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Abstract
How does the behavior of individuals in a society influence
whether knowledge accumulates over generations? We explore
this question using a simple model of cultural evolution as a
process of “iterated learning,” where each agent in a sequence
learns and passes on a piece of information. Using both math-
ematical analyses involving rational Bayesian agents and lab-
oratory experiments with human participants, we vary whether
agents observe data from the environment and what kind of
information they receive from the previous agent. Our mathe-
matical and empirical results both suggest that merely observ-
ing the behavior of other learners is not sufficient to produce
cumulative cultural evolution, but that knowledge can be accu-
mulated over generations when agents are able to communicate
the plausibility of different hypotheses.

Introduction
What we as humans know about the world is largely informed
by what we can learn from others. Our beliefs and behaviors
are built up not only by our own interactions with the environ-
ment around us, but by observations of the behavior of oth-
ers, and by receiving explicit statements of belief. Through
this ability to build off the knowledge and behaviors of those
around us, human societies are able to accumulate informa-
tion, the so-called “ratchet effect” (Tomasello, Kruger, & Rat-
ner, 1993). Large, lasting changes in our beliefs develop by
accruing small, incremental changes over many generations.
In this paper, we use a simple model to characterize the con-
ditions necessary for this accrual, and compare the predic-
tions of this model to experimental results. In particular, we
suggest that these changes will accumulate if learners have
access to the actual beliefs of their teachers, as opposed to
merely observations of behavior informed by those beliefs.

Much of the previous discussion about cumulative cultural
evolution has focused on the relationship between the teacher
and the learner. For example, Tomasello (1993) largely
claims that the ratchet effect is a product of sophisticated imi-
tative learning, emphasizing the advantages of joint attention
and a theory of mind. Gergely and Csibra (2005) suggest
that “natural pedagogy” plays a role, focusing on how human
teachers go out of their way to ease the learning process for
children, providing highly tailored information and a greatly
enriched learning environment. Both of these mechanisms
increase the fidelity of cultural transmission, providing the
opportunity for the ratchet effect occur.

Rather than focusing on the specific actions or abilities
of teachers and learners, we consider the kind of informa-
tion passed between generations. We model the process
of cultural evolution using an “iterated learning” framework
(Kirby, 2001), in which successive generations are modeled
as a sequence of agents in which each agent learns from

the previous agent. Iterated learning models have recently
been used in simulations exploring the emergence of linguis-
tic structures (Kirby, 2001) and in experiments with human
participants revealing inductive biases in specific domains
(Kalish, Griffiths, & Lewandowsky, 2007). We explore vari-
ants of this framework where each agent learns not only from
the behavior of the previous generation, but also from ob-
serving the world and from theories summarizing the infer-
ences of the previous generation. The consequences of each
variant for the accumulation of knowledge are determined
through a combination of mathematical analyses of sequences
of Bayesian agents and an experiment in which cultural evo-
lution is simulated in the laboratory with human participants.

Our mathematical and empirical analyses produce two re-
sults that help to identify the conditions under which cumu-
lative cultural evolution can occur. First, we show that if the
information passed from teacher to learner is limited to the
learner’s observations of the teacher’s behavior, then cumula-
tive cultural evolution will not take place. We then go on to
show that cumulative cultural evolution can occur if teachers
give learners information about which hypotheses they be-
lieve are plausible, rather than just behaviors consistent with
the most plausible hypothesis. These results suggest that a
capacity for communicating such beliefs may be necessary in
order for the cultural ratchet to operate.

The plan of the paper is as follows. The next section intro-
duces our formal framework, and summarizes our mathemati-
cal results. We then outline the motivation for our experiment
with human learners, an describe the procedure and results of
that experiment. The paper concludes with a discussion of the
implications of these results for understanding the conditions
under which the cultural ratchet can operate, and the kinds of
cognitive capacities that teachers and learners need to possess
in order to satisfy these conditions.

