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1. Introduction 
 
Rational analysis has been successful in explaining a variety of different aspects of 
human cognition (Anderson, 1990; Chater & Oaksford, 1999; Marr, 1982; Oaksford & 
Chater, 1998). The explanations provided by rational analysis have two properties: they 
emphasize the connection between behavior and the structure of the environment, and 
they focus on the abstract computational problems being solved. These properties provide 
the opportunity to recognize connections between human cognition and other systems 
that solve the same computational problems, with the potential both to provide new 
insights into human cognition and to allow us to develop better systems for solving those 
problems. In particular, we should expect to find a correspondence between human 
cognition and systems that are successful at solving the same computational problems in 
a similar environment. In this chapter, we argue that such a correspondence exists 
between human memory and internet search, and show that this correspondence leads to 
both better models of human cognition, and better methods for searching the web. 
 
Anderson (1990) and Anderson and Schooler (1991; 2000) have shown that many 
findings in the memory literature related to recognition and recall of lists of words can be 
understood by considering the computational problem of assessing the relevance of an 
item in memory to environmental cues. They showed a close correspondence between 
memory retrieval for lists of words and statistical patterns of occurrence of words in large 
databases of text. Similarly, other computational models for memory (Shiffrin & 
Steyvers, 1997), association (Griffiths, Steyvers & Tenenbaum, 2007), reasoning 
(Oaksford & Chater, 1994), prediction (Griffiths & Tenenbaum, 2006) and causal 
induction (Anderson, 1990; Griffiths & Tenenbaum, 2005; Steyvers, Tenenbaum, 
Wagenmakers, & Blum, 2003) have shown how our cognitive system is remarkably well 
adapted to our environment.  
 
Anderson’s (1990) analysis of memory also showed for the first time that there are 
fundamental connections between research on memory and information retrieval systems. 
Because information retrieval systems and human memory often address similar 
computational problems, insights gained from information retrieval systems can be 
helpful in understanding human memory. For example, one component of Anderson’s 
first rational memory model involved calculating the predictive probability that items will 
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re-occur given their historical pattern of occurrences. The solution to this problem was 
based on information retrieval models developed for library and file systems (Burrell, 
1980; Salton & McGill, 1983). Just as it is useful to know the probability that a book will 
be needed in order to make it available in short-term or off-site storage, it is useful to 
know whether a fact is likely to be needed in the future when storing it in memory. 
 
Modern information retrieval research provides new tools for modeling the environment 
in which human memory operates, and new systems to which human memory can be 
compared. An important innovation has been the introduction of statistical language 
models to capture the statistics of the regularities that occur in natural language (e.g. 
Croft & Lafferty, 2003; Ponte & Croft, 1998). The goal of language modeling is to 
exploit these regularities in developing effective systems to assess the relevance of 
documents to queries. Probabilistic topic models (e.g. Blei, Ng, Jordan, 2003; Griffiths & 
Steyvers, 2004; Griffiths, Steyvers, & Tenenbaum, 2007; Hoffman, 1999; Steyvers & 
Griffiths, 2006; Steyvers, Griffiths, & Dennis, 2006) are a class of statistical language 
models that automatically infer a set of topics from a large collection of documents. 
These models allow each document to be expressed as a mixture of topics, approximating 
the semantic themes present in those documents. Such topic models can improve 
information retrieval by matching queries to documents at a semantic level (Blei, Ng & 
Jordan, 2003; Hoffman, 1999; Chemudugunta, Smyth & Steyvers, 2007). Another 
important problem in information retrieval is dealing with the enormous volume of data 
available on the world wide web. For any query, there might be a very large number of 
relevant web pages and the task of modern search engines is to design effective 
algorithms for ranking the importance of webpages. A major innovation has been the 
PageRank algorithm, which is part of the Google search engine (Brin & Page, 1998). 
This algorithm ranks web pages by computing their relative importance from the links 
between pages. 
  
In this chapter, we use these innovations in information retrieval as a way to explore the 
connections between research on human memory and information retrieval systems. We 
show how PageRank can be used to predict performance in a fluency task, where 
participants name the first word that comes to mind in response to a letter cue. We also 
give an example of how cognitive research can help information retrieval research by 
formalizing theories of knowledge and memory organization that have been proposed by 
cognitive psychologists. We show how a memory model that distinguishes between the 
representation of gist and verbatim information can not only explain some findings in the 
memory literature but also helps in formulating new language models to support accurate 
information retrieval. 
 

