Connecting human and machine learning via probabilistic models of cognition

Thomas L. Griffiths

Department of Psychology, University of California, Berkeley, USA
tom_griffiths@berkeley.edu

Abstract

Human performance defines the standard that machine learning
systems aspire to in many areas, including learning language.
This suggests that studying human cognition may be a good
way to develop better learning algorithms, as well as providing
basic insights into how the human mind works. However, in or-
der for ideas to flow easily from cognitive science to computer
science and vice versa, we need a common framework for de-
scribing human and machine learning. I will summarize recent
work exploring the hypothesis that probabilistic models of cog-
nition, which view learning as a form of statistical inference,
provide such a framework, including results that illustrate how
novel ideas from statistics can inform cognitive science. Specif-
ically, I will talk about how probabilistic models can be used to
identify the assumptions of learners, learn at different levels of
abstraction, and link the inductive biases of individuals to cul-
tural universals.

Index Terms: human learning, machine learning, probabilistic
models

1. Introduction

Despite the significant advances that have been made in arti-
ficial intelligence and machine learning over the last 50 years,
it is easy to think of things that people do better than comput-
ers. One of the most compelling cases is the ease with which
people learn from limited data. The gap between human and
machine learning is apparent at many scales. Almost every hu-
man child succeeds in learning language purely from linguis-
tic input, while no computer can solve this problem. However,
even learning a single new word or concept poses a significant
challenge for computers, often requiring hundreds of examples
where a person might need only a handful. This gap represents
an opportunity both to improve automated systems and to de-
velop a deeper understanding of the formal principles that un-
derlie human cognition.

For computer science and cognitive science to interact prof-
itably, we need a common language for talking about human
and machine learning. In the past, these two disciplines have
been brought together by formal approaches that provide a way
to develop both intelligent automated systems and computa-
tional models of human cognition. Logic-based approaches to
artificial intelligence grew out of and supported symbolic mod-
els of cognition [1, 2, 3]. Aurtificial neural networks demon-
strated how gradient descent and distributed representations
could be combined to produce both effective learning algo-
rithms and innovative models of human cognition [4]. Recently,
however, machine learning research has begun to draw on prob-
ability and statistics as a source of tools for solving challenging
learning problems (e.g., [5, 6]). This move has been comple-
mented by work in cognitive science that explores the potential
of probabilistic models of human cognition [7, 8, 9].

Probabilistic models of cognition typically focus on the
question of how a rational learner should solve an inductive
problem, in which the learner considers a variety of hypothe-
ses that might account for observed data. If we assume that the
learner represents his or her degree of belief in each hypothesis
by assigning a probability to that hypothesis, solving an induc-
tive problem becomes a matter of appropriately modifying these
degrees of belief in light of the data. The solution is provided
by Bayes’ rule: using p(h) to denote the degree of belief in the
hypothesis h before seeing data d (known as the prior probabil-
ity) and p(h|d) to denote the degree of belief in h after seeing d
(the posterior probability), we have
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where p(d|h) indicates the probability of d if h is true (the like-
lihood), and 'H is the set of all hypotheses under consideration
(the hypothesis space). Bayes’ rule can thus be interpreted as
a model of learning, with the choice of prior, likelihood, and
hypothesis space giving a transparent characterization of the as-
sumptions of the learner. In particular, the prior summarizes the
inductive biases of a learner — those factors that lead him or her
to favor one hypothesis over another when those hypotheses are
equally consistent with the data.

Learning and using a language requires solving a variety of
inductive problems, and thus provides a natural setting in which
to apply probabilistic models of cognition. In this paper, I will
discuss three ways in which probabilistic models can be used to
shed light on language learning and language evolution: identi-
fying the assumptions necessary for learning to take place, indi-
cating how learning can simultaneously take place at different
levels of abstraction, and linking the inductive biases of individ-
ual learners to linguistic universals. These three uses of proba-
bilistic models highlight some of the properties that have made
them useful in the context of machine learning, and illustrate
how they can contribute to a deeper understanding of some of
the central issues in cognitive science.

