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Competing Strategies in Categorization:
Expediency and Resistance to Knowledge Restructuring

Stephan Lewandowsky, Mike Kalish, and Thomas L. Griffiths
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The authors investigated people's ability to restructure their knowledge when additional information
about a categorization task is revealed. In 2 experiments, people first learned to rely on a fairly accurate
(but imperfect) predictor. At various points in training, a complex relationship between 2 other predictors
was revealed in a schematic diagram that could support perfect performance. In Experiment 1, people
adopted the complex strategy when it was revealed at the outset but were unable to restructure their
knowledge after the expedient predictor had been learned. In Experiment 2, expedient knowledge
persisted even with an adaptive display. The persistence of expedient knowledge is explained by
associative blocking of potential alternative cues. A 3rd experiment analyzed the strategies people use
with and without the diagram. The study confirmed that the diagram, when presented at the outset,
significantly alters people's approach to the task.

Knowledge restructuring is often observed when people develop
new skills, both in the real world and in the laboratory; paradox-
ically, expertise at these skills in some cases also seems to prevent
restructuring of knowledge. Little is known about the processes
involved in knowledge restructuring, and our investigation formed
a first step toward describing those processes in order to better
understand when restructuring occurs and when it is resisted.

Specifically, we examined people's ability to adapt and restruc-
ture their knowledge when previously concealed information about
a categorization task was revealed halfway through training. The
task could be performed either by relying on an expedient single
predictor that permitted fairly accurate (but imperfect) perfor-
mance or by learning one of several complex (but potentially
perfect) strategies involving two predictors. It was known from
previous research that people can use a complex strategy for this
task if the relationship between predictors is revealed in a sche-
matic diagram before training (Lewandowsky, Dunn, Kirsner, &
Randell, 1997). Here, we asked two questions: First, can people
use the diagram to restructure their knowledge after having learned
to rely on the expedient predictor, and what are the processes
underlying that restructuring? Identification of those processes
requires exploration of the second question, namely what exact
strategy or rule people used with and without the diagram. We
report three experiments in which the diagram was presented at
various points in training.
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To foreshadow our principal conclusions, when the expedient
strategy was learned first, people subsequently could not be en-
couraged to adopt a more complex strategy, regardless of whether
the underlying relationship between predictors was revealed in a
static diagram (Experiment 1) or through an adaptive display
(Experiment 2). It was only when the static diagram was presented
at the outset that people adopted a complex strategy involving two
predictors (Experiments 1 and 3). In contrast to the persistence of
expediency, the complex strategy was, after extended practice,
spontaneously abandoned in favor of the expedient approach (Ex-
periment 1). We explain this asymmetry of knowledge restructur-
ing by appealing to two associative learning principles, blocking
and retrospective revaluation, that underlie the persistence of ex-
pediency and the gradual disposal of the complex alternative,
respectively. Our results provide a first glimpse into the processes
underlying knowledge restructuring.

Knowledge Restructuring

The acquisition of skill and expertise often entails the repeated
restructuring of knowledge, defined here as a shift to a new set of
rules, strategies, or declarative knowledge to perform a task with-
out overt changes to the stimuli or the learning environment. A
review of the literature reveals an unresolved conflict between, on
the one hand, reports of flexible and successful knowledge restruc-
turing and, on the other hand, instances in which people resisted
restructuring.

Successful Knowledge Restructuring

In an early report, spontaneous knowledge restructuring was
implied by discontinuities between periods of learning. Bryan and
Harter (1899, cited in Shifrrin, 1996) observed the fluency of
Morse telegraph operators across extended practice and found that
operators seemingly first learned to send and receive individual
letters, then words, and then entire sequences of words. These
periods of learning were separated by plateaus during which per-
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formance changed little, suggesting that existing knowledge had to
be consolidated and restructured for further learning to occur.

More recently, in a longitudinal study involving undergraduate
science students, Pearsall, Skipper, and Mintzes (1997) examined
the repeated restructuring of emerging knowledge in biology.
Extensive restructuring tended to occur early in the semester,
followed by periods of primarily incremental learning. Davies
(1994) provided a similar picture of the development of computer
programming expertise.

Turning to controlled laboratory experiments, Staszewski
(1988) trained a participant to become expert on mental multipli-
cation problems involving multidigit operands (e.g., 52 X 44)
using an explicitly provided strategy. After 500 sessions of prac-
tice, the expert was taught another, computationally more efficient
strategy. The new technique almost immediately gave rise to
considerably faster solution times, suggesting rapid restructuring
of knowledge. A quantitative reexploration of these data by
Delaney, Reder, Staszewski, and Ritter (1998) showed that per-
formance on each strategy was described by its own learning
function, confirming that knowledge restructuring was both rapid
and extensive.

Resistance to Knowledge Restructuring

The preceding results stand in conflict to reports of resistance to
knowledge restructuring during the acquisition of expertise, for
example as observed by Lesgold et al. (1988) with radiologists.
Radiological diagnosis can be viewed either as a perceptual pattern
recognition task, in which some complex set of features must be
detected to enable identification of a disease, or as a cognitive
inference task, in which it must be determined which disease is
consistent with an identified set of features. Lesgold et al. identi-
fied perceptual learning as occurring early during expertise acqui-
sition, whereas cognitive learning, which relies on successful
perceptual feature extraction, necessarily occurs during later stages
of training. Accordingly, Lesgold et al. observed a nonmonotonic
relationship between diagnostic accuracy and level of expertise;
accuracy suffered for some time after knowledge had been restruc-
tured from a perceptual to a cognitive strategy. According to
Lesgold et al., the decline in accuracy occurred because the new
conceptual approach had to compete with strong prior perceptual
learning. Lesgold et al. suggested that those "points of impasse"
(p. 340) at which earlier learning stands in conflict to new and
improved ways to approach a task are common during the acqui-
sition of expertise.

In another case, prolonged resistance to knowledge restructuring
was evident when experts with upward of 15 years experience
were found to use an expedient but imperfect approach to a highly
domain-relevant task (Lewandowsky & Kirsner, 2000). The task
used in that study, prediction of fire spread by expert bush-fire
commanders, was adapted for the present experiments and thus
deserves to be introduced in some detail.

The spread of bush fires is primarily determined by two physical
variables, wind and slope of the terrain (Albini, 1984). All other
variables being equal, fires tend to spread with the wind and uphill.
Typically, with moderate to strong winds, the slope of the terrain
either accelerates the wind-driven fire (when slopes are uphill with
respect to wind direction) or slows its spread (downhill slopes).
Psychologically interesting complexities arise with light downhill

winds, in which case the two predictor variables are in competi-
tion. The outcome—whether fire spreads downhill with the wind
or uphill against the wind—then depends on the relative strengths
of the predictors.

Lewandowsky and Kirsner (2000) found that under those cir-
cumstances the experts' predictions depended on an additional
variable, the physically irrelevant problem context. When a fire
was presented as one that had to be brought under control, experts
uniformly expected it to spread with the wind. When an identical
fire was presented as a "back bum," experts predicted the reverse,
namely that the fire would spread uphill and into wind. Back burns
are fires that are lit by firefighters in the path of the advancing
main fire to starve it of fuel. Back burns differ from to-be-
controlled fires in several ways; being lit by firefighters they rarely
roar out of control, they tend not to be used in strong wind
conditions, and they tend to be lit in proximity of natural fire
breaks. Nonetheless, back burns obey the same laws of physics as
to-be-controlled fires.

The finding by Lewandowsky and Kirsner (2000) that, depend-
ing on the problem context, experts make two opposing predictions
under physically identical conditions, arguably reflected an expe-
dient strategy because the frequency of the two opposing fire
directions differs with context: Most fires that need to be brought
under control are wind-driven overall (because fires tend to cover
areas that include slopes of various orientations), whereas back
burns are more likely to be slope-driven (because ignition points
are selected to maximize the likelihood of a back burn advancing
toward the wind-driven to-be-controlled fire). Hence, on a purely
statistical basis, an expedient focus on context would predict fire
direction with reasonable accuracy and without consideration of
the more complex interaction between wind and slope.

What might have caused this persistent expert expediency?
Given the strong emphasis on the physics of fire during training,
why did the expert fire commanders rely on context? One possi-
bility is that the interaction between wind and slope is simply too
complex to be learned, even after much training and extensive
experience. This possibility was ruled out by Lewandowsky et al.
(1997), who showed that novice participants can learn to rely on
slope and wind when their relationship was visualized at the outset
of training. It is more likely, therefore, that the expert bush-fire
commanders relied on context because initial learning of that
expedient but imperfect rule prevented subsequent knowledge
restructuring.

Observations in other domains support this assertion. For ex-
ample, Lightfoot and Shiffrin (1992), using a visual search task,
trained participants to develop unitized representations of novel
visual stimuli comprising several features (horizontal and slanted
lines). When the task was subsequently simplified to permit target
identification on the basis of a single feature match, no immediate
improvement in performance was observed. Instead, people
showed gradual further improvement along the same initial learn-
ing curve. Similarly, in a probabilistic prediction task, Edgell and
Morissey (1987) observed the persistence of expedient initial
learning. In their task, a single cue was initially predictive of the
outcome, and people continued to rely on that cue despite subse-
quent opportunities for knowledge restructuring when the config-
uration of two cues became predictive.
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An Unresolved Conflict

Overall, there is clear evidence that knowledge restructuring
occurs during skill acquisition. Paradoxically, there is also clear
evidence to the contrary, that people find restructuring of their
knowledge difficult or resist it altogether. Nothing is known about
the cognitive processes underlying restructuring or resistance
against it. In particular, it is currently not possible to anticipate, for
any given task or paradigm, whether knowledge restructuring will
occur, either spontaneously or in response to experimental encour-
agement. As a first step toward understanding knowledge restruc-
turing, and to seek a possible reconciliation between those op-
posing outcomes, we chose to study skill acquisition in
a categorization learning paradigm using a variant of the fire-
prediction task.

Categorization Learning

In categorization learning, people learn to classify stimuli into
one of several categories on the basis of several diagnostic features
or predictors. For example, people may learn to classify cartoon
faces into the MacDonalds and the Campbells categories on the
basis of features such as nose length, curvature of mouth, and
so on.