Analyzing Cultural Transmission
Our first step in exploring the conditions that result in cu-
mulative cultural evolution is analyzing variants of iterated
learning in which the learners are rational Bayesian agents.
The assumption of rationality allows us to examine how ideal
learners use the information transmitted between generations,
and allows us to be explicit about the biases that influence
learning. Specifically, we assume that all agents have a shared
set of hypotheses H, and a prior distribution over these hy-
potheses p(h) describing the degree to which each h ∈ H is
believed to be true in the absence of any evidence.

Starting with these prior beliefs, agents observe the world
and receive information from other agents, resulting in data,



hypothesis

data data data

hypothesis

theory

...

(c)

...theory theory

hypothesishypothesis

(b)

...data data

hypothesishypothesis

data

(a)

new data

new datanew data

new data

Figure 1: Three models of cultural evolution. (a) In the
pure iterated learning model, each learner receives data from
the previous learner and generates data provided to the next
learner. (b) In the mixed data model, each learner also re-
ceives data generated by the external world. (c) In the pos-
terior passing model, each learner passes information about
his or her current posterior distribution over hypotheses to the
next learner (here taking the form of a theory).

d. Using these data, each agent updates his or her beliefs by
computing a posterior distribution p(h|d) using Bayes’ rule

p(h|d) =
p(d|h)p(h)

∑h′∈H p(d|h′)p(h′)
(1)

where p(d|h) is the likelihood, expressing how probable the
data are given a particular hypothesis, and the sum in the de-
nominator ensures that the result is a normalized probability
distribution. The learner can now choose a hypothesis based
on its posterior probability. Intuitively, Bayes’ rule provides
a way to combine prior beliefs with observations, with the
probability assigned to each hypothesis being modified by the
extent that it agrees or conflicts with the evidence.

In the remainder of this section we describe three models of
cultural evolution, varying in the nature of the data provided
to learners. These three models are illustrated schematically
in Figure 1. We analyze how the hypotheses selected by the
learners change over time in each of these models, allowing
us to determine whether the assumptions behind the model
are sufficient to support cumulative cultural evolution.

Pure Iterated Learning
The first model might be called the pure iterated learning
model, as it represents the standard scenario assumed in it-
erated learning. In this scenario, each agent receives only
data which are generated based on the hypothesis maintained
by the previous agent. An intuitive example of this sort of
process is the game “telephone”, where each individual in a

chain hears some message whispered by the previous person,
and whispers what they think they heard to the next person.

More formally, all agents share a prior p(h). There is some
“true” hypothesis h∗ which is used to initiate the process. The
first agent receives data d∗ sampled from the distribution as-
sociated with this hypotheses, p(d∗|h∗). This agent’s beliefs
are updated by applying Bayes rule (Equation 1) to reach a
posterior p(h1|d∗) ∝ p(h1)p(d∗|h1), samples a hypothesis h1
from this distribution, and produces data d1 by sampling from
p(d1|h1).1 These data are passed to the second agent, and
each subsequent agent similarly receives and transmits data.

This process defines a Markov chain over hypotheses, with
transition matrix p(hi|hi−1) = ∑di−1 p(hi|di−1)p(di−1|hi−1).
This chain has the prior p(h) as its stationary distribution,
meaning that the probability a learner chooses a hypothe-
sis h asymptotically converges to p(h) (Griffiths & Kalish,
2007). Laboratory experiments simulating this process of it-
erated learning with human participants produce results that
are consistent with this prediction (Kalish et al., 2007).

An intuitive explanation for this convergence result can be
provided by considering the “telephone” example. In this
case, we expect that the original message tells us almost noth-
ing about the message heard by a person far down the chain.
This suggests that information is being lost over time. Loss
of information allows the prior to influence the hypotheses
selected by learners, who will use their a priori expectations
to fill the gaps. Each generation, in reconciling the received
data with their prior, thus passes less surprising data to the
next generation. The prior itself is the only distribution over
hypotheses that will be stable under this process.