2. Identifying the assumptions of learners

Arguments from philosophy [10] and formal analyses of learn-
ing [11, 12, 13] indicate that the key to solving inductive prob-
lems is constraining the set of hypotheses under consideration,
but the nature and origins of the constraints on human infer-
ences are controversial. For example, much of the language
acquisition literature focuses on two extreme positions: that the
relevant constraints are strong, innate, and specific to language
(e.g., [14]), or that the constraints are weak, and the result of
general-purpose learning mechanisms (e.g., [15]). Probabilis-
tic models provide a way to formalize the inductive biases that
guide human learning, expressing these constraints through the



choice of hypothesis space and the prior distribution over hy-
potheses.

The simplest way to use probabilistic models to reveal hu-
man inductive biases is to construct a set of models that as-
sume different priors, and examine which of these models best
characterizes human performance. This approach is consistent
with a long tradition of computational modeling in cognitive
science, in which parameterized models are fit to human data
and compared in order to evaluate claims about the processes
behind behavior. Recently, this approach has been used to ex-
plore the inductive biases that seem to characterize aspects of
human language learning. For example, learning the meaning
of a novel word can be modeled as Bayesian inference, with
data consisting of a pairing of a word and object and hypotheses
corresponding to sets of objects that could be possible referents
of the word. Using a model of this kind makes it possible to
analyze the prior distribution over word meanings assumed by
human learners [16]. A similar approach can be used to analyze
how people learn about probabilistic variation in a language:
in some circumstances, people tend to “regularize” inconsistent
input, making their language more deterministic [17]. This ten-
dency can be captured through a prior that favors extreme prob-
ability distributions, where the probability of each variant of a
linguistic structure is close to zero or one [18].

A second way to explore inductive biases relevant to lan-
guage learning is to examine what kind of information sim-
ulated learners with different priors can extract from corpora
of the speech that adults produce when interacting with chil-
dren. This strategy can be used to address questions such as
whether children receive sufficient information to identify par-
ticular kinds of syntactic structures (e.g., [19]). It can also be
used to determine what kinds of assumptions a learner needs to
make in order to reach adult linguistic competence. For exam-
ple, an analysis of this kind for the problem of word segmen-
tation — learning the words that appear in continuous speech
— suggests that assumptions about the nature of the interaction
between words can have a significant effect on how well a sim-
ulated learner recovers the correct words from an unsegmented
corpus [20].

These two approaches to exploring human inductive biases
are quite compatible: corpus based analyses can lead to new
hypotheses that are tested through laboratory experiments. In
the case of word segmentation, the probabilistic model men-
tioned in the previous paragraph inspired a series of experiments
examining how human word segmentation is affected by vari-
ous manipulations of the statistical properties of the input [21].
However, analyses that combine these two approaches remain
rare, and more research of this kind will be important in or-
der to gather clear evidence about the constraints that guide hu-
man language learning, facilitating the development of machine
learning systems that exploit these constraints.

3. Learning at different levels of abstraction

Learning a language requires solving inductive problems at
many different levels: identifying the phonetic categories into
which continuous acoustic signals are divided, grouping these
sounds into words, learning the morphological rules character-
izing the structure of these words, and inferring how words can
be combined together to form sentences. These inductive prob-
lems each build on one another, so a natural approach might be
to imagine that each problem is solved in turn, with the learner
using the solution to one problem as input to the next. However,
the results of learning at a higher level (such as current guesses

about the words in the language) can be relevant to learning at
a lower level (such as identifying phonetic categories), suggest-
ing that a learner might benefit by simultaneously making infer-
ences at both of these levels. Such inferences can be captured
by hierarchical Bayesian models [9].

A hierarchical Bayesian model is a probabilistic model in
which the hypotheses to be inferred from data are expressed
at multiple levels of abstraction. The basic idea behind these
models is that the knowledge we draw upon in solving induc-
tive problems is represented at many levels, and that Bayesian
inference can be applied at any of these levels. To the extent
that there are principles that are relevant to many inductive in-
ferences within a domain — such as the sequences of sounds
that are likely to comprise words, or the properties of objects
that are typically picked out by a word — these principles can be
abstracted from experience and used to constrain future infer-
ences. Mathematical analyses show that hierarchical Bayesian
models require less and less data to make accurate inductive in-
ferences [22], providing an account of the process of “learning
to learn”. These formal ideas can be applied to aspects of hu-
man cognition, providing insight into how learning at one level
can provide useful constraints at another.