Categorization is one of the most studied of all cognitive skills
and, for several reasons, is ideally suited for an examination of
knowledge restructuring. First, categorization learning is closely
linked to the acquisition of expertise (e.g., Medin & Edelson,
1988). Many expert tasks, such as dermatological diagnosis
(Brooks, Norman, & Allen, 1991), can be thought of as variants of
categorization. Second, categorization tasks can be designed so
that they are solvable by several alternative strategies, which in
turn permits the use of experimental cues to encourage knowledge
restructuring without overt alteration of the stimuli. Third, and
most important, it is possible empirically to identify the strategies
that people use to categorize a given set of stimuli.

Rules and Associative Learning

Although there are many competing theories of categorization,
including some that view performance as relying entirely on rep-
resentations of previously encountered instances (e.g., Kruschke,
1992; Nosofsky, 1986), there is widespread agreement that per-
formance is at least sometimes driven by rules (Ashby & Gott,
1988; Erickson & Kruschke, 1998; Nosofsky, Clark, & Shin, 1989;
Nosofsky, Pahneri, & McKinley, 1994). Nosofsky et al. (1989)
showed that rules are particularly likely to be used when people are
made aware of their existence before training, whereas perfor-
mance is more likely to rely on instances if the same stimuli are
presented without mention of categorization rules.

Particularly relevant here is that rule-based categorization has
been implemented within an associative learning approach in the
ATRIUM (attention to rules in a unified model) theory of Erickson
and Kruschke (e.g., 1998, 1999). On this view, rules are not
considered as static and rigidly declarative entities, but as decision
boundaries that are continually updated and refined. The emphasis
on continued learning is obviously essential in the context of
knowledge restructuring. Moreover, associative learning principles
are plausible candidates for an account of resistance to knowledge

restructuring, as they are also known to explain the absence of
learning in certain situations (e.g., blocking; Kamin, 1969; Shanks,
1991).

Rule-based approaches to categorization typically assume that
rule use is accompanied by memorization of occasional exceptions
to the rule during training. Thus, a full characterization of a
learner's strategy involves memory for instances that violate an
applied otherwise valid rule. This rule-plus-exception approach is
supported by much empirical evidence (e.g., Erickson & Kru-
schke, 1998; Nosofsky et al., 1994; Palmeri & Nosofsky, 1995).
Here, we focused primarily on the empirical identification of rules,
which has been shown to have a stronger influence on people's
generalizations than memorized exceptions do (Erickson & Kru-
schke, 2000).

Rule Identification and Knowledge Restructuring in
Categorization

For most categorization tasks, there are numerous strategies that
can provide partial solutions, and different people may adopt
different strategies (e.g., Nosofsky et al., 1994). Critically, on the
rule-based view of categorization adopted here, those strategies are
empirically identifiable, which renders the presence of knowledge
restructuring apparent when a learner switches from one strategy
to another.

In a study by Medin, Altom, Edelson, and Freko (1982), par-
ticipants were able to classify stimuli on the basis of any one of
two features with 75% accuracy, whereas the correlation between
two other binary-valued features could support perfect perfor-
mance. Specifically, a stimulus belonged to one category when
two of its features had the same value and to another category
when the values on those features were different from each other
(i.e., an "XOR" relationship). Medin et al. found that after com-
pletion of training, people were sensitive to the XOR structure in
the stimuli when classifying novel items. In a replication of that
study, McKinley and Nosofsky (1993, reported in Nosofsky et al.,
1994) examined the emergence of knowledge of the XOR rela-
tionship during training. At various points in training, participants
completed a transfer test that included novel critical items that
formed exceptions to the single dimensional rule but conformed to
the XOR rule. Early in training, people were found to apply the
expedient single dimensional rule, as revealed by low performance
on the critical exception items. It was only on completion of
training that people were found to have induced the more powerful
XOR rule, as revealed by accurate categorization of the exceptions
to the expedient rule. The results of McKinley and Nosofsky
suggest that people can spontaneously acquire a more complex
rule, after initially using a simpler one, if given enough learning
opportunity.

Fire Prediction and Categorization

Fire prediction can be reexpressed as a categorization task in
which two predictors (wind and slope) and the problem context
(firefighting or back burning) permit categorization (uphill vs.
downhill fire spread). Akin to the stimuli of Medin et al. (1982)
and McKinley and Nosofsky (1993, reported in Nosofsky et al.,
1994), the predictors wind and slope interact—albeit in a fairly
complex manner—to determine fire direction. Again like in Medin
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et al. (1982), a single feature, in this case context, provides an
expedient but imperfect predictor.

The availability of competing expedient and complex rules
renders the firefighting task suitable to an investigation of knowl-
edge restructuring. To experimentally induce knowledge restruc-
turing, the present experiments relied on a schematic diagram.

Schematic Diagrams and the Acquisition of Complex
Knowledge

Diagrams have long been known to play a significant role in the
acquisition of complex knowledge (e.g., LarMn & Simon, 1987;
Mayer &. Gallini, 1990). For example, Mayer and Gallini (1990)
showed that problem solving involving mechanical devices (e.g.,
car brakes) was facilitated when a previously shown explanation of
those devices was accompanied by a diagram of the component
parts and their functions. Likewise, Biederman and Shiffrar (1987)
showed that novices, after minimal instruction with a few simple
diagrams, could match the performance of highly skilled experts
on a perceptual learning task. The task involved the sexing of
day-old chicks, a commercially relevant skill that had previously
defied pictorial representation or training and that previously could
only be learned through extensive practice (up to 1,000,000 trials).
Here, we relied on a schematic diagram to encourage participants
to take a different approach to a problem. The diagram was chosen
atheoretically as a tool whose utility had been established previ-
ously, and without any commitment to specific perceptual or
cognitive processes.

In the fire-prediction task, Lewandowsky et al. (1997) showed
that a schematic diagram can improve subsequent training perfor-
mance and can prevent reliance on an expedient imperfect rule.
The diagram, shown in Figure 1, used the angle between the
flames and the ground as the common referent for both wind- and
slope-driven fires. According to the diagram, fire spreads which-
ever way the flames are pointing, whether blown by the wind (top
panel of Figure 1), met by rising ground (bottom panel), or both.1

The diagram altered performance by enhancing sensitivity to
slope, thus leading to more accurate predictions overall.

Summary

There is strong evidence that skill acquisition entails the re-
peated restructuring of knowledge. However, there is also consid-
erable evidence for resistance to knowledge restructuring during
training and among fully trained experts. Nothing is known about
the processes underlying knowledge restructuring, and it is cur-
rently impossible to predict whether people will restructure their
knowledge in a given situation.

The present experiments use a categorization paradigm that is
known to permit empirical identification of rules or strategies (e.g.,
Nosofsky et al., 1994). It is also known that knowledge restruc-
turing can occur in categorization (McKinley & Nosofsky, 1993,
reported in Nosofsky et al., 1994; Medin et al., 1982). The parties
ular task chosen for the present studies is a categorization analog
of a task on which experts arguably resist knowledge restructuring
and continue to use an expedient strategy (Lewandowsky &
Kirsner, 2000). Novices, by default, also adopt an expedient strat-
egy, unless they are instructed with the aid of a diagram that

Figure 1. Schematic diagram of the effect of wind and slope on the angle
between the flames and the ground. In the top panel, wind tilts the flames,
thus forming an acute angle with the ground, whereas in die bottom panel,
the flames remain vertical but nonetheless form an acute angle with the
ground, owing to the rising slope.

visualizes a complex alternative strategy (Lewandowsky et al.,
1997).

What remains to be resolved by the present experiments is
whether people can be experimentally encouraged to restructure
their knowledge by abandoning an expedient rule after initial
learning in favor of a complex alternative. To help identify the
processes underlying restructuring, the experiments also sought to
identify the exact nature of the various strategies that people
acquire in this task.

Experiment 1

The first experiment extended the results of Lewandowsky et al.
(1997) to a categorization paradigm, using a diagram to encourage
participants to adopt a complex strategy. The experiment also used
the diagram to test whether knowledge restructuring could be
induced after extended uninformed learning.

The experiment included three conditions: In the control con-
dition, the diagram was never shown; in the diagram throughout
condition, participants had access to the diagram throughout; and
in the reveal condition, the diagram was presented after an initial
phase of uninformed training. Based on previous results (Lewan-
dowsky et al., 1997), the control and diagram throughout groups
were expected to differ after the first phase of training, with the
control condition relying on the expedient context rule and the
diagram throughout condition adopting a more complex strategy.

1 The true physical role of the angle between flames and ground is
unknown and irrelevant here. What is important is that the angle provides
a plausible integrative visualization of the two predictors.
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Of greatest interest in this experiment was the performance of
the reveal condition during the second phase of training: If per-
formance resembled that in the diagram throughout condition, this
would be indicative of successful knowledge restructuring. Con-
versely, if performance in the reveal condition were to resemble
the control condition, this would be indicative of resistance to
knowledge restructuring.

Method

Participants and apparatus. The participants were 60 undergraduate
volunteers from the University of Western Australia who received partial
course credit. The experiment was controlled by a computer that presented
all stimuli and collected and scored all responses.

Design. An equal number of participants were randomly assigned to
each of the three conditions (control, diagram throughout, and reveal).
Regardless of condition, participants completed two phases, each involving
152 categorization learning trials followed by a transfer test. Phases were
separated by a short break.

Stimuli. Stimuli presented for categorization consisted of written in-
formation about the three predictors wind speed, slope gradient, and
context (back-burning vs. firefighting). Wind direction was always down
slope, thus creating the conflict between potentially wind-driven and slope-
driven fires- To visualize the opposition between wind (W) and slope (S),
each stimulus was accompanied by the same schematic representation of a
fire on a slope and an arrow that designated (downhill) wind direction.
Participants had to classify each fire as slope-driven or wind-driven.

In each phase, 16 stimuli were used during training, and an additional
eight were used during the transfer test. Predictor values for all stimuli are
shown in Table 1. Half of the stimuli consisted of slope-driven fires and the

Table 1
Training Stimuli Used in Experiments I and 2

Category

Slope-driven
Training/back-burning

Training/firefighting

Transfer/back-burning

Transfer/firefighting
Wind-driven

Training/back-buming

Training/firefighting

Transfer/back-burning
Transfer/firefighting

Wind
(km/h)

5
10
5

10
10
15
5

20
7

12
14
18

5
20
10
15
15
20
15
20
7

14
19
17

Slope
(degree)

8
8

10
10
13
13
13
13
9

10
15
12

6
6
6
6
8
8

10
10
5
5
7
9

(degree)

88
89
86
87
84
87
83
89
89
88
84
89

91
97
92
95
93
95
91
93
92
95
96
93

Item

SI
S2
S3
S4
S5
S6

*S7
*S8
S9

S10
Sl l

*S12

*W7
*W8
Wl
W2
W3
W4
W5
W6

*W9
W10
Wll
W12

Note. Exceptions to the simple Context rule are identified by asterisks.
S = slope; W = wind.

other half of wind-driven fires. All items obeyed an arbitrary, but physi-
cally plausible, nonlinear two-dimensional category boundary that related
wind speed and slope gradient to fire direction. The best two-dimensional
linear rule, by contrast, would incorrectly classify two of the training
stimuli. All analyses used the true nonlinear boundary to determine when
a stimulus was correctly classified.