2. A Probabilistic Approach to Information Retrieval  
 
Search engines and human memory are both solutions to challenging retrieval problems. 
For a search engine, the retrieval problem is finding the set of documents that are most 
relevant to a user query. In human memory, the retrieval problem can be construed in 
terms of assessing the relevance of items stored in the mind to a memory probe (either 
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internally generated or based on environmental cues). The common structure of these 
problems suggests a simple analogy between human memory and computer-based 
information retrieval: items stored in memory are analogous to documents available in a 
database of text (such as the world-wide web) and the memory probe is analogous to a 
user query. In this section, we explore how retrieval problems of this kind can be solved 
using statistical inference, following Anderson (1990). 
 
Using notation appropriate to information retrieval, the problem is to assess P( di | q ), the 
probability that a document di  is relevant given a query q. The query can be a (new) set 
of words produced by a user or it can be an existing document from the collection. In the 
latter case, the task is to find documents similar to the given document. In the context of 
memory retrieval, the term q corresponds to the memory probe and P( di | q ) is the 
conditional probability that item di  in memory is relevant to the memory probe. Let us 
assume that there are D documents in the database and the goal is to retrieve some set of 
the most relevant documents as assessed by P( di | q ). This probability can be computed 
using Bayes’ rule, with  
 
 ( | ) ( | ) ( )i i iP d q P q d P d∝  (1) 
 
where P( di ) gives the prior probability that an item will be relevant (before any query or 
cue is issued), and P( q | di ) is the probability of observing the query if we assume that 
item di was the item that was needed, also known as the “likelihood”. 
  
The prior probability, P( di ), can be used to capture the idea that not all items are equally 
important, with some items being more likely to be the target of retrieval. In search 
engines, this prior probability is often computed from the link structure between 
documents. For example, the PageRank algorithm assumes that if a document is linked to 
by many other important documents, then it is likely to be important. The importance of a 
document, also known as its PageRank, can be conceptualized as the prior probability of 
a document being relevant to any particular query. We will return to this idea in the next 
section when discussing the PageRank algorithm and its application to memory retrieval. 
In the rational memory model (Anderson, 1990; Anderson & Schooler, 1991; 2000), the 
prior probability of an item in memory being important was computed from its historical 
usage pattern, under the assumption that if items were recently accessed, they are likely 
to be accessed again. Anderson showed that this “history” factor can explain the effects 
of spacing and repetition of items on retention. 
 
The likelihood, P( q | di ), reflects how well a particular document matches a search query 
or cue. In the context of information retrieval, this can be evaluated using a generative 
model that specifies how the words in the query can be generated from a statistical 
language model that is derived separately for each document di. For example, 
probabilistic topic models (Blei et al 2003; Griffiths & Steyvers, 2004; Griffiths et al., 
2007; Hoffman, 1999; Steyvers & Griffiths, 2006; Steyvers et al., 2006) assume that each 
document can be described by a mixture of topics where the topics are derived from an 
analysis of word occurrences in a large database of text – relevant documents have topic 
distributions that are likely to have generated the set of words associated with the query. 
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We will return to this idea in a later section. In the rational memory model (Anderson, 
1990; Anderson & Schooler, 1991; 2000), this likelihood term was referred to as the 
“context” factor, where the context represented the information available at test to probe 
memory. This factor was evaluated using a simple generative model for the properties of 
items stored in memory.  
 
Equation 1 forms part of a simple schema for solving retrieval problems: compute the 
posterior probability that each item is relevant, combining its prior probability of being 
relevant with a likelihood reflecting its relationship to the query or cue, and then return 
the items with highest posterior probability. This schema can be used to solve the 
retrieval problems faced both by internet search engines and by human memory, 
suggesting that it may be possible to find parallels between the two. We explore this 
possibility in the next two sections, focusing on the role of the prior in the first, and then 
turning to the likelihood in the second. 

3. Google and the mind: predicting fluency with PageRank 
 
Many search engines produce a response to a query in two stages, first identifying the set 
of webpages that contain the words in the query, and then ordering those pages according 
to the pre-computed output of a ranking algorithm. These two stages can be mapped onto 
the two parts of the right hand side of Equation 1. The first stage corresponds to an 
assumption that the likelihood, P( q | di ), has some constant value for any page 
containing the query and is zero otherwise. This guarantees that only pages containing the 
query will have non-zero posterior probabilities, and means that the posterior probability 
of each page containing the query is directly proportional to its prior probability. The 
second stage, ordering the pages, thus reveals the prior probability assigned to each page: 
if the solution to the retrieval problem is to return the pages with highest posterior 
probability, and the posterior probability of the candidate pages is proportional to their 
prior probability, then a ranking algorithm implicitly assigns a prior probability to each 
page.  

web page

web page web page

web page

word

word

word

word

word

word

(a)  World wide web (b)   Semantic network

 
Figure 1. (a) A set of webpages form a directed graph, where the nodes are pages and the edges are 
links. (b) Words in a semantic network also form a directed graph where the edges represent 
associative connections between words. 
 