The main insight that has resulted from applying hierar-
chical Bayesian models to language learning is that introduc-
ing more unknown variables can often — paradoxically — make
learning easier. For example, consider the problem of learning
phonetic categories from acoustic signals. This problem can
be formalized in terms of estimating a probability distribution
over acoustic signals associated with each category, and recent
work has shown that this approach results in reasonably good
estimation of well-separated phonetic categories [23]. How-
ever, infants learning phonetic categories are not solving this
problem in isolation from other aspects of language learning:
at the same time, they are beginning to pick out the words that
comprise their language. Those words consist of a sequence of
phonetic categories, and result in regularities in the tendency for
sounds to appear in close temporal proximity. Introducing an-
other level of abstraction to the learning problem, in which the
learner seeks to simultaneously identify these words as well as
the phonetic categories, improves learning by making it possi-
ble to exploit this regularity [24].

Similar constraints hold across levels of abstraction in other
language learning problems, and can also be captured by hier-
archical Bayesian models. For example, such models can be
used to explain how children learn that the labels used for ob-
jects typically depend on their shape [25]. In other domains,
such as causal learning, machine learning systems that make in-
ferences at multiple levels of abstraction outperform more tra-
ditional methods that focus on a single level [26]. These results
suggest that the ability to operate at multiple levels of abstrac-
tion is a property of human learning that might profitably be
used in other machine learning systems.

4. Linking inductive biases to universals

Human languages form a subset of all logically possible com-
munication schemes, with some univeral properties being com-
mon across languages [27, 28]. These linguistic universals have
been taken as providing evidence for strong constraints on lan-
guage learning, but connecting the inductive biases of individ-
uals to the languages that are spoken in different communities
requires considering the role that language learning plays in lan-
guage evolution. In particular, it requires considering how lin-
guistic universals might emerge from the process of languages
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Figure 1: Iterated learning. (A) Each learner sees data pro-
duced by the previous generation, forms a hypothesis about the
process by which those data were produced, and uses this hy-
pothesis to produce the data that will be supplied to the next
generation. (B) In iterated learning with Bayesian agents, each
learner sees data d, and uses Bayes’ rule to compute the poste-
rior probability of each hypothesis h, p(h|d). The learner sam-
ples a hypothesis from this distribution, and then generates data
from the distribution p(d|h).

being learned anew by each generation (e.g., [29]).

The connection between language learning and language
evolution can be explored using the iterated learning model, a
simplified model of the process by which languages are trans-
mitted from one generation to the next [30]. In this model, each
generation consists of one or more learners. Each learner sees
some data, forms a hypothesis about the process that produced
that data, and then produces the data which will be supplied to
the next generation of learners. A schematic illustration of this
process appears in Figure 1A. By making assumptions about
the way in which learners select hypotheses — such as using
Bayesian inference — we can begin to explore how individual
inductive biases influence the languages that are ultimately pro-
duced by iterated learning.

In iterated learning with Bayesian agents, each learner uses
Bayes’ rule (Equation 1) to infer the language spoken by the
previous learner, and generates the data provided to the next
learner using the results of this inference (see Figure 1B). The
first learner sees data dop, computes a posterior probability dis-
tribution over hypotheses according to Equation 1, chooses a
hypothesis h1 according to this distribution, and generates new
data d; by sampling from the likelihood function associated
with that hypothesis. These data are provided to the second
learner, and the process continues, with the nth learner seeing
data d,,—1, inferring a hypothesis h,, and generating new data
d,. We assume that all learners share the same prior probability
distribution.