Additionally, an imperfect one-dimensional rule was present, such that
most back burns were slope-driven, whereas most to-be-controlled fires
were wind-driven. Exceptions to this imperfect context rule are identified
by asterisks in Table 1. The table also includes a column (/3), relevant in
Experiment 2, that represents the relation between wind and slope reex-
pressed as the angle (in degrees) between the flames and the ground. A
representation of the stimuli and the category boundary in die space
defined by wind speed and slope gradient appears in Figure 2.

Critically, the context rule was the only one-dimensional rule by which
more than 50% of the stimuli could be correctly categorized, whereas there
were several alternative strategies involving more than one dimension. For
example, in addition to the correct nonlinear boundary, a complex rule such
as "apply the context rule unless the slope is 13, in which case the fire is
slope-driven, or unless the slope is 6, in which case the fire is wind-driven"
could correctly classify all training items. For the purposes of this exper-
iment, we contrasted the context rule with all possible multidimensional
alternatives without seeking to identify which of those complex alterna-
tives participants adapted when not relying on context. Experiment 3 takes
up the issue of alternative complex rules in more detail.

Procedure. During the first training phase, participants learned to
categorize stimuli through 10 blocks of 12 or 16 trials each. Each training
stimulus occurred once per block, with a different random order of pre-
sentation in each block. During the first two blocks, the four exceptions
(S7-S8, W7-W8) were withheld to encourage participants in the control
condition to adopt the context rule (cf. Palmeri & Nosofsky, 1995).

On each trial, the stimulus remained visible until participants pressed the
appropriate arrow key to indicate the predicted direction of the fire.
Corrective feedback was provided for 2 s after a response, followed 1 s
later by the next stimulus.

After completion of each training phase, a transfer test was administered.
The transfer test included eight novel stimuli (S9-S12, W9-W12) in
addition to the 16 training stimuli. The transfer test also included eight
single-predictor stimuli, in which only context, slope gradient, or wind
speed was provided. On each of the 32 randomly ordered test trials,
participants again used the arrow keys to predict the direction of fire
spread, but, in contrast to the training phases, no corrective feedback was
given.

Participants in me diagram throughout condition were familiarized with
the underlying relation between slope and wind at the outset. They were
instructed that wind and slope can act in opposition to drive a fire, with the
stronger of the two forces winning out. A diagram similar to Figure 1
remained visible throughout the experiment. In the reveal condition, these
instructions and the diagram were administered during the break between
training phases. In the control condition, instructions did not touch on the
physics of fire, and the diagram was never presented.

General instructions about the task were given at the outset of the
experiment and were identical between conditions. Participants were in-
structed to judge whether the fire represented on each trial would spread
with the slope or with the wind, based on the values of the three predictors.

Results and Discussion

Analyses focused on the relative strength of the expedient
context rule across conditions and phases of training. The primary
index of the strength of this rule was the difference in performance
between rule-compliant stimuli (S1-S6, W1-W6) and items that
were exceptions to the rule (S7-S8, W7-W8). We first consider
performance during training before reporting the transfer data. We
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Slope
(deg)

18

1 6 -

1 4 -

1 2 -

1 0 -

Slope-driven fires

D

Wind-driven fires

2 4 6 8 10 12 14 16 18 20 22 24 26

Wind (km/h)

Figure 2. Category structure used in Experiments 1 and 2. The curved
solid line represents the true category boundary separating slope-driven
from wind-driven fires. Training items are represented by circles, and new
transfer test items by squares. Filled symbols represent to-be-controlled
fires, whereas unfilled symbols represent back burns; this context rule
allows 75% correct categorization.

then introduce a categorical analysis to further clarify which strat-
egies people applied to the task.

Training. The categorization accuracy across blocks of train-
ing in both phases is shown in Figure 3 averaged across the two
categories (wind-driven and slope-driven), with the context rule-
consistent and exception items presented separately.

The proportion correct categorizations for rule-consistent items
and exceptions were entered into a 3 (condition) X 2 (phase) X 2
(stimulus type: rule-consistent or exception) between-within anal-
ysis of variance (ANOVA), conducted on the last eight blocks of
each phase. The main effect of type, f ( l , 57) = 189.16,
MSE = 0.023, p < .01, was significant, reflecting the fact that
rule-consistent items were classified far more accurately overall
than exceptions. The significant Type X Phase interaction, F(l,
57) = 43.53, MSE = 0.009, p < .01, shows that this difference
was greater in Phase 1 than in Phase 2. Practice also increased the
level of performance overall, as shown by a significant effect for
phase, F(l, 57) = 142.33, MSE = 0.010,/? < .01. The remaining
two-way Condition X Phase interaction was not significant, F(2,
57) = 1.13, and neither was the main effect of condition, F(2,
57) = 2.27, MSE = 0.050, p = .11.

Of greatest interest is the significant three-way interaction, F(2,
57) = 4.16, MSE = 0.009, p < .05, which, together with the
significant Condition X Type interaction, F(l, 57) = 6.57,
MSE = 0.023, p < .01, confirmed that performance on rule-
consistent items and exceptions differed between conditions and
across phases. In particular, planned comparisons revealed that

exceptions were classified more accurately in the diagram through-
out condition than the other two conditions combined during
Phase 1, F(l, 57) = 15.36, MSE = 0.030, p < .01, whereas
accuracy for the rule-consistent items did not differ between con-
ditions, F(l, 57) = 1.36. The selective benefit for exceptions to the
context rule suggests that people in the diagram throughout con-
dition were better able to understand the relation between slope
and wind than were people who did not commence training with
the diagram. This confirms the utility of the diagram and extends
the finding by Lewandowsky et al. (1997) to a categorization
learning paradigm.

In Phase 2, all three conditions were similar to each other in
terms of both rule-consistent items and exceptions, with the largest
difference (between the diagram throughout and control conditions
on exceptions) falling far short of significance, F(l, 57) = 1.47.
This confirms the pattern, apparent in Figure 3, that participants in
all groups had mastered the training stimuli by the end of the
experiment.

Transfer test. The training data alone cannot fully reveal what
people have learned because categorization can be based on mem-
ory for the training instances. Thus, the seemingly identical train-
ing performance between conditions at the end of Phase 2 can
obscure important differences in rule usage. To discover what rules
people use, the new transfer items were analyzed by forming the
difference between new rule-consistent items and new exceptions.
A large difference would be indicative of the context rule being
used, whereas a small difference would reveal the use of other
knowledge, such as the correct physical relation between slope and
wind.

The mean differences between new-rule and new-exception
performance are shown in Table 2. The corresponding 3 (condi-
tion) X 2 (phase) between-within ANOVA revealed a marginal
Phase x Condition interaction, F(2, 57) = 2.96, MSE = .209, p =
.06, along with a marginal main effect of condition, F(2,
57) = 2.91, MSE = .091, p = .06, but no significant effect of
phase, F(l, 57) < I.2

The overarching interaction between condition and phase arose
from several effects. First, performance in the diagram throughout
condition varied with phase. In Phase 1, participants in that con-
dition exhibited a much smaller difference between rule-consistent
items and exceptions than did participants in the other two condi-
tions, as confirmed by a planned comparison, F(l, 57) = 18.57,
MSE = .209, p < .01. This paralleled the pattern in the training
data and further suggested that people in the diagram throughout
condition ignored the context rule in favor of a more complex
strategy.

Second, the diagram only benefited performance when it was
presented at the outset of training. Thus, the reveal condition in
Phase 2 showed significantly greater difference scores—and hence
continued reliance on the context rule—than did die diagram
throughout condition in Phase 1, F(l, 38) = 5.24, MSE = .111,
p < .05. Correspondingly, the reveal and control conditions did not
differ significantly in Phase 2, F(l, 38) < 1. Taken together, this

2 A parallel analysis used difference scores divided by the performance
on the new exceptions to adjust for absolute level of accuracy. Because this
measure yielded qualitatively similar results, only the simpler difference
score analysis is reported here.
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Figure 3. Categorization performance during training in Experiment 1.

indicates that once an expedient rule has been learned it is not
readily discarded even when additional critical information be-
comes available.

Finally, the three conditions became more similar toward the
end of training. The rule-minus-exception measure increased
across phases for the diagram throughout condition and slightly
decreased for the other two conditions. After Phase 2, the diagram
throughout condition no longer differed significantly from the
average of the other two, F(l, 57) < 1, suggesting that participants
may have reverted to the expedient context rule even though they
initially used a more complex strategy. Memorization of excep-
tions during Phase 2 would have enabled people to do so without
loss of accuracy during training.

Categorical analysis. One difficulty with the rule-minus-
exception measure is that, when aggregating across participants,
only extreme values are diagnostic of the rules people are using.
Specifically, near-zero performance on exceptions clearly indi-
cates use of the context rule, and near-perfect performance is
indicative of application of a more complex two-dimensional rule.

However, performance on exceptions could be near 0.5 either
because all participants were responding at chance for these items
or because a condition included individuals with different knowl-
edge (e.g., some using the context rule, others using a more
complex alternative) who showed complementary patterns of
responding.