The correspondence between ranking algorithms and priors means that the prior 
probability that a webpage will be relevant to a user plays a central role in internet search. 
This raises a simple question: how should such prior probabilities be computed? While 
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the details of the ranking algorithms used by commercial search engines are proprietary, 
the basic principles behind the PageRank algorithm used in the Google search engine 
have been published (Brin & Page, 1998). The algorithm makes use of two key ideas: 
first, that links between webpages provide information about their importance (and hence 
their probability of being the webpage that a user might seek), and second, that the 
relationship between importance and linking is recursive.  
 
In addition to carrying information about different topics, webpages contain sets of links 
connecting them to other pages, as shown in Figure 1(a). Given an ordered set of n pages, 
we can summarize the links between them with a n × n matrix L, where Lij indicates that 
a link exists from webpage j to webpage i (the adjacency matrix of the underlying graph). 
This matrix provides a way to define the importance of a webpage. If we assume that 
links are chosen in such a way that higher importance pages receive more links, then the 
number of links that a webpage receives (in graph-theoretic terms, its “in-degree”) could 
be used as a simple index of its importance. Using the n-dimensional vector p to 
summarize the importance of our n webpages, this is the assumption that 

1..i ij n jp L
=

= ∑ . 

 
PageRank goes beyond this simple measure of the importance of a webpage by observing 
that a link from a highly important webpage should be a better indicator of importance 
than a link from a webpage with little importance. Under such a view, a highly important 
webpage is a webpage that receives many links from other highly important webpages. 
We might thus imagine importance as flowing along the links of the graph shown in 
Figure 1(a). If we assume that each webpage distributes its importance uniformly over its 
outgoing links, then we can express the proportion of the importance of each webpage 
traveling along each link using a matrix M, where 

1..
/ij ij kjk n

M L
=

= L∑ . The idea that 
highly important webpages receive links from highly important webpages implies a 
recursive definition of importance, and the notion of importance being divided uniformly 
over outgoing links gives the equation 
 
 =p Mp  (2) 
 
which identifies p as the eigenvector of the matrix M with the greatest eigenvalue. The 
PageRank algorithm computes the importance of webpages by finding a vector p that 
satisfies this equation (ignoring a slight modification to take into account the possibility 
that a sequence of webpages forms a closed loop). 
 
While the recursive definition of PageRank makes clear its assumptions about how 
linking affects importance, some intuitions about the factors influencing the PageRank of 
a page can be gained by considering an alternative route to the same formal result (Brin 
& Page, 1998). We can define a random walk on the world wide web by assuming that a 
user starts at a randomly chosen web page, and then keeps clicking on links chosen 
uniformly at random from the set of links on the page reached after every click. This 
random walk is a Markov chain, and standard results in the mathematical theory of 
Markov chains indicate that, in the long run, the probability that this user lands on a 
particular webpage will be proportional to its PageRank. 
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3.1. Applying PageRank to Semantic Networks 
 
The idea that that the pieces of information that are the targets of retrieval are connected 
to one another is not exclusive to web pages – it also appears in cognitive psychology. In 
an associative semantic network, such as that shown in Figure 1(b), a set of words or 
concepts are represented as nodes connected by edges that indicate pairwise associations 
(e.g., Collins & Loftus, 1975). If we take this to be the representation of the knowledge 
on which retrieval processes operate, human memory and search engines thus address a 
similar computational problem: identifying the items relevant to a query from a large 
network of interconnected pieces of information. The empirical success of the Google 
search engine indicates that PageRank constitutes an effective solution to this problem. 
This raises the tantalizing possibility that the link structure of semantic networks might 
provide a guide to the relative importance of pieces of information, or, equivalently, an 
estimate of the prior probability with which a particular word or concept might be 
needed. In particular, it suggests that by computing the PageRank of the nodes in a 
semantic network, we might be able to predict the prominence of the corresponding 
words and concepts in memory.  
 
Table 1. Most frequent responses in the fluency task for the letter “d” and the rankings 
given by PageRank, In-degree and KF frequency. 
 

