendix Probi [2] provide indications of
orthographic confusions which resulted from the growing gap between Classical Latin and Vulgar
Latin phonology around the 3rd and 4th centuries AD. The Appendix lists common misspellings of
Latin words, from which phonological changes can be inferred.

On the la to vl branch, rules for word-final deletion of classical case markers dominate the list. It
is indeed likely that these were generally eliminated in Vulgar Latin. For the deletion of the /m/, the
Appendix Probi contains pairs such as PASSIM NON PASSI and OLIM NON OLI. For the deletion of
final /s/, this was observed in early inscriptions, e.g. CORNELIO for CORNELIOS [1]. The frequent
leveling of the distinction between /o/ and /u/ (which was ranked 5, but was not included for space
reasons) can be also be found in the Appendix Probi: COLUBER NON COLOBER. Note that in the
specific example shown, the model lowers the original /u/ and then re-raises it in the pt branch due
to a later process along that branch.

Similarly, major canonical rules were discovered in other branches as well, for example, /v/ to /b/
fortition in Spanish, palatalization along several branches, and so on. Of course, the recovered
words and rules are not perfect. For example, reconstructed Ibero /trinta/ to Spanish /treinta/ (thirty)
is generated in an odd fashion using rules /e/ to /i/ and /n/ to /in/. In the Dirichlet model, even when
otherwise reasonable systematic sound changes are captured, the crudeness of the fixed-granularity
contexts can prevent the true context from being captured, resulting in either rules applying with
low probability in overly coarse environments or rules being learned redundantly in overly fine
environments. The featurized model alleviates this problem.

7 Conclusion

Probabilistic models have the potential to replace traditional methods used for comparing languages
in diachronic linguistics with quantitative methods for reconstructing word forms and inferring
phylogenies. In this paper, we presented a novel probabilistic model of phonological change, in
which the rules governing changes in the sound of words are parametrized using the features of the
phonemes involved. This model goes beyond previous work in this area, providing more accurate
reconstructions of ancient word forms and connections to current work on phonology in synchronic
linguistics. Using a log-linear model to define the probability of a rule being applied results in a
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straightforward inference procedure which can be used to both produce accurate reconstructions as
measured by edit distance and identify linguistically plausible rules that account for phonological
changes. We believe that this probabilistic approach has the potential to support quantitative analysis
of the history of languages in a way that can scale to large datasets while remaining sensitive to the
concerns that have traditionally motivated diachronic linguistics.
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