These problems were resolved by an additional categorical
analysis that focused on the overall pattern of responses by each
participant across all conditions. The eight new transfer stimuli
were separated into the six items consistent with the context rule
and the two exceptions. For each phase, the pattern of responding
by each participant was then summarized by two scores, namely
the number of correct responses to rule-consistent items (i.e., range
0-6) and the number of correctly classified exceptions (range
0-2). The 120 composite scores thus derived were entered into a
fc-means cluster analysis. This analysis classifies scores into k
clusters, iteratively setting the cluster centroids so as to minimize
the distance between scores within each cluster, while maximizing
the distance between scores in different clusters. Once clusters are
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Table 2
Mean Proportions Correct (and Standard Errors) During
Transfer Tests in Experiment 1

Phase

Condition and stimulus type

Reveal
Difference
Rule
Exception
Rule
Exception

Diagram throughout
Difference
Rule
Exception
Rule
Exception

Control
Difference
Rule
Exception
Rule
Exception

Old-new

New
New
New
Old
Old

New
New
New
Old
Old

New
New
New
Old
Old

1

.76 (.08)

.91 (.03)

.15 (.07)

.87 (.03)

.55 (.06)

.39 (.10)

.84 (.04)

.45 (.09)

.88 (.03)

.71 (.06)

.73 (.07)

.91 (.03)

.18 (.05)

.93 (.02)

.74 (.06)

2

.63 (.08)
.91 (.03)
.28 (.07)
.94 (.03)
.80 (.05)

M (.08)
.93 (.03)
.38 (.09)
.98 (.01)
.94 (.04)

.63 (.10)

.91 (.03)

.28 (.08)

.96 (.02)

.84 (.04)

Note. Values marked in boldface were used in the analysis.

obtained, the number of participants in each cluster can be com-
pared between conditions and phases.

On the basis of the outcome of the earlier ANOVA, we expected
that response patterns could be classified into three clusters, corre-
sponding to use of the context rule, use of the correct two-dimensional
rule, and intermediate responses not consistent with either of these
rules. The cluster analysis was thus performed with k set to 3, relying
on the algorithm to determine optimal cluster centroids. The obtained
cluster centroids based on all 120 patterns (i.e., without differentiating
between conditions and phases) are given in Table 3, along with the
labels dhosen as best descriptors of each cluster. The Correct cluster
contained patterns in which a large number of correct responses were
given f0r both the rule-consistent items and the exceptions. The Ride
cluster featured high performance on rule-consistent items but not on
exceptions. The Partial cluster included patterns of responding that
suggested partial acquisition of the task or, possibly, chance perfor-
mance on some items.

Because cluster labels are necessarily subjective, independent sup-
port of their descriptive accuracy is desirable. Accordingly, we ex-
amined: responses to the single-predictor transfer items for participants
within each cluster separately, with the mean proportion of "wind-
driven" responses for each of the predictors shown in Figure 4.

Table 3
Results of k-Means Analysis on Composite Scores
in Experiment 1

Cluster name

Coniect
Rule1

Partjal

Position of cluster centroid

Correct exceptions

1.54
0.23
0.58

Correct rule items

S.2S
5.76
3.42

No. of scores

28
80
12

0.2

£ o
S

Stimulus

Figure 4. Sensitivity to single-dimensional stimuli for participants in
different clusters in Experiment 1. The figure shows the proportion of
responses on which a single-dimensional stimulus was expected to go with
the wind.

Sensitivity to context, wind, or slope is apparent if the proportion of
wind-driven responses differs across levels of each predictor. Consis-
tent with the labeling of clusters, it is evident mat participants in die
Rule cluster displayed the greatest sensitivity to context, whereas
those in the Correct cluster were most sensitive to the effects of wind
speed and slope gradient. The individuals in the Partial cluster showed
some awareness of the effects of wind and slope, but showed less
sensitivity overall than people in the other clusters.

Categorical tests of transfer results. The number of partici-
pants in each cluster was then determined for each condition and
phase. These values are shown in Figure 5, expressed as propor-
tions of the total number of participants in each condition. To
examine whether these proportions differed with condition, chi-
square tests were carried out with N = 60 for each phase sepa-
rately, yielding a significant result in Phase 1, x*(4, N =
60) = 11.97, p < .05, but not in Phase 2, ^ ( 4 , N = 60) = 1.64.
Examination of Figure 5 shows that the significant effect in
Phase 1 resulted from the fact that in the diagram throughout
condition, more participants were assigned to the Correct cluster

I
o

I
0%

Phase 1 Phase 2

Figure 5, Relative proportion of participants assigned to clusters as a
function of condition and phase for Experiment 1.
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and fewer to the Rule cluster than in the other two conditions. This
parallels the earlier analysis of difference scores and further sup-
ports the notion that the diagram, when presented at the outset of
training, encourages participants to forego the expedient context
rule. Unlike the difference scores, the cluster analysis identified
participants (in the Partial cluster) who may have responded at
chance for some items.

Turning to Phase 2, the absence of any differences between
conditions mirrors the earlier ANOVA in two ways. First, the
similarity of the reveal and control conditions adds to the evidence
that the diagram could not induce a more complex strategy once an
expedient rule had been acquired. Second, the similarity of the
control and diagram throughout conditions suggests that people in
the latter condition, who initially used a complex categorization
strategy, eventually reverted to the expedient context rule. The
details of our preferred explanation for this finding are provided in
the General Discussion section. Briefly, the explanation assumes
that participants remained in a state of learning regardless of which
rule they applied to the task. Because accuracy in Phase 1 never
reached 100%, the perfect performance of the context rule during
the initial exception-free blocks in Phase 2 likely convinced par-
ticipants to revisit this expedient alternative to a partially learned
complex strategy. Additionally, a strategy, that combined the ex-
pedient rule with memorization of exceptions would have permit-
ted perfect performance on the training items, thus further reducing
the attractiveness of a partially learned complex alternative.

The tendency of our participants to adopt the context rule
despite complex initial knowledge may parallel the real-world
behavior of expert firefighters observed by Lewandowsky and
Kirsner (2000). Firefighters are initially trained with a complex
physical model of fire spread and may use that information to
guide their decision making. Years of experience in the field,
however, may offer an expedient alternative: The statistical coin-
cidence of fire contexts with direction, combined with a likely
degree of error when experts apply the correct physical model,
may cause the emergence of a context-based prediction of fire
spread.

Summary. The results of Experiment 1 are readily summa-
rized: (a) When several rules compete during categorization, peo-
ple by default select an expedient rule augmented by memorization
of exceptions, (b) People can be encouraged to use a more complex
alternative when minimal instruction and a visualization of the
alternative is provided at the outset, (c) Task performance differs
qualitatively between those two conditions, with great differences
in sensitivity to individual predictors and differences in overall
response patterns, (d) Once an expedient rule has been acquired,
visualization and instruction are insufficient to induce more com-
plex processing, (e) Conversely, even if people commence the task
with a complex strategy, after prolonged training they tend to adapt
the expedient context rule.

The asymmetry of knowledge restructuring that is implied by
the latter two results forms the core contribution of Experiment 1.
We discuss possible explanations for the asymmetry after present-
ing two additional studies that explored a possible enhancement to
the diagram's utility for knowledge restructuring (Experiment 2)
and that identified the exact nature of the knowledge that is learned
at the outset with and without the diagram (Experiment 3).

Experiment 2

The purpose of the second study was to test a more explicit and
continuously available technique to encourage expediently trained
participants to shift to a complex strategy. To this end, Experiment 2
included an adaptive representation of the diagram that reexpressed
the particular wind-slope combination on each trial as an exact angle
between the flames and the ground. The adaptive display, when
shown during a training trial, reliably and unambiguously predicted
fire spread as a function of displayed flame-ground angle.

The adaptive display was available at varying points during
training: In the adaptive removal condition, participants com-
menced training with the adaptive display before it was removed in
the second phase. Conversely, in the reveal adaptive condition, the
adaptive display was introduced for the second training phase.
Finally, the control condition was identical to that of Experiment 1
and received neither the adaptive display nor instructions relating
to flame-ground angle.

As in Experiment 1, we focused on performance of the reveal
adaptive condition during Phase 2. If performance resembled that
in the control condition in Phase 2, people would again have been
shown to resist knowledge restructuring. If performance instead
resembled that in Phase 1 of the adaptive removal condition,
knowledge restructuring would have occurred. The latter finding
would be expected if the adaptive display was more powerful than
the static diagram of Experiment 1.

Method

Participants, apparatus, and stimuli. A different 60 participants were
recruited from the University of Western Australia community to partici-
pate in Experiment 2. An equal number of participants were randomly
assigned to each of the three conditions. The apparatus and category
structure were identical to those used in the first study.

Procedure. The procedure was identical to that of Experiment 1, with
the exception of the presence of the adaptive display on some training
trials. In the adaptive removal condition, participants were familiarized
with the undedying relationship between slope and wind at the outset, and
the first phase of training was accompanied by the adaptive display. In the
reveal adaptive condition, instructions about flame-ground angle were
given during the break between phases, and the second phase of training
was accompanied by the adaptive display.

When the adaptive display was present, the stimulus was accompanied
by an abstract visual rendition of the angle between the flames and the
ground (/3), consisting of a horizontal line with an oriented line segment
joined to its center point. On each trial, the line segment was oriented with
angle 0 and was presented below the written information about predictor
values in a frame of about 5 X 5 cm. The value of (3 for each stimulus was
given earlier in Table 1 and was calculated using an arbitrarily designed
equation that described a feasible nonlinear category boundary:
0 = 94.75 - (slope) 4- .21 (wind) + .01 (wind)2. Whenever 0 was less
than 90°, the fire was slope-driven, and when /3 exceeded 90°, it was
wind-driven. The value of 0 was printed within the frame next to the visual
rendition of the angle; see Figure 6 for a sample adaptive display.

Regardless of condition or phase, transfer trials did not include the
adaptive display.

Results and Discussion

As in Experiment 1, we analyzed the training and transfer data
separately and with a focus on use of the context rule. We again used
a categorical analysis to further identify rule use. To foreshadow the
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Figure 6. Example of the adaptive display used in Experiment 2. When
present, this display was shown below the textual information for the stimulus.

main result, the adaptive j3 display, despite drastically altering training
performance, failed to cause knowledge restructuring.

Training. Categorization accuracy during training is shown in
Figure 7. Not surprisingly, categorization was virtually perfect
when the adaptive display was present, with near 95% correct

performance during Phase 1 for the adaptive removal condition
and during Phase 2 for the reveal adaptive condition. The training
data were examined using a 3 (condition) X 2 (phase) X 2
(stimulus type) between-within ANOVA, excluding the first two
blocks of each phase. All interactions and main effects were
significant: condition, F(2, 57) = 3.52, MSE = 0.02, p < .05;
phase, F(l, 57) = 61.24, MSE = 0.01, p < .001; type, F(l, 57) =
197.64, MSE = 0.01, p < .001; Condition X Phase, F{2, 57) =
196.54, MSE = 0.01, p < .001; Condition X Type, F(2,
57) = 6.30, MSE = 0.14, p < .01; Phase X Type, F(l,
57) = 25.92, MSE = 0.01, p< .001; and the three-way interaction,
F(2, 57) - 72.56, MSE = 0.01, p < .001.