DOG (19) DOG (19) DOG (19) DO (2)
DAD (16) DARK (3) DEATH (1) DOWN (4)
DOOR (5) DRINK (1) DRINK (1) DAY (2)
DOWN (4) DOWN (4) DIRTY (0) DEVELOPMENT (0)
DARK (3) DEATH (1) DARK (3) DONE (1)
DUMB (3) DOOR (5) DOWN (4) DIFFERENT (0)
DAY (2) DAY (2) DIRT (0) DOOR (5)
DEVIL (2) DIRTY (0) DEAD (0) DEATH (1)
DINOSAUR (2) DIRTY (0) DANCE (0) DEPARTMENT (0)
DO (2) DEAD (0) DANGER (1) DARK (3)

Human responses PageRank In-degree KF Frequency

 
 
Note: The numbers between parentheses are frequencies in human responses. All 
responses are restricted to the words in the word association norms by Nelson, McEvoy 
and Schreiber (1998).  
 
In order to explore the possibility of a correspondence between PageRank and human 
memory, we constructed a task that was designed to closely parallel the formal structure 
of internet search (Griffiths, Steyvers, and Firl, in press). Specifically, we wanted a task 
in which people had to produce items from memory that matched some query, with the 
hope that in doing so their responses would reflect the prior probability assigned to each 
item being needed. To this end, we showed participants a letter of the alphabet (the 
query) and asked them to say the first word that came into their head that begins with that 
letter (the relevant items). In the literature on human memory, such a task is used to 
measure fluency – the ease with which people retrieve different facts from memory, 
which can useful to diagnose neuropsychological and psychiatric disorders (e.g. Lezak, 
1995). Each subject in the experiment gave fluency responses for twenty-one letters of 
the alphabet (excluding low frequency letters). The results were pooled across fifty 
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subjects and responses that were given by only a single subject were excluded. Table 1 
shows a sample of responses given for the letter “d”. 
 
Our goal was to determine whether people’s responses could be predicted by PageRank 
computed from a semantic network constructed from word association norms collected 
by Nelson, McEvoy, and Schreiber (1998). These norms were collected by asking 
participants to name the first word that came into their head when presented with a cue in 
the form of another word. The norms list the associates that people produced for 5,018 
words, and were collected in such a way that each word named at least twice as an 
associate also appears as a cue. From these norms, we constructed a directed graph in 
which each word was represented as a node, and an edge was introduced from each word 
to its associates. We then applied the PageRank algorithm to this graph.  
 
In order to evaluate the performance of PageRank, we used several alternative predictors 
as controls. In one control, we compared the performance of PageRank to more 
conventional frequency-based measures, based on the Kucera-Francis (KF) word 
frequency (Kucera & Francis, 1967). Word frequency is widely used as a proxy for 
fluency in word recognition studies (e.g., Balota & Spieler, 1999; Plaut, McClelland, 
Seidenberg, & Patterson, 1996; Seidenberg & McClelland, 1989; see also Adelman, 
Brown & Quesada, 2006) and to set the prior probability of items in rational models of 
memory (Anderson, 1990). Another control was a semantic network measure that was not 
based on a recursive definition of importance: the in-degree of each node in the semantic 
network. This is the frequency with which the word was named as a response in the word 
association norms. The in-degree of nodes in an associative semantic network has 
previously been used as a predictor in a number of episodic memory studies (McEvoy, 
Nelson, & Komatsu, 1999; Nelson, Dyrdal, & Goodmon, 2005). In-degree differs from 
PageRank only in the assumption that all incoming links should be given equal weight 
when evaluating the importance of an item, rather than being assigned weights based on 
the importance of the items from which they originate. 
 
For each letter of the alphabet, we identified all words contained in the norms that began 
with that letter, and then ordered the words by each of the three predictors, assigning a 
rank of 1 to the highest-scoring word and increasing rank as the predictor decreased. A 
sample of the rankings for the letter “d” produced by PageRank, KF frequency and in-
degree is shown in Table 1. To compare performance of these three predictors, we 
compared the median ranks. The median rank assigned by PageRank was 13, as 
compared to 17 for in-degree and 43 for word frequency, reflecting a statistically 
significant improvement in predictive performance for PageRank over the controls. 
 
The results of this experiment indicate that PageRank, computed from a semantic 
network, is a good predictor of human responses in a fluency task. These results suggest 
that the PageRank of a word could be used in the place of more conventional frequency-
based measures when designing or modeling memory experiments, and support our 
argument that the shared problem faced by human memory and internet search engines 
might result in similar solutions. One way to explain the advantage of PageRank might be 
to return to the idea of random walks on a graph. As mentioned above, a random internet 
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surfer will select webpages with probabilities proportional to their PageRank. For 
semantic networks, the PageRank of a word is proportional to the probability of selecting 
that word if participants started at a random word in the semantic network and proceeded 
to search their memories by following associative links until they found a word that 
matched the query (see Griffiths et al., in press, for details). 
 