Mixed Data
We can take a step towards producing cumulative cultural
evolution by imagining a case where each person both re-
ceives data from the previous person, and observes data from
the external world. This is the mixed data case. Receiv-
ing data from the world is necessary for cumulative cultural
evolution, as agents are actually trying trying to learn about
something external to their society, rather than a purely cul-
tural creation. As an example, we might imagine that a hunter
observes locations where antelope can be found grazing, but
more experienced hunters also recommend specific locations
where they would expect to find antelope. By combining
these specific locations with prior beliefs about where ante-
lope are found, the hunter reaches a new set of beliefs about
where antelope are likely to be, and can tell other hunters
about specific locations where he expects to find antelope.

The formal description is a simple extension of the above
model. All agents share some prior p(h). Each agent i
still receives data di from the previous agent. Additionally,
the ith agent receives some data d∗i from the world, gen-
erated from p(d∗i |h∗), where h∗ is the true hypothesis that

1All results given in this section still hold if learners sample data
directly from the posterior predictive distribution, summing over all
hypotheses, rather than sampling a hypothesis first.



characterizes the state of the world. The agent then up-
dates his or her beliefs by applying Bayes’ rule as in Equa-
tion 1, with p(hi|di,d∗i ) ∝ p(hi)p(di|hi)p(d∗i |hi), and gener-
ates data to pass on to the next agent, with p(di+1|di,d∗i ) =
∑hi p(hi|di,d∗i )p(di+1|hi). As a Markov chain over hy-
potheses, this would have transition matrix p(hi+1|hi) =
∑di ∑d∗i p(hi|di,d∗i )p(di|hi)p(d∗i |h∗).

An analysis similar to that for the case of pure iter-
ated learning shows that this Markov chain will converge
to the average of the posterior with respect to the dis-
tribution from which data from the world are generated,
∑d∗ p(h|d∗)p(d∗|h∗). Thus, cultural transmission does not re-
sult in progress: asymptotically, learners will choose exactly
the same hypotheses as if they had only seen data generated
from p(d∗|h∗), receiving no benefit from cultural transmis-
sion. Intuitively, it should be clear that this process will not
converge to the prior, because of the data observed from the
world, but it should also not converge to the truth, because
each individual is still using the same prior and only has a
small amount of data – the combination of d∗ and d – from
which to learn. In our hunting example, we might suppose
that all hunters have a strong prior belief that antelope are
likely to hide in thick brush, but in fact antelope are more
likely to graze in open fields. Then even if very few of the
observations of antelope are in thick brush, each hunter will
nevertheless recommend thick brush locations.

Posterior Passing
When learning from others, we are usually not limited to
merely observing their behavior or listening to their predic-
tions. Often, we receive actual statements of belief. This is
the last scenario we consider, which we call posterior pass-
ing. Each agent has access to the beliefs of the preceding per-
son, as expressed in a posterior distribution over hypotheses
rather than data reflecting those beliefs, and takes that poste-
rior distribution as their own prior distribution. Agents also
observe data from the world. A model along these lines was
used by Boyd and Richerson (1993) to analyze balancing tra-
dition with innovation in cultural evolution. As an example,
we can return to our hunters, where this time experienced
hunters help train novice hunters by laying out a set of hy-
potheses about the habits of antelope, and indicating the ex-
tent to which they think each of these hypotheses is likely.

This process converges to the truth – the beliefs of succes-
sive generations will converge on the hypothesis h for which
p(d∗|h) is closest to the distribution p(d∗|h∗) that character-
izes the state of the world h∗ (where proximity is measured
by the Kullback-Leibler divergence, Cover & Thomas, 1991).
The intuitive explanation is that taking the teacher’s poste-
rior distribution as the learner’s prior makes it possible to
preserve the inferences of previous learners, in contrast to
the mixed data case. Formally, if the first agent’s posterior
is p(h0|d∗0), and the second agent takes this as a prior, then
the resulting posterior is p(h1|d∗0 ,d∗1). If agents 0 through
(i−1) do this, then the posterior distribution of the ith agent
is p(hi|d∗0 , . . . ,d∗i ). Thus, the whole chain acts like a single

agent who has seen all of the data, and convergence to the
truth follows from standard proofs of the asymptotic consis-
tency of Bayesian inference (e.g., Robert, 1994).2