The exceptional performance with the adaptive display was
responsible for most of the observed effects. The adaptive removal
condition did better than the other two conditions in Phase 1, and
the reveal adaptive condition did better than the others in Phase 2,
The three-way interaction is also indicative of the clear superiority
of learning with the adaptive display in terms of accuracy on

(B) Reveal Adaptive Condition

* • — o -
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-Exceptions

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
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(C) Adaptive Removal Condition

-o • f l - o -ft- o o

Context Rule

Exceptions

1 2 3 4 5 6 7 8 9 1 0 1 2 3 4 5 6 7 8 9 1 0
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Figure 7. Categorization performance during training in Experiment 2.
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exceptions relative to the control condition. Whenever the adaptive
display was present, there was no reliable difference between rule
and exception stimuli. Finally, the main effect of phase represented
improvements due to practice.

Transfer test. The transfer data were analyzed using the same
measure of expedient rule use (new rule-consistent items correct —
new exceptions correct) as in Experiment 1. The results are shown
in Table 4. The corresponding ANOVA revealed a Condition X
Phase interaction, F(2, 57) = 7.05, MSE = 0.12, p < .01, which
primarily arose from the extremely low difference score for the
adaptive removal condition in Phase 1. The additional main effects
of condition, F(2, 57) = 7.10, MSE = 0.180,/> < .01, and phase,
F(2, 57) = 3.22, MSE = 0.120, p < .05, also reflected the impact
of the adaptive display during Phase 1.

Two aspects of the transfer data merit discussion. First, the
principal finding of Experiment 1 was replicated, because a single
phase of training was again sufficient to block any reorganization
of knowledge on presentation of the adaptive display. Specifically,
the rule-exception difference for the reveal adaptive condition did
not differ significantly between phases (.68 vs. .64).

Second, the adaptive display had a major impact on performance
when presented at the outset, as shown by the strikingly small
rule-exception difference in Phase 1 for the adaptive removal
condition. This constitutes clear evidence that people did not rely
on the expedient context rule under these circumstances. However,
the small rule-exception difference was accompanied by absolute
performance levels that were perilously close to chance even for
rule-consistent items (.53 and .71 for old and new, respectively). It
is therefore likely that the adaptive display prevented the learning
of any display-independent rule, whether expedient or complex,
rather than encouraging people to learn a more complex one.
Instead, people seemingly learned only to judge whether ft was
less than or greater than 90. This was confirmed by the categorical
analysis.

Table 4
Mean Proportions Correct (and Standard Errors) During
Transfer Tests in Experiment 2

Condition and stimulus type

Adaptive removal
Difference
Rule
Exception
Rule
Exception

Reveal adaptive
Difference
Rule
Exception
Rule
Exception

Control
Difference
Rule
Exception
Rule
Exception

Old-new

New
New
New
Old
Old

New
New
New
Old
Old

New
New
New
Old
Old

1

.16 (.10)
.71 (.05)
.55 (.09)
.66 (.04)
.53 (.04)

.68 (.08)

.91 (.02)

.23 (.08)

.88 (.03)

.71 (.06)

.75 (.06)

.98 (.02)

.23 (.06)

.93 (.02)

.74 (.06)

Phase

2

.61 (.09)
.88 (.03)
.28 (.08)
.94 (.02)
.81 (.05)

.64 (.09)

.94 (.02)

.30 (.08)

.89 (.03)

.69 (.07)

.68 (.09)

.96 (.02)

.28 (.08)

.96 (.02)

.84 (.04)

Note. Values marked in boldface were used in the analysis.

Categorical analysis. As in the previous study, a &-means
cluster analysis was conducted that classified response patterns
into three clusters. The three centroids are shown in Table 5. These
clusters were consistent with those found in Experiment 1, and
were thus given identical labels. To confirm that labels were
appropriate, the responses to single-predictor stimuli were again
examined separately for participants in each of the clusters. Figure
8 shows the mean proportion of "wind-driven" responses given to
each of the single-predictor stimuli. As in Experiment 1, partici-
pants in the Rule cluster displayed the greatest sensitivity to
context, whereas those in the Correct cluster were most sensitive to
the effects of wind and slope. Participants in the Partial cluster
showed some awareness of the effects of wind and slope, but less
sensitivity than observed in the other clusters.

Separate chi-square tests were conducted for each phase to
compare the relative proportions of participants assigned to
each cluster across conditions. The data submitted to this anal-
ysis are shown in Figure 9. The figure shows that more partic-
ipants were classified as Correct overall than in the previous
experiment, which is the result of a small change in the location
of cluster centroids. As in Experiment 1, the chi-square test
yielded a significant result in Phase 1, ^ ( 4 , N = 60) = 22.49,
p < .001, but not in Phase 2, ^ ( 4 , N = 60) = 5.24, p > .25.
The significant effect for Phase 1 reflects the greater number of
participants who were assigned to the Partial cluster, combined
with a smaller number in the Rule cluster, in the adaptive
removal condition than the other two conditions. The smaller
number of participants in the Rule cluster confirms the conclu-
sion of the earlier ANOVA, that the adaptive display decreased
reliance on the context rule. However, the greater number of
participants in the Partial cluster clarifies that this decreased
reliance resulted from reduced learning overall, rather than
from redirecting learning toward a more complex rule.

Turning to Phase 2, the number of Partial response profiles in
the adaptive removal condition returned to a level consistent with
that of the control condition, which in turn did not differ much
from the reveal adaptive condition. The similar clustering observed
in the control and reveal adaptive condition is consistent with the
conclusion of the earlier ANOVA that the adaptive display had no
effect on transfer performance once people had learned the context
rule.

Summary. Experiment 2 yielded three principal findings: (a)
In replication of the first study, presentation of an enhanced,
adaptive version of the diagram also failed to induce knowledge
restructuring after the expedient context rule had been acquired,
(b) When presented at the outset, the adaptive display prevented
significant learning of any rule, whether expedient or complex,
presumably because it reduced the task to one of classifying a
single number, 0, as being above or below 90. (c) When the
adaptive display was removed after it had prevented display-
independent learning, people acquired the expedient context
rule.

The experiment thus supported the attractiveness of the expedi-
ent context rule in two ways: Its use persisted even when the
adaptive diagram was presented during Phase 2, and it was ac-
quired after the adaptive display had obviated any display-
independent learning during Phase 1.
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Table 5
Results of k-Means Analysis on Composite Scores
in Experiment 2

Cluster Dame

Correct
Rule
Partial

Position of cluster center

Correct exceptions

1.30
0.00
0.82

Correct rule items

5.54
5.79
3.53

Number of scores

46
57
17

Experiment 3

The first two experiments revealed that people resisted knowl-
edge restructuring after they had mastered the task in an expedient
manner. In addition, Experiment 1 showed that people spontane-
ously abandoned a complex strategy in favor of an expedient one
after extensive training. However, the experiments did not fully
explore all possible strategies available to participants. In partic-
ular, it was assumed by exclusion that participants had learned the
correct category boundary if they did not appear to use the context
rule. The purpose of Experiment 3 was to further dissect the
strategies used in the first two experiments, and to identify how
presentation of the diagram at the outset in Experiment 1 affected
people's strategies. Identification of those strategies is essential for
the development of a theoretical account for the results of the first
two experiments.

The categorical analysis of Experiments 1 and 2 focused on two
principal strategies available to participants. The Correct strategy
relied on the complex nonlinear rule involving wind and slope. The
Context strategy predicted fire spread on the basis of whether it
was a back bum or a to-be-controlled fire. Examination of the
training stimuli used in those experiments (see Table 1) revealed
two additional strategies that participants might potentially use: the
Greater-Than-Two strategy and the Thirteen-and-Six rule.

The Greater-Than-Two strategy is based on a rule that can be
stated as "if wind speed is larger than slope gradient by a number
greater than two, then the fire is wind-driven," or, formally:

0.4

0.2

E1

Stimulus

Figure 8. Sensitivity to single-dimensional stimuli for participants in
different clusters in Experiment 2. The graph shows the proportion of
responses on which a single-dimensional stimulus was expected to go with
the wind.

Phase 1 Phase 2

Figure 9. Relative proportion of participants assigned to clusters as a
function of condition and phase for Experiment 2.

Response
Wind if W-S>2
Slope otherwise, (1)

where W is the wind speed and S is the slope gradient. Although
this strategy nominally involves two predictors, it is best consid-
ered a one-dimensional rule because the participant can combine
the simultaneously visible numeric wind and slope values into a
single difference score, which is then compared with a criterion
value. As such, the strategy is best considered another variant of an
expedient rule, similar to the context rule. It can be visualized as
a linear boundary in the stimulus space in Figure 1. The rule works
for all but two of the training stimuli, so the Greater-Than-Two
strategy would require memorization of two instances during
training.

The Thirteen-and-Six strategy can be stated as "if the slope is 13
or greater, then the fire is slope-driven, if the slope is six or less,
men the fire is wind-driven, otherwise apply the context rule," or
formally:

f Slope if S+6C> 13
R e s P ° n s e = t Wind otherwise. (2)

where C is the context, with "0" representing a to-be-controlled
fire and " 1 " a back bum. The rule used in the Thirteen-and-Six
strategy is clearly more complicated than the Greater-Than-Two
and the Context rules, but allows perfect categorization of the
training stimuli.

The transfer stimuli used in Experiments 1 and 2 were not
distributed widely enough to discriminate between these four
possible strategies. The aim of Experiment 3 was to replicate the
effect of the diagram in the first phase of Experiment 1 and to use
a richer set of transfer stimuli to provide insight into what rules
participants learned. For comparison, an uninformed control con-
dition was included that also received the richer transfer set.
Because this investigation focused on the exact differences be-
tween strategies with and without the diagram presented at the
outset, only one phase of training was conducted.

Based on the results so far, strategies were expected to differ
between conditions. Usage of the Correct rule was expected to be
greater in the diagram condition than in the control condition, with
the reverse being true for the Context rule. Concerning the remain-



1678 LEWANDOWSKY, KALISH, AND GRIFFITHS

ing strategies, the Greater-Than-Two rule was thought to be more
likely to arise in the control condition, because it offered an
expedient solution once slope was subtracted from wind, whereas
the complex Thirteen-and-Six rule was expected to occur in the
diagram condition, if at all.