The fluency task focused on one important component in retrieval, the prominence of 
different words in human memory, as should be reflected in the prior P( di ). By using a 
letter matching task, for which the word response can either be true or false, we 
purposefully minimized the influence of the P( q | di ) likelihood term in Equation 1. 
However, in more typical retrieval tasks, queries can relate in many ways to items stored 
in memory. In addition to the form-based matching that was emphasized in the letter 
matching task, many retrieval tasks require content-based matching where the query and 
items in memory are matched at a conceptual level. In the next section, we consider the 
computational problem of assessing P( q | di ) using both form-based and content-based 
matching strategies. 

4. Topic Models to extract Verbatim and Gist information 
 
In both memory and information retrieval research, one of the main problems is to 
specify how relevant information can be retrieved in the context of a user query or 
environmental cues. Memory researchers have proposed that the memory system assesses 
relevance at two levels of generality: verbatim and gist (Brainerd, Reyna, & Mojardin, 
1999; Brainerd, Wright, & Reyna, 2002; Mandler, 1980). The gist-level representation is 
based on a high-level semantic abstraction of the item to be stored, whether it is a 
sentence, conversation or document. This gist level information can be used to 
disambiguate words or retrieve semantically relevant concepts during reading (Ericsson 
& Kintsch, 1995; Kintsch, 1988; Potter, 1993). At the verbatim level, information is 
stored and retrieved relatively closely to the raw physical form in which it was received 
and might include the specific choice of words and physical characteristics related to font 
and voice information. While it is probably an oversimplification to propose that the 
memory system utilizes only two levels of abstraction to encode and retrieve information, 
the distinction between gist and verbatim information has been useful to understand, at 
least at a conceptual level, a variety of findings in memory and language research. 
However, these models leave open the question of exactly how verbatim and gist level 
information is encoded in memory.  
 
In information retrieval, the relevance of a query to documents can be assessed using a 
variety of techniques that focus on different levels of abstraction of the information 
contained in the document and query. The simplest keyword matching strategies do not 
attempt any abstraction and focus on the exact word matches between documents and 
queries. A widely used keyword-matching retrieval technique is based is on the term-
frequency, inverse-document-frequency (TF-IDF) method (Salton & McGill, 1983). The 
relevance of a document is related to the number of exact word matches and inversely 
weighted by the number of times the query terms appear in documents across the 
database. One problem of this technique is that it can be overly specific. It can give low 
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relevance scores to documents that contain words semantically related to the query. To 
improve the generalization in retrieval, dimensionality-reduction techniques have been 
developed to extract a lower-dimensional description for documents that utilizes the 
statistical regularities of words in natural language. This has led to techniques such as 
Latent Semantic Indexing (LSI; Deerwester,  Dumais, Furnas, Landauer, & Harshman, 
1990; Landauer & Dumais, 1997), and probabilistic analogues such as Probabilistic 
Latent Semantic Indexing (PLSI; Hoffman, 1999) and Latent Dirichlet Allocation (LDA; 
Blei et al., 2003; Griffiths & Steyvers, 2004). The idea is that queries and documents can 
be matched in the lower-dimensional space, which often leads to higher-level semantic 
matches. However, in come cases these dimensionality-reduction techniques lead to over-
generalization. Because the matching of query and document takes place entirely in the 
lower-dimensional “semantic” space, all details about the individual words in query and 
documents are lost in this comparison. It is possible, however, that some of the individual 
words in the query or document were essential to assess relevance.     
 
The difficult issue of deciding on an appropriate level of generalization to assess 
relevance forms an important parallel between problems studied by memory and 
information retrieval researchers. In the context of human memory, should information in 
memory be relevant only when it exactly matches the environmental cues (using verbatim 
information) or should the retrieval process allow some generalization in the retrieval 
process (using gist)? Similarly, in information retrieval, should the relevance of 
documents to queries be assessed more on the level of exact matches (e.g. keyword 
matching strategies) or should there be some attempt  to extract a more general 
representation of documents and queries to allow for conceptual level matches? 
 
In this section, we consider the computational problem of balancing the tradeoff between 
specificity and generality. We will start with a description of probabilistic topic models 
that focus on extracting only gist-based descriptions for each document using low-
dimensional semantic representations. We then introduce an extension of these models, 
the dual-route topic model  that augments these gist-based representations with document 
specific representations based on specific keyword occurrences in documents. We 
illustrate how this model can be used to explain several findings in the memory literature 
such as false memory and semantic isolation effects. We will also show how this model 
leads to improved performance in information retrieval.  