Summary
These three models describe fundamentally different kinds of
processes. The pure iterated learning model is applicable in
contexts where the thing being learned is purely about the
society the agents live in – the structure of a language, or
taboos and social norms. The mixed data case and the pos-
terior passing case are both situations where the agents are
actually trying to learn about the world, but are distinct in
the kind of transmission that occurs. The crucial point is that
only in the posterior passing case are the inferential contri-
butions of all individuals preserved. In the mixed data case,
the chain will converge, but not to the true distribution; the
progress made by each individual upon observing data from
the world is undone by the next participant’s inferential pro-
cess, and thus the cultural ratchet slips. This analysis makes a
clear prediction about the conditions under which cumulative
cultural evolution will take place, which we can now test in
an experiment with human participants.

Exploring the Cultural Ratchet through
Function Learning

We test the predictions of our models by extending the func-
tion learning paradigm used by Kalish et al. (2007). In this
paradigm, people learn a one-dimensional function relating
two variables x and y. Each person receives data in the form
of a set of (x,y) pairs, which are points generated by that
function. After receiving these data each person is given a
sequence of x values and asked to provide corresponding y
values based on their beliefs about the function. The result-
ing (x,y) pairs indicate what the person has learned.

This paradigm gives us a convenient way to test the pre-
dictions of our models. Previous experiments using this
paradigm have shown that people are strongly biased towards
learning positive linear functions, finding these functions easy
to learn, and have difficulty with non-monotonic functions
(Busemeyer, Byun, DeLosh, & McDaniel, 1997). We inter-
pret this inductive bias as a prior distribution placing high
probability on positive linear functions. If we construct a sce-
nario in which the true function people should be learning
has low probability under this shared prior, such as a non-
monotonic function, we should be able to determine whether
a given scenario results in convergence towards the prior or
towards the true function. In particular, if each person re-
ceives an amount of data that would normally be insufficient
to allow them to learn a nonmonotonic function, cumulative
cultural evolution should be the only way for people to learn
the true function. Even if convergence is not directly observ-
able in the lab, we can still evaluate whether a few genera-

2In fact, agents need not communicate the entire posterior dis-
tribution: Sampling hypotheses from the posterior is sufficient to
converge to the truth, as in sequential Monte Carlo methods such as
particle filtering (Doucet, Freitas, & Gordon, 2001).



tions of posterior passing produces results that are closer to
the true function than those produced by mixed data.

Methods
Participants
We collected data from 208 participants drawn from the uni-
versity community. Participants received either course credit
or reimbursement of $10/hour for volunteering. These par-
ticipants were arranged into chains of eight participants each,
specifically eleven posterior passing chains, ten mixed data
chains, and five pure iterated learning chains. Fewer pure
iterated learning chains were used because this case is equiv-
alent to an existing experiment by Kalish et al. (2007).

Stimuli and Apparatus
Participants completed the experiment in individual booths.
All stimuli and responses were displayed on and recorded
through an Apple iMac. In each trial, a stimulus value x was
presented in the form of a horizontal blue bar, 0.75 cm wide
and from 0.5 cm to 18.75 cm long (corresponding to x = 0
and x = 1 respectively). The stimulus bar was presented in
the upper-left section of the screen, with its upper left corner
7 cm from the left edge and 3 cm from the top of the screen.
Participants gave a response value y by using a slider to ad-
just the height of a vertical red bar of the same dimensions
as the stimulus bar. The response bar was 0.5 cm from the
bottom of the screen and 5.5 cm from the right edge of the
screen. Participants were able to adjust the response bar us-
ing a slider until satisfied, and then submitted their responses
by clicking a button approximately 4 cm to the right of the
red bar. Feedback was given in the form of a yellow bar (of
the same dimensions) approximately one cm to the left of the
response bar. Additionally, in the “posterior-passing” condi-
tion, text was displayed in a box on screen at the same time
as the stimulus, response and feedback bars.

Stimuli were taken from a pool of 100 values evenly spaced
on [0.005,0.995]. The true function that people were sup-
posed to learn was y = f (x) = 4(x−0.5)2. Given that we fix
the range of stimulus and response values to [0, 1], this is a
concave up parabola, with f (0) = 1, f (0.5) = 0, f (1) = 1.