Method

Participants and apparatus. The participants were 60 undergraduate
volunteers from the University of Western Australia who received partial
course credit. The experiment was controlled by a computer that presented
all stimuli and collected and scored all responses.

Design. An equal number of participants was randomly assigned to
one of two conditions, control and diagram. The control condition used the
same training procedure as the first phase of the control condition in
Experiments 1 and 2 but included a new set Df transfer stimuli. Participants
in this condition received only basic instructions about the task. Partici-
pants in the diagram condition were provided with the diagram and
additional instructions at the outset, matching the first phase of the diagram
throughout condition in Experiment 1. Other than that, the diagram con-
dition was identical to the control condition.

All participants completed a single training phase involving 152 cate-
gorization learning trials (two blocks of 12 context rule-consistent items
followed by eight blocks incorporating all 16 training items). The transfer
test that followed consisted of 40 trials.

Stimuli. The training stimuli were the same as those used in Experi-
ments 1 and 2. The transfer stimuli included the original eight, as well as 32
new stimuli designed to be diagnostic of strategy use. The new stimuli
extended the transfer set along the true category boundary, where the four
strategies showed the greatest variation in predictions. Altogether, the set
of transfer stimuli occupied 20 locations in wind-slope space, and unlike
the first two experiments, each location was presented once in each of the
two contexts. The locations of the new transfer stimuli, together with lines
indicating the true category boundary (the Correct rule) and the response
boundary predicted by the Greater-Than-Two rule, appear in Figure 10.
The figure also shows in which context training items were presented.

Procedure. With the exception of the enhanced set of transfer trials,
the procedure was identical to the first phase of Experiment 1.

(A) Control condition

• Firefighting
o Backburn
• Transfer

—Correct
- - - Greater Than 2

10 20

Wind

30 40

Figure JO. Category structure used in Experiment 3. Circles are training
stimuli, identified by the context in which they were presented. Crosses are
new transfer stimuli, occurring in both contexts. The heavy line shows the
true category boundary; the broken line indicates the category boundary for
the Greater-Than-Two strategy.
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Figure 11. Categorization performance during training in Experiment 3.

Results and Discussion

Focus rested on replication of the diagram manipulation from
Experiment 1. For this study, the categorical analysis used the four
hypothesized strategies rather than inductively constructed clus-
ters. To foreshadow the results, in replication of Experiment 1,
participants were less influenced by context when trained in the
diagram condition. Extending the findings of the first study, the
analyses additionally clarified that participants in the diagram
condition were most likely to learn the Correct strategy as opposed
to any of the other two-dimensional alternatives (Greater-Than-
Two and Thirteen-and-Six).

Training. In order to examine correspondences between the
present results and those of Experiment 1, stimuli were again
divided into context rule-consistent items and exceptions to that
rule. Categorization accuracy during training is shown in"
Figure 11.

A two-way between-within ANOVA, examining the effects of
condition (control vs. diagram) and stimulus type (rule vs. excep-
tion) conducted on the last eight blocks of training showed signif-
icant main effects of condition, F(\, 58) = 4.16, MSE = 0.02, p <
.05, and type, f ( l , 58) = 114.96, MSE = 0.02, p < .001, but no
interaction, F(l, 58) = 0.22, MSE = 0.02, p > .60. The main
effect of condition reflects better overall performance in the dia-
gram condition, and the effect of type shows the expected superi-
ority of rule-consistent items over exceptions.

On the basis of Experiment 1, the interaction between condition
and type should have been significant, because the diagram should
selectively enhance performance on the exceptions. In order to
investigate this apparent discrepancy between experiments, a
three-way between-within ANOVA was conducted, adding block
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(3 to 10) as a factor. For this analysis, in addition to the earlier
effects, significant effects emerged for block, F(7, 406) = 8.70,
MSE = 0.02, p < .001, Condition X Block, f(7, 406) = 2.52,
MSE = 0.02, p < .05, Type x Block, F{1, 406) = 9.97,
MSE = 0.03, p < .001, and Condition X Type X Block, F(7,
406) = 3.55, MSE = 0.03, p < .001. The main effect of block was
clearly a consequence of practice, whereas the two- and three-way
interactions with block arose because of the predicted changing
patterns of responses during the course of training.

Examination of Figure 11 shows that performance on exceptions
to the context rule was far higher in the diagram condition than the
control condition during the first few blocks of training with
exceptions. This difference raised performance for exceptions in
the diagram condition sufficiently to produce the two-way inter-
actions, and its additional dependence on the amount of training
resulted in the Condition x Type X Block interaction. Thus, the
diagram did have a selective effect on performance on exception
items, paralleling the outcome of Experiment 1. This effect was
reduced by further practice in the control condition, presumably
because participants began to memorize the exceptional instances.

Transfer test. The analyses of Experiments 1 and 2 used a
rule-minus-«xception measure to assess the performance of partic-
ipants with respect to the expedient context rule. This measure was
used here as well, although it was computed over the much larger
set of new transfer items. A comparison of the two conditions by
an independent groups / test yielded r(58) — 3.48, p < .001, with
participants in the control condition showing a greater difference
in performance between rule and exception items. The correspond-
ing means and standard errors are given in Table 6. Thus, Exper-
iment 3 clearly replicated the first study using a more extensive set
of transfer items.

In this experiment, each combination of wind and slope was
presented in each of the two contexts at transfer. This permits
enumeration of the number of items that are expected to be treated
differently between contexts for each strategy. For the Context
rule, all 20 items would be treated differently. For the Thirteen-
and-Six rule, only four of these 20 pairs would be treated differ-
ently between contexts. Finally, the Greater-Than-Two or Correct
strategies would treat all these pairs the same.

The number of pairs categorized differently was tallied for each
participant: The mean number of differently categorized pairs

Table 6
Mean Proportions Correct (and Standard Errors) During
Transfer Test in Experiment 3

Condition and stimulus type Old-new Proportion

Diagram
Difference
Rule
Exception
Rule
Exception

Control
Difference
Rule
Exception
Rule
Exception

New
New
New
Old
Old

New
New
New
Old
Old

- .05 (.07)
.64 (.06)
.67 (.04)
.89 (.02)
.80 (.02)

.25 (.06)

.79 (.02)

.52 (.05)

.85 (.03)

.55 (.06)

Note. Values marked in boldface were used in the analysis.

was 8.0 for the control condition, and 5.2 for the diagram condi-
tion. Because tallies were nearly uniformly distributed in both
conditions, a distribution-insensitive Wilcoxon test on the ranks of
the participants was conducted, which showed that the reliance on
context differed between conditions, ^ ( l , N = 60) = 4.06,
p < .05.

Analysis of rules. We further examined strategy use by con-
structing a vector of predicted responses across all test items for each
strategy (arbitrarily coding wind-driven responses as 0, slope-driven
ones as 1) and computing how much participants in each condition
deviated from these vectors. The responses of each participant were
converted to a vector by the same process, and the Hamming distance
of each participant's response vector to each strategy vector was
calculated. Each participant was then classified as using one of the
four candidate rules by choosing the strategy whose vector of pre-
dicted responses was closest to the participant's response vector. As
shown in Table 7, the diagram condition included more participants
using the Correct strategy, and fewer using the Greater-Than-Two or
Context strategies, relative to the control condition, ^ ( 3 , N =
60) = 8.30, p < 0.05. This confirmed that the diagram encourages
people to adopt the correct two-dimensional rule, as opposed to some
other heuristic involving multiple predictors.

As expected, few participants relied on the Correct strategy in
the control condition. Instead, most people relied either on the pure
Context rule or, with roughly equal likelihood, on the Greater-
Than-Two strategy. The latter strategy is particularly interesting
because although it involves wind and slope, it is quite similar to
the Context rule because it reduces wind and slope information to
a single number (the difference between the two values). Thus,
even when people learn to consider wind and slope in the control
condition, they do so in the most expedient manner possible.

These results provide useful constraints for the theoretical ac-
count of the first two experiments that we offer in the General
Discussion. In particular, the account must recognize that the
diagram does more than simply shift people's attention away from
context: The fact that roughly half the participants in the control
condition considered wind and slope but without recognizing their
complex relationship indicates that attention to those two predic-
tors by itself is insufficient to induce the correct strategy. The
further fact that most people in the diagram condition used the
correct strategy confirms that the diagram provided unique infor-
mation about the underlying relationship between wind and slope.

Consistency of performance and individual variability. There
was considerable variability in the extent to which participants' re-
sponses were described by the strategy to which they were assigned.
To illustrate this variability, and to further explore the differences
between conditions, accuracy of responses to items that all four
strategies classify identically (the 12 "common" items) were used to
predict the fit of the strategy to which a participant was assigned.
Accuracy on the common items is an index of the extent to which an
individual's performance is rule-bound, as opposed to random, re-
gardless of which particular strategy is being followed.

This analysis revealed a relationship between accuracy on the
common items and consistency of performance on the remain-
ing 28 strategy-unique items (r2 = 0.26), f(58) = 4.5, p < .01,
such that participants who classified the common items with
greater accuracy, also more consistently applied whichever of the
four strategies best described their performance. Figure 12 depicts
this relationship between the level of misprediction on common
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Table 7
Best Fitting Strategies by Conditions in Experiment 3

Condition

Control
Diagram

Greater-Than-Two

12
7

Best-fitting strategy

Correct

7
17

Context

10
4

Thirteen-and-Six

1
2

items and the fit of the best strategy on the unique items for both
conditions separately.

The figure also shows the overall level of variability in fit of the
strategies. It is apparent that in the diagram condition, participants
tended to conform more closely to one of the four identified
strategies, regardless of which strategy best described a person.
This reduction in variability was accompanied by a shift away
from Context and toward increased use of the Correct strategy.

Participants in the control condition, by contrast, showed less
consistency overall and were less well described by any of the four
strategies. Nonetheless, the two expedient approaches (Context
and Greater-Than-Two) are again seen to dominate responding.

General Discussion

Summary of Results

Participants in these experiments mastered the categorization
task in one of two qualitatively different ways. They either applied
an expedient rule (accompanied by memorization of exceptions) or
they relied on a complex strategy that involved two predictors. In
the absence of any training aids, participants strongly preferred an
expedient approach.