4.1. Topic Models 
 
Topic models such as PLSI and LDA are based upon the idea that documents are 
mixtures of topics, where a topic is a probability distribution over words. A topic model 
is a generative model for documents: it specifies a simple probabilistic procedure by 
which documents can be generated. In a standard topic model, to make a new document, 
one chooses a distribution over topics. Then, for each word in that document, one 
chooses a topic at random according to this distribution, and draws a word from that 
topic. To introduce notation, we will write  for the multinomial distribution over 
topics given document d, and 

( | )P z d
( | )P w z t=  for the multinomial distribution over words w 
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given a specific topic t. In a standard topic model, the distribution of words in document 
d can be decomposed as a finite mixture over T topics as follows:  
 

  (3) ( )
1

| ( | ) (
T

t

P w d P w z t P z t d
=

= = =∑ | )

)

 
In this model, the term indicates which words are important for topic t and 

gives the importance of a particular topic in document d which can be used as 
a representation of the content or gist of that document. In the LDA model, these 
multinomial distributions have associated priors, chosen to be Dirichlet distributions. The 
hyperparameters of the Dirichlet distributions indicate which kinds of multinomial 
distributions are likely, and control the degree of smoothing of the word counts in topics 
and topic counts in documents.  

( | )P w z t=
( |P z t d=

 
Given the  observed words in a set of documents in a large corpus, we would like to 
know what set of topics is most likely to have generated the data. This involves inferring 
the probability distribution over words associated with each topic, , and the 
distribution over topics for each document, . Several statistical inference 
techniques have been developed to infer these distributions from large text corpora. The 
simulations discussed in this chapter utilized an efficient Gibbs sampling technique based 
on Markov chain Monte Carlo (Griffiths & Steyvers, 2004). We will not discuss the 
details of this procedure but we refer the interested reader to an introductory treatment by 
Steyvers and Griffiths (2006).  

( | )P w z
( | )P z d

 
As an example of the topics that can be extracted with the topic model, we applied the 
topic model with T=1500 topics to the TASA corpus, a collection of over 37,000 text 
passages from educational materials (e.g., language & arts, social studies, health, 
sciences) collected by Touchstone Applied Science Associates (see Landauer, Foltz, & 
Laham, 1998). Several topic-word distributions ( | )P w z t=  are illustrated in Figure 2. 
The figure shows the nine words that have the highest probability under each topic. The 
particular topics shown in the figure relate to various themes in agriculture and biology. 
 
 

VEGETABLES
FRUITS

POTATOES
FRUIT

POTATO
TOMATOES

FRESH
ORANGES
ORANGE

MEAT
BEEF
EAT

COOKED
PORK
MEAL
SAUCE
BREAD

COOKING

FARMERS
CROPS

FARMING
FARMS
FARM
LAND
CROP

AGRICULTURE
GROW

NUTRIENTS
ENERGY

FATS
VITAMINS

CARBOHYDRATES
FOOD

VITAMIN
MINERALS

NEED

TOOLS
TOOL

CUTTING
HAND
CUT

DRILL
CHISEL

CARPENTER
METAL

PLANTS
PLANT

LEAVES
SEEDS
SOIL

ROOTS
FLOWERS

WATER
FOOD

Topic 32 Topic 816 Topic 543 Topic 1321Topic 41 Topic 1253

 
 
Figure 2. Example topic distributions extracted from the TASA corpus using a topic model with 1500 
topics. For each topic, the nine most likely words are shown in order of probability.  
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In the standard topic model, each document is described by a distribution over topics 
which represent the gist of a document but information about particular words is lost. For 
example, suppose we need to encode the following list (i.e. document) of words: PEAS, 
CARROTS, BEANS, SPINACH, LETTUCE, TOMATOES, CORN, CABBAGE, and SQUASH. If we 
encode this list as a distribution over 1500 topics, only a few topics would receive high 
probability. For example, one possible distribution for this list would be to give 
probability .77, .17, and .06 to topics 32, 543, and 1253 respectively, and zero probability 
to all other topics. This encoding would capture the idea that the list of words contained 
semantic themes related to vegetables and farming. However, this encoding would not 
allow accurate reconstruction of the specific words that were presented. If we use 
Equation (3) to reconstruct the list with these topic weights, words that were not 
presented on the list, such as VEGETABLES and POTATO might receive relatively higher 
probability. While it is a desirable feature of the model to generalize beyond the specific 
words on a list, what is needed is a model-based encoding that tempers this generalization 
with a representation for the specific words present on the list.    
 