As a first step in analyzing this process, we can examine
how the hypotheses chosen by the learners change as a result of
iterated learning. The probability that the nth learner chooses
hypothesis ¢ given that the previous learner chose hypothesis j
is

P = ilhn—1 =) = p(hn = ild)p(dhn—1 = j) (2)
d

where p(h, = i|d) is the posterior probability obtained from
Equation 1. This specifies the transition matrix of a Markov
chain, with the hypothesis chosen by each learner depending
only on that chosen by the previous learner.

The stationary distribution of the Markov chain defined by
Bayesian iterated learning is p(h), the prior assumed by the
learners [31]. The Markov chain will converge to this distribu-
tion, provided it satisfies the conditions for ergodicity — roughly,
that there is no state that cannot be reached in a finite amount

of time from any other state (e.g., [32]). This means that the
probability that the last in a long line of learners chooses a
particular hypothesis is simply the prior probability of that hy-
pothesis. A similar result can be obtained if we consider how
the data generated by the learners change: after many gener-
ations, the probability that a learner generates data d will be
p(d) = 3, p(d|h)p(h), the probability of d under the prior
predictive distribution.

The convergence of iterated Bayesian learning to a distri-
bution determined by the prior of the learners has important
implications for explaining linguistic universals. It indicates
that the asymptotic probability with which a language is spoken
depends only upon its prior probability, and is not affected by
any of the properties of the language. Explaining linguistic uni-
versals thus requires explaining why learners assign high prior
probability to particular properties of languages. It is tempting
to attempt to explain these prior probabilities in terms of an in-
nate language faculty [14], but the biases reflected in the prior
probabilities of the learners need not be innate, or language-
specific. Every learning algorithm assumes some kind of in-
ductive bias, and this bias is essential to the success of the al-
gorithm [33, 34]. The biases exhibited by human learners could
reflect general-purpose information-processing constraints, or
result from knowledge acquired in other domains.

Going beyond language evolution, these theoretical results
suggest another method for exploring human inductive biases:
implement iterated learning in the laboratory with human learn-
ers, and examine which hypotheses survive. To test this method,
we need to simulate iterated learning using stimuli for which
human inductive biases are already well understood. Experi-
ments using one-dimensional functions [35], binary concepts
[36], and predictions of everyday quantities [37] have confirmed
that iterated learning seems to converge to a distribution over
hypotheses consistent with inductive biases documented using
other tasks.

Having established that the basic prediction of convergence
to the prior seems to hold, we can begin to explore how labo-
ratory simulations of iterated learnimg can be used to explore
questions more directly related to language acquisition. As
mentioned above, one basic question in language acquisition is
how learners deal with probabilistic variation resulting from in-
consistent input: whether they regularize the language to a more
deterministic form, or simply reproduce the probabilities in the
input. Iterated learning provides a sensitive tool for exploring
this question, and experiments in the transmission of a simple
language suggest that people have a bias towards regularization
that emerges over several generations [18].

When combined with probabilistic models of cognition, it-
erated learning provides a powerful tool for exploring induc-
tive biases. It also provides an interesting link between human
and machine learning that goes beyond simply analyzing human
learning as statistical inference. The stochastic process that it-
erated learning with Bayesian agents defines on (h, d) pairs is
formally equivalent to Gibbs sampling, a form of Markov chain
Monte Carlo that is widely used in Bayesian statistics and statis-
tical physics [38, 39]. This connects iterated learning to an ex-
tensive literature examining the properties of Gibbs sampling,
including results on convergence rates (e.g., [40]). This con-
nection makes it possible to explore how assumptions about the
nature of the hypothesis space considered by language learners
influence the rate at which languages converge to the prior, al-
lowing us to begin to explore whether the properties that we see
across human languages might simply be residues of a common
origin [41].



5. Conclusion

Probabilistic models of cognition provide a new set of tools for
characterizing human learning. These tools allow us to analyze
the assumptions that underlie human learning, understand how
learning can take place at multiple levels of abstraction, and
explore the link between learning and cultural evolution. How-
ever, they also provide the foundation for developing new ma-
chine learning methods that might come closer to human perfor-
mance: by identifying the nature of human inductive biases, we
can begin to develop automated systems that possess the same
biases, and hopefully the same ability to rapidly and accurately
solve inductive problems.
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