The first experiment showed that people can favor the complex
strategy over the expedient rule if an underlying relationship
between predictors is revealed at the outset. However, when the
relationship was visualized after the expedient rule had been
demonstrably induced, people did not abandon the expedient strat-
egy. The first experiment also showed that people tended to
migrate toward the expedient strategy after extensive training,
even if they had initially used a complex approach.

The second study used an adaptive display that reliably recoded
the actual category boundary involving slope and wind into a
single dimension—the angle between the flames and the ground—
that permitted perfect categorization. Participants clearly relied on
this recoded dimension during training, with performance being
near ceiling on all items, rule and exception alike. However, during
the diagram-free transfer phases, performance depended greatly on
whether training had commenced with the adaptive display. People
who received the adaptive display at the outset did not learn much
about any rule, whether expedient or complex, as shown by the
poor overall level of transfer performance. When the adaptive
display was introduced after unaided initial training, people again
showed no evidence of departing from the already-learned expe-
dient rule. Finally, participants who initially received the adaptive
display but then reverted to unaided training in the second phase
succeeded in inducing the expedient rule during the second phase.

The third experiment further dissected people's strategies by
directly testing different variants of expedient and complex rules.

In confirmation of the first study, the majority of participants were
found to rely on the correct rule involving wind and slope when the
diagram was presented at the outset. In the absence of the diagram,
fewer than 25% of participants acquired the correct rule. Instead,
most people used a variant of an expedient strategy that relied
either exclusively on context, or on the simple linear difference
between wind speed and slope.

Overall, the most compelling result that requires theoretical
consideration is the asymmetry of knowledge restructuring ob-
served in the first two experiments: On the one hand, once an
expedient rule had been acquired, participants resisted a shift to
greater complexity, whether it was revealed by a static diagram or
an adaptive display. On the other hand, Experiment 1 showed that
if participants initially used a more complex strategy, they tended
to migrate toward an expedient rule after extended training. Thus,
people may abandon complex strategies in favor of simpler ones,
even if that entails the risk of a performance loss, whereas people
resist shifting from a simple to a complex strategy, even if they are
explicitly encouraged to do so.

We begin our discussion by considering relevant existing results
and explore explanations that have been put forward for individual,
related findings. These explanations are then integrated into the
associative learning framework offered at the outset.

Prior Knowledge and New Learning

There is, of course, an abundance of evidence that old knowl-
edge persists and interferes with the acquisition of new knowledge
when novel task requirements are incompatible with those origi-
nally learned. Thus, learning of new verbal associations is inhib-
ited by previously learned lists (e.g., Postman, 1971), performance
on a visual search task is impaired for prolonged periods if targets
and distractors are reassigned (Shifrrin & Schneider, 1977, Exper-
iment 1), and in categorization learning, persistence of old knowl-
edge is observed when a different set of features becomes predic-
tive after initial training (e.g., Macho, 1997).

However, all these cases differ from the present studies in at
least one critical respect: Here, the alternative ways of performing
the task were not incompatible and coexisted throughout. Accord-
ingly, aside from the presentation of the static diagram or adaptive
display, overt task requirements were identical in all conditions
and phases. Hence, any theoretical account of the observed asym-
metry of knowledge restructuring must ultimately focus on peo-
ple's cognitive representations of the task. Because we know of no
precedents for a completely cognitive manipulation of a shift in
strategies, let alone explanations, we begin by discussing four key
aspects of our results in the context of procedures in which overt
task requirements were changed. As noted at the outset, we framed
our discussion within an associative learning approach.

Resistance to knowledge restructuring. Consider first the ob-
served reluctance to shift to an asymptotically better, albeit more
complex, strategy once an expedient solution had been learned.
The first phase of training offered people a choice between learn-
ing of a single predictor, context, or a conjunction of predictors,
such as wind and slope. On the assumption that people, by default,
commence learning by giving equal consideration to all potential
predictors, the emerging dominance of context is predicted by laws
of associative learning. Specifically, Rescorla and Wagner's
(1972) theory of learning, which is isomorphic to the error-driven
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Figure 12. The number of mismatches ("distance") between each participant's responses and the predictions of the
closest strategy on the unique items in Experiment 3 is shown as a function of the number of mispredicted responses
on items for which all four strategies predict identical performance ("common items"). The control condition (top
panel) shows less consistent responding than does the diagram condition (bottom panel). Context — Context rule.

learning embodied in most connectionist networks (e.g., Gluck &
Bower, 1988), predicts that if a single cue and a pair of two others
are equally predictive of an outcome, the single cue will acquire
the stronger association. This is because when an incorrect pre-
diction has been made, the entire error signal is focused on
updating the predictive strength of a single cue, whereas if a pair
of cues is present, the total signal is distributed across cues.
Because the magnitude of the error signal is a determinant of the
speed of learning, the weight of the single cue thus changes more
rapidly than the weights of a pair of cues. It is important to note
that this will only occur if the single predictor and the pair of
potential predictors are of roughly equal validity.

In our experiments, wind and slope together predicted the out-
come perfectly if they were combined nonlinearly, to form the

boundary shown in Figure 2. If wind and slope were instead
combined linearly, their joint predictive value was roughly equal to
that of context by itself, as can be ascertained by placing a linear
boundary through the wind-slope space in Figure 2, and as shown
for the Greater-Than-Two strategy in Experiment 3. Hence, if
people commenced learning by considering all cues equally and
linearly, an associative learning account would expect context to
become dominant, exactly as observed during Phase 1 of the
control and reveal conditions in the first two experiments. That
emergence of context would be further facilitated by the first two
blocks of training, during which it was a perfect predictor.

A further implication of associative learning laws is that, once
dominant, context would be expected to remain dominant, even if
additional information about the task becomes available. This
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continued reliance on a predictor at the exclusion of additional
learning is known as blocking (e.g., Kamin, 1969). Blocking refers
to the fact that once a valid predictor has been associated with an
outcome, a second stimulus that subsequently cooccurs with the
predictor will not acquire much predictive power for that outcome
on its own. For example, if A signals event O during initial
training, and subsequently O is signaled by the combination of A
and B, at a final test B on its own will not reliably elicit a response.
Blocking is known to play a powerful role in human contingency
judgments (e.g., Williams, Sagness, & McPhee, 1994) and, of
greatest interest here, in categorization (e.g., Gluck & Bower,
1988; Shanks, 1991, 1993).

In our experiments, then, the diagram is best viewed as being
functionally isomorphic to another predictor. Experiment 3 con-
firmed that the diagram does more than shift people's attention
from context to wind and slope: Accordingly, we suggest that it
rendered available an additional compound cue, consisting of the
conjunction of wind and slope (WS). Because people demonstra-
bly use the correct strategy when the diagram is shown at the
outset (Experiment 3), it is likely that this compound cue is
sensitive to the competition between wind and slope by combining
the two predictors in a negatively correlated fashion. According to
Rescorla and Wagner's (1972) original theory, learning rates and
cue salience are free to vary between predictors, and it seems
reasonable to assume that the diagram also selectively enhances
the salience of wind and slope.

Nonetheless, an associative learning account would expect
blocking of the new predictor (WS) if context has already been
learned. This is because learning only occurs if a response deviates
from the correct outcome: If responding is consistently correct,
learning of additional cues or additional learning of existing cues
is blocked, even if salience is selectively enhanced. In conse-
quence, given the fairly high levels of performance achieved at the
end of Phase 1, and the perfect performance the context rule would
provide in the first two blocks of training during Phase 2, the
diagram would not be expected to alter people's reliance on
context when presented halfway through the experiment.

Inducing complex processing. Now consider the effects of
introducing the diagram at the outset of learning. Continuing with
the above account, this would again be functionally equivalent to
the introduction of a compound cue (WS) combined with enhanced
salience of the predictors W and S. Because learning is not blocked
by prior reliance on context, people can be expected to rely on the
compound cue to the extent that this is more salient and predictive
than context alone.

The data from Experiments 1 and 3 confirm that people relied
less on context when the diagram was presented at the outset.
These results are analogous to the findings of Edgell (1983) and
Edgell and Morissey (1987), who also showed a strong learning
advantage for information that was presented at the outset com-
pared with when it was presented a few trials after training com-
menced. In Edgell*s (1983) study, a probability learning task either
involved a single predictor or the conjunction of two cues. When
the conjunction of cues was predictive from the outset, people
relied on it more than when the conjunction became predictive
after 40 learning trials with the single predictor.

Gradual shift toward expediency. A further finding of our first
experiment was that people gravitated toward the expedient con-
text rule even when they had started out using a more complex

strategy. At first glance, this presents a challenge to the associative
learning framework, because it is not immediately clear why a
proven predictor—in this case a complex strategy involving sev-
eral cues—should be abandoned in favor of an expedient one-
dimensional rule that, at best, can rival the complex strategy only
by additional memorization of exceptional instances.

One possibility is that this finding presents an instance of
retrospective revaluation (e.g., Shanks, 1985; Wasserman &
Berglan, 1998). Retrospective revaluation occurs when a com-
pound cue consisting of two distinguishable elements (e.g., AB) is
first learned and is then followed by training of one of those
elements in isolation (e.g., B). After the additional learning of B,
people judge A to be less predictive than before, which is indic-
ative of a retrospective revaluation of its role. In Experiment 1, this
might have occurred if participants learned to rely on a compound
consisting of all cues (i.e., the presumed cue WS and C) when the
diagram was initially presented, and then used the first two blocks
of the second phase, during which context was perfectly predictive
on its own, to retrospectively reduce the perceived validity of WS.

Asymmetry of knowledge restructuring. We are aware of two
instances of asymmetrical transfer effects that are similar to the
asymmetry of knowledge restructuring observed here. Although
those instances occurred in other domains and possibly reflect
different processes, they deserve mention because any occurrence
of asymmetry serves to place the present findings into a wider
context.

Schyns and Rodet (1997) created a categorization task in which
arbitrary visual shapes served as predictors that were presented
embedded in other random "blobs," Two categories were created,
each defined by one of two critical shapes (call those X and Y). A
third category was defined by the concatenation of those two
shapes into one (call that XY). The three categories were learned
to perfection one at a time, and the critical manipulation was the
sequence in which they were acquired. In one condition, partici-
pants learned categories in the order X, Y, and XY, whereas in
another condition that sequence was reversed. Emphasis during the
final transfer test was on a critical stimulus, labeled X-Y, in which
both features (i.e., X and Y) were present but without being
concatenated. Participants who learned categories in the order X
—> Y —> XY classified the critical X-Y item as belonging to
category XY, suggesting that they had learned to rely exclusively
on features X and Y, regardless of their adjacency, to categorize
items in all three categories. Participants who learned the XY —> X
—> Y sequence, by contrast, classified the X-Y item as belonging
to either category X or Y, but not XY, suggesting that these
participants had additionally learned the configural feature XY.