4.2. Dual Route Topic Models 
 
We developed the dual-route topic model to capture both the specific and general aspects 
of documents. This model is an extension of the LDA model that allows words in 
documents to be modeled as either originating from general topics, or from a distribution 
over words that is specific for that document. We will refer to this distribution as the 
special word distribution. An important assumption in the model is that each word 
originates from a single route only, but there can be uncertainty about the route 
allocation. Each word token in a document has an associated random variable x, taking 
value x = 0 if the word w is generated via the topic route, and value x = 1 if the word is 
generated as a special-word route. The variable x acts as a switch. If x = 0, the standard 
topic mechanism is used to generate the word: a topic is sampled from the topic 
distribution associated with the document and a word is sampled from the topic. On the 
other hand, if x = 1, words are sampled from the special-word distribution specific to the 
document. We model this as multinomial with a symmetric Dirichlet prior. The switch 
variable x is sampled from a document-specific Bernoulli variable λ with a symmetric 
Beta prior. The random variable λ determines the proportion of words associated with the 
special word and topic route within a document. The model specifies the following 
probability distribution over words in a document:    
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where is the special word distribution associated with document d. Note that the 
model explains word occurrences as a mixture of two routes, the topic model route 
weighted by and the special word route weighted by . 
If =0, the model is identical to the LDA model in Equation (3). On the other 

'( | )P w d

( 0 |P x d= ( 1 |P x d=
( 1 |P x d=
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hand, if =1, the model is identical to a unigram word model. By mixing these 
two components, the model allows a flexible balance between modeling general and 
specific aspects of documents. The latent variables in the model include the terms 

 and  associated with the topic model and new terms  
and . As with standard topic models, Gibbs sampling can be used to infer these 
distributions (see Chemudugunta, Smyth & Steyvers, 2007, for details).  

( 1 |P x d= )

( | )P z d ( | )P w z ( | )P x d
'( | )P w d

 

4.3. Explaining Semantic Isolation Effects 
 
The distinction between verbatim and gist level information can be useful to understand a 
number of findings in the memory literature, such as the semantic isolation effect. This 
effect is related to the classic finding by Von Restorff (1933) that information that stands 
out from the context is better remembered. Von Restorff effects can be based on physical 
or semantic characteristics, by presenting a word on a list in a unique color or font or 
drawing a word from a novel semantic category. Semantic isolation effects occur when 
words that semantically stand out from the list are better remembered.  
 
Early explanations of the isolation effect focused on the role of attention (Jenkins, 1948) 
and surprise (Green, 1956). In this account, the unexpected isolated word leads to an 
increase in attention which enhances the encoding of the item. However, studies have 
shown that the isolate is not (always) rehearsed or attended more (e.g. Dunlosky, Hunt & 
Clark, 2000). Also, this account cannot explain the continued presence of isolate effects 
even when the isolate is presented as the first word in the list. In this case, no 
expectations about the list contents can have been built up yet when processing the first 
item. An alternative account focuses on the role of memory organization with the idea 
that the isolate is encoded in qualitatively different ways compared to the background 
items (Bruce & Gaines, 1976; Fabiani & Donchin, 1995). The dual route memory model 
allows a computational account for the semantic isolation consistent with this proposal. 
In the model, the memory system utilizes qualitatively different encoding resources to 
encode isolate and background items. The topic route stores the gist of the list and the 
special-words route stores specific words such as the isolate word. 
 
To illustrate the dual-route topic approach, we applied the model to experimental data 
gathered by Hunt and Lamb (2001). They compared recall performance for two lists of 
words, illustrated in Figure 3(a). The outlier lists consisted of nine words from one 
category (e.g. vegetables) and one target word (e.g. HAMMER) from another category, 
whereas the control list embedded the target word in a background context that is 
semantically consistent. As shown in Figure 3(b), Hunt and Lamb found that recall for 
the target word is much higher in the isolate condition, illustrating the semantic isolation 
effect. The finding that the target item is recalled about as well as the background items 
in the control list shows that this isolation effect needs to be explained by the difference 
in context, and not by particular item characteristics (e.g. orthography or word 
frequency).   
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Figure 3. (a) Two example lists used in semantic isolation experiments by Hunt and Lamb (2001). 
The outlier list has one target word (HAMMER) which is semantically isolated from the background. 
The control list uses the same target word in a semantically congruous background. (b) Data from 
Experiment 1 of Hunt and Lamb (2001) showing the semantic isolation effect (c). The predictions of 
the dual-route topic model. 
 