Procedure
All conditions of the experiment followed the same general
structure. During a training phase, a participant was shown a
sequence of stimulus values. For each of these values, with
the stimulus bar still on screen, participants chose a response
by adjusting the slider, and submitted their response by click-
ing a button. The feedback bar was then displayed showing
the correct response for the given stimulus. This was followed
by a one second pause during which all three bars were dis-
played. Participant responses were considered correct if their
error was less than 5% of the bar’s range of values (slightly
less than one cm). Participants with correct responses moved
immediately onto the next trial. If a participant’s response
was outside this margin of error, a tone sounded. The partici-
pant then adjusted the response bar to match the feedback bar,

and submitted this value. This was followed by a two second
pause, and the onset of the next trial. During a test phase,
participants performed the same task, but without feedback;
given a presentation of the blue bar, they simply submitted a
guess of the corresponding height of the response bar.

Participants were divided into chains of eight participants
in each of the three conditions. In all chains, participants were
trained using some set of stimulus/response values, and then
tested using 50 distinct stimulus values. Conditions differed
in the data that were used to train participants. Across all
conditions, the first participant in any chain was trained with
50 distinct data points from the true function f (x). In the
pure iterated learning condition, following participants were
trained using the 50 stimulus/response pairs generated by the
previous participant during the test phase. In the mixed data
condition, subsequent participants were trained with these 50
recycled values, but in addition, received 50 data points gen-
erated from the true function. In the posterior passing con-
dition, all participants were trained using only data from the
true function (again, 50 data points). In addition, each partici-
pant received a description written by the previous participant
describing what the previous participant thought the function
was. This description was displayed on screen during both
training and test phases. Each participant wrote a correspond-
ing description at the end of the test phase.

Results
Example chains from each condition are shown in Figure 2.
The pure iterated learning condition quickly converged to a
positive linear relationship for all but one chain, which con-
verged to a negative linear relationship. This is consistent
with the results of Kalish et al. (2007), in which 28 of 32
chains converged to a positive linear relationship and the re-
mainder converged to a negative linear relationship. Chains
from the mixed data conditions generally looked like noise,
sometimes with small areas where the participant latched
onto something correct. Sometimes a participant in these
chains would induce a linear relationship, though this gen-
erally disappeared from the chain within a few generations.
Importantly, the responses of later participants in a chain re-
sembled the responses of the first participant, consistent with
the prediction that receiving data from the previous genera-
tion should ultimately not improve performance. Lastly, the
posterior passing chains did tend to approach the true func-
tion more closely than the other groups. However, this was
not necessarily actual convergence. In a few cases, a chain
would approach the true function, but a participant late in the
chain would infer the wrong relationship, derailing conver-
gence.

We performed a more quantitative analysis of the data by
computing the root mean square error (RMSE) with respect

to the true function, RMSE =
√

∑n
i=1( f (xi)−yi)2

n , for each par-
ticipant. Figure 3(a) shows this error for each participant,
grouped into chains. Though the raw data is messy, we can
still glean quite a lot from it. The pure iterated learning
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Figure 2: Example chains from each condition. Each row is a single chain, with each plot representing a participant. Training
data are shown in green, while test responses are shown in blue.

Table 1: Results of ANOVA comparing average RMSE of
chains across conditions

comparison df1 df2 F p
all conditions 2 23 15.12 6.4e-5
pure v. mixed data 1 13 23.97 0.0003
pure v. posterior passing 1 14 20.54 0.0005
mixed data v. posterior passing 1 19 8.67 0.0083

Table 2: Results of ANOVA with the RMSE values of indi-
vidual participants across conditions in each generation

Generation F p Generation F p
1 1.11 0.3480 5 7.19 0.0038
2 1.03 0.3747 6 6.24 0.0068
3 4.44 0.0235 7 3.82 0.0368
4 9.06 0.0013 8 4.13 0.0293

Note: In all cases df1 = 2,df2 = 23.

chains proceed quickly to an RMSE of around 0.5. Given
that responses were limited to [0,1], this shows the total de-
coupling of the chain from the true function, as expected. We
note that the mixed data and posterior passing chains had a
highly varied mix of values, where the error changes dramat-
ically over the generations. However, it is also clear that the
only chains which get at all close to the true function (for in-
stance, RMSE < 0.2) are posterior passing chains. Table 2
gives the results of comparing the RMSE across conditions at
each generation via a one-way ANOVA, showing that this dif-
ference is statistically significant after just three generations.