The results of Schyns and Rodet (1997) showed that once single
features (i.e., X and Y) have been learned, people are unable to
acquire a separate representation for the compound cue XY. Con-
versely, learning of the compound cue XY does not prevent later
acquisition of the elemental features X and Y. This asymmetric
pattern mirrors the present results, although unlike the present
experiments it involved changes to the learning environment (or-
der of trials).

Finally, Edgell and Morissey (1987) examined the effect of
additional information becoming relevant during learning of a
probabilistic prediction task. In their study, participants had to
predict an outcome from two cues whose validity was altered
during the course of learning. As noted earlier, when a single cue
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was predictive early in training, people did not detect the emerging
validity of the conjunction of cues. Specifically, when a target
color (red or green) could initially be predicted on the basis of
shape alone (e.g., triangle —* red vs. square —> green), people did
not learn the association between color and the conjunction of two
predictors (shape and orientation of lines) when the configural
validity of cues emerged later. Conversely, when training com-
menced with configural validity but one of the cues later became
predictive on its own, people shifted to the new expedient strategy.

The overall pattern of results again mirrors the present findings,
albeit with two critical differences in methodology. First, whereas
Edgell and Morissey (1987) altered the relative validity of a
configural cue and its constituent elements, the analogous manip-
ulation in the present experiments involved a purely conceptual
shift between a pair of cues (W and S) and a different single cue
(C). Second, unlike the present studies, Edgell and Morissey
changed the objective validity of cues across trials.

Conclusions

We reported two experiments that showed that people persist in
using a previously acquired expedient rule in a categorization task
even when an important underlying relationship among predictors
is revealed. This occurred even when the relationship was visual-
ized in an adaptive display. If people were informed about the
underlying relation at the outset, they adopted a more complex
strategy that provided an initial performance advantage. However,
people gradually abandoned the complex strategy in favor of the
expedient rule after extended training. A third experiment con-
firmed that people approach the task in qualitatively different
ways, depending on whether they adopt an expedient or a complex
strategy. This in turn implies that the diagram does more than
simply shift attention to an alternative set of predictors.

We accounted for this asymmetry of knowledge restructuring
with basic associative learning principles. Resistance to knowledge
restructuring was seen to be a consequence of standard blocking,
whereby an initially acquired expedient strategy prevented subse-
quent learning of an alternative. The gradual shift from a complex
to a more expedient rule was seen to reflect retrospective revalu-
ation, whereby people reverted to the expedient rule when it was
a perfect predictor early during the second training phase.

References

Albini, F. A. (1984). WiLdland fires. American Scientist, 72, 590-597.
Ashby, F. G., & Gott, R. E. (1988). Decision rules in the perception and

categorization of multidimensional stimuli. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 14, 33-53.

Biederman, I., & Shiffrar, M. M. (1987). Sexing day-old chicks: A case
study and expert systems analysis of a difficult perceptual-learning task.
Journal of Experimental Psychology: Learning, Memory, and Cogni-
tion, 13, 640-645.

Brooks, L. R., Norman, G, R., & Allen, S. W. (1991). Role of specific
similarity in a medical diagnostic task. Journal of Experimental Psy-
chology: General, 120, 278-287.

Davies, S. P. (1994). Knowledge restructuring and the acquisition of
programming expertise. International Journal of Human-Computer
Studies, 40, 703-726.

Delaney, P. F.t Reder, L. M., Staszewski, J. J., & Ritter, F. E, (1998). The
strategy-specific nature of improvement: The power law applies by
strategy within task. Psychological Science, 9, 1-7.

Edgell, S. E. (1983). Delayed exposure to configural information in non-
metric multiple-cue probability learning. Organizational Behavior and
Human Decision Processes, 32, 55-65.

Edgell, S. E., & Morissey, J. M. (1987). Delayed exposure to additional
relevant information in nonmetric multiple-cue probability learning.
Organizational Behavior and Human Decision Processes, 40, 22-38.

Erickson, M. A., & Kxuschke, J. K. (1998). Rules and exemplars in
category learning. Journal of Experimental Psychology: General, 127,
107-140.

Erickson, M. A., & Kruschke, J. K. (1999). Rule and exemplar represen-
tation in rule-defined category structures. Manuscript submitted for
publication.

Erickson, M. A., & Kruschke, J. K. (2000). Rule-based extrapolation in
perceptual categorization. Manuscript submitted for publication.

Gluck, M. A., & Bower, G. H. (1988). From conditioning to category
learning: An adaptive network model. Journal of Experimental Psychol-
ogy: General, 117, 227-247.

Kamin, L. J. (1969). Predictability, surprise, attention, and conditioning. In
B. A. Campbell & R. M. Church (Eds.), Punishment and aversive
behavior (pp. 279-296). New York: Appleton-Century-Crofts.

Kruschke, J. K. (1992). ALCOVE: An exemplar-based connectionist
model of category learning. Psychological Review, 99, 22-44.

Larkin, J. H., & Simon, H. A. (1987). Why a diagram is (sometimes) worth
ten thousand words. Cognitive Science, 11, 65-99.

Lesgold, A., Rubinson, H., Feltovich, P., Glaser, R., Klopfer, D., & Wang,
Y. (1988). Expertise in a complex skill: Diagnosing X-ray pictures. In
M. T. H. Chi, R. Glaser, & M. J. Farr (Eds.), The nature of expertise (pp.
311-342). Hillsdale, NJ: Eribaum.

Lewandowsky, S., Dunn, J. C , Kirsner, K., & Randell, M. (1997). Exper-
tise in the management of bush fires: Training and decision support. The
Australian Psychologist, 32, 171-177.

Lewandowsky, S., & Kirsner, K. (2000). Expert knowledge is not always
integrated: A case of cognitive partition. Memory & Cognition, 28,
295-305.

Lightfoot, N.T & Shiffrin, R. M. (1992). On the unitization of novel,
complex visual stimuli. Proceedings of the Fourteenth Annual Confer-
ence of the Cognitive Science Society (pp. 277-282). Hillsdale, NJ:
Eribaum.

Macho, S. (1997). Effects of relevance shifts in category acquisition: A test
of neural networks. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 23, 30-53.

Mayer, R. E., & Gallini, J. K. (1990). When is an illustration worth ten
thousand words? Journal of Educational Psychology, 82, 715-716.

Medin, D. L., Altom, M. W., Edelson, S. M., & Freko, D. (1982).
Correlated symptoms and simulated medical classification. Journal of
Experimental Psychology: Learning, Memory, and Cognition, 8, 37-50.

Medin, D. L., & Edelson, S. M. (1988). Problem structure and the use of
base-rate information from experience. Journal of Experimental Psy-
chology: General, 117, 68-85.

Nosofsky, R. M. (1986). Attention, similarity, and the identification-
categorization relationship. Journal of Experimental Psychology: Gen-
eral, 115, 39-57.

Nosofsky, R. M., Clark, S. E., & Shin, J. H. (1989). Rules and exemplars
in categorization, identification, and recognition. Journal of Experimen-
tal Psychology: Learning, Memory, and Cognition, 15, 282-304.

Nosofsky, R. M., Palmeri, T. J., & McKinley, S. C. (1994). Rule-plus-
exception model of classification learning. Psychological Review, 101,
53-79.

Palmeri, T. J., & Nosofsky, R. M. (1995). Recognition memory for excep-
tions to the category rule. Journal of Experimental Psychology: Learn-
ing, Memory, and Cognition, 21, 548-568.

Pearsall, N. R., Skipper, J. J., & Mintzes, J. J. (1997). Knowledge restruc-
turing in the life sciences: A longitudinal study of conceptual change in
biology. Science Education, 81. 193-215.



1684 LEWANDOWSKY, KALISH, AND GRIFFITHS

Postman, L. (1971). Transfer, interference, and forgetting. In L. W. Kling
& L. A. Riggs (Eds.), Experimental psychology (pp. 1019-1032). New
York: Holt, Rinehart, and Winston.

Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian condi-
tioning: Variations in the effectiveness of reinforcement and nonrein-
forcement. In A. H. Black & W. F. Prokasy (Eds.), Classical condition-
ing II: Current theory and research (pp. 64-99). New York: Appleton-
Century-Crofts.

Schyns, P. G., & Rodet, L. (1997). Categorization creates functional
features. Journal of Experimental Psychology: Learning, Memory, and
Cognition, 23, 681-696.

Shanks, D. R. (1985). Forward and backward blocking in human contin-
gency judgment. Quarterly Journal of Experimental Psychology: Com-
parative and Physiological Psychology, 37B, 1-21.

Shanks, D. R. (1991). Categorization by a connectionist network. Journal
of Experimental Psychology: Learning, Memory, and Cognition, 17,
433-443.

Shanks, D. R. (1993). Associative versus contingency accounts of category
learning: Reply to Melz, Cheng, Holyoak, and Waldmann (1993). Jour-
nal of Experimental Psychology: Learning, Memory, and Cognition, 19,
1411-1423.

Shiffrin, R. M. (1996). Laboratory experimentation on the genesis of

expertise. In K. A. Ericsson (Ed.), The road to excellence: The acqui-
sition of expert performance in the arts and sciences, sports and games
(pp. 337-345). Hillsdale, NJ: Erlbaum.

Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic human
information processing: n. Perceptual learning, automatic attending, and
a general theory. Psychological Review, 84, 127-190.

Staszewski, J. J. (1988). Skilled memory and expert mental calculation. In
M. Chi, R. Glaser, & M. Farr (Eds.), The nature of expertise (pp.
71-128). Hillsdale, NJ: Erlbaum.

Wasserman, E. A., & Berglan, L. R. (1998). Backward blocking and
recovery from overshadowing in human causal judgment: The role of
within-compound associations. Quarterly Journal of Experimental Psy-
chology: Comparative and Physiological Psychology, 51B, 121-138.

Williams, D. A., Sagness, K. E., & McPhee, J. E. (1994). Configural and
elemental strategies in predictive learning. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 20, 694-709.

Received June 14, 1999
Revision received April 13, 2000

Accepted April 20, 2000