The separation between the conditions becomes clearer if
we track the cumulative average of the RMSE for each chain.
Figure 3(c) shows these cumulative averages for each chain as
a function of generation, and Figure 3(d) averages these val-
ues for each condition. Posterior passing chains as a group

tended to have lower error than the mixed data chains. The
difference in performance of chains across conditions was
significant. Table 1 (top) gives the results of comparing the
average RMSE for each chain across conditions, showing
highly significant differences between conditions.

Discussion
We have used the iterated learning framework to define sev-
eral simple models of cultural evolution, casting the beliefs
of each generation as a random variable in a Markov chain.
This makes it possible to analyze the convergence properties
of these Markov chains, making predictions about the condi-
tions under which cumulative cultural evolution will emerge.
Our experimental results are consistent with these predic-
tions: Cumulative cultural evolution does not occur when
learners simply observe the behavior of a previous learner,
but does occur when learners communicate their beliefs about
the state of the world.

The ability to keep the inferential contributions of previ-
ous generations is, we claim, what allows the cultural ratchet
to work. Whether in making tools or inferring properties of
the world around us, retaining actual ideas and hypotheses
over time prevents cultural evolution from backsliding. In the
posterior passing case, we observed that a sequence of par-
ticipants is able to make successively better inferences over
several generations. This is in stark contrast to the mixed data
case, where the last participant looks just as confused as the
first. The inferential steps taken by each generation actually
degrade any progress made by the previous generation.

This work introduces several questions to be answered by
future investigation. A skeptical reader might ask, for in-
stance, what the progress of mixed data chains looks like
when the amount of data from the world and data from the
previous participant changes. Could it merely be that receiv-
ing the posterior beliefs of the preceding generation functions
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Figure 3: Root mean squared error (RMSE) to the true func-
tion at each generation of iterated learning. In all plots, the
pure iterated learning condition is given in red, the mixed
case is given in blue, and the posterior-passing case is given in
green. (a) RMSE for each chain. (b) Average RMSE for each
condition. (c) Cumulative average RMSE for each chain. (d)
Average cumulative RMSE for each condition.

just like receiving more data? Our model indicates that no
amount of observational data is sufficient to produce a ratchet
effect.

Two other related extensions involve agents that reason
about the inferences of other agents. First, what if in the
mixed data case, datapoints were labeled with their source?
If each learner knows which datapoints are predictions from a
previous agent, it is conceivable that learners would use these
to recover an estimate of the teacher’s posterior beliefs. Sec-
ondly, what behavior would we see if in the mixed data case
both teachers and learners were both aware that predictions
would be passed between generations (as in Shafto & Good-
man, 2008)? We might expect teachers to tailor their predic-
tions to help the learners, implementing the kind of commu-
nication that might convey information about plausible hy-
potheses from one generation to the next.

Other approaches to simulating cultural evolution in the
lab may also be useful, particularly for exploring the
teacher/learner interaction. For instance, Caldwell and Millen
(2008) introduced a method for exploring cumulative cul-
tural evolution in the laboratory using a problem solving task
(building better paper airplanes, and taller spaghetti/clay tow-
ers). Cultural evolution was simulated by replacing partic-
ipants one by one, allowing them to directly interact with
the previous generation. This establishes a richer setting to
model, and the opportunity to observe interactions to deter-
mine the kind of information being transmitted.

The key result of our mathematical and empirical analyses
is that communication of theories about the world, and not
just observational learning, is important in order for the in-
ferences of each generation to be maintained. In the broadest
possible scope, our findings tell us that cumulative cultural
evolution requires communication, not merely observation.
Considering the cognitive capacities that would support this
kind of communication may provide a means of understand-
ing what makes humans unique in being able to exploit the
cultural ratchet.
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