We encoded the outlier and control lists with the dual-route topic model. To simplify the 
simulations, we used the same 1500 topics illustrated in Figure 2 that were derived by the 
standard topic model. We therefore inferred the special word distribution and topic and 
route weights for this list while holding fixed the 1500 topics. We also made one change 
to the model. Instead of using a Dirichlet prior for the multinomial of the special-word 
distribution that has a single hyperparameter for all words, we used a prior with 
hyperparameter values that were higher for words that are present on the list than for 
words that were absent (0.001 and 0.0001 respectively). This change forces the model to 
put more a priori weight on the words that are part of the study list.  
 
Figure 4 shows the model encoding for the isolate list shown in Figure 3(a). The most 
likely topic is the vegetable topic, with smaller probability going toward the farming and 
tools topics, reflecting the distribution of semantic themes in the list. The special word 
distribution gives relatively high probability to the word HAMMER.  This happens because 
the model encodes words either through the topic or special word route and the 
probability of assigning a word to a route depends on how well each route can explain the 
occurrence of that word in the context of other list words. Because most of the vegetable-
related words can be explained by the topic route, these words will receive lower 
probability from the special-word route. On the other hand, the word HAMMER, which is 
semantically isolated from the vegetable words cannot be explained well by the topic 
route, which makes it more likely to be associated with the special-word route. To 
simulate recall, Equation (4) can be applied to calculate the posterior predictive 
probability over the whole vocabulary (26,000+ words) using the model encoding. We 
will refer to this as the retrieval distribution. The retrieval distribution shown in Figure 4 
shows an advantage for the isolate word. This occurs because the special-word 
distribution concentrates probability on the isolate word which is preserved in the 
reconstruction using both routes (the topic route distributes probability over all words 
semantically related to the list, leading to a more diffuse distribution).  Figure 3(c) shows 
the model predictions for the experiment by Hunt and Lamb (2001), which exhibits the 
same qualitative pattern as the experimental data. Note that the retrieval probability can 
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only be compared qualitatively to the observed recall probability. In order to fully 
simulate recall, we would have to implement a sampling process with a stopping rule to 
simulate how human participants typically produce only a subset of words from the list. 
For reasons of simplicity, we chose not to implement such a sampling process. 
      

List:
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Figure 4. Example encoding and reconstruction of a list of words with the dual-route topic model. 
Note that the topic distribution is truncated and only shows the top 3 topics. Similarly, the special-
word and retrieval distributions only show the top 9 nine words from a vocabulary of 26,000+ words. 
 

4.4. Explaining False Memory effects 
 
The dual-route topic model can also be used to explain false memory effects (Deese, 
1959; McEvoy, Nelson, & Komatsu, 1999; Roediger, Watson, McDermott, & Gallo, 
2001). In a typical experiment that elicits the false memory effect, participants study a list 
of words that are associatively related to one word, the lure word, that is not presented on 
the list. At test, participants are instructed to recall only the words from the study list, but 
falsely recall the lure word with high probability (in some cases the lure word is recalled 
more often than list words). Results of this kind have led to the development of dual-
route memory models where the verbatim level information supports accurate recall 
whereas the gist level information that is activated by the semantic organization of the list 
supports the intrusion of the lure word. (Brainerd, Reyna, & Mojardin, 1999; Brainerd, 
Wright, & Reyna, 2002). These models were designed to measure the relative 
contribution of gist and verbatim information in memory but do not provide a 
computational account for how the gist and verbatim information is encoded in memory.    
 
To explain how the dual-route topic model accounts for the false memory effect, we 
applied the model to a recall experiment by Robinson and Roediger (1997). In this 
experiment, each study list contains a number of words that are associatively related to 
the lure word, which itself is not presented on the study list. The remaining words were 
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random filler words that did not have any obvious associative structure. In the 
experiment, the number of associatively related words were varied while keeping the 
total number of study words constant. Figure 5(a) shows some example lists that contain 
3, 6, and 9 associates of the word ANGER which itself is not present on the list.  Figure 
5(b) shows the observed recall probabilities for the studied items and the lure word as a 
function of the number of associates on the list. With an increase in the number of 
associates, the results show an increase in false recall of the lure word and a decrease in 
veridical recall. We applied the dual-route topic model to this experimental setup and 
simulated word lists similar to those used by Robinson and Roediger (1997). Figure 5(c) 
shows that model predicts retrieval probabilities that are qualitatively similar to the 
observed recall probabilities. As the number of associates increases, the model will put 
increasingly more weight on the topic route, because the topic route can better explain the 
associative structure when more associates are present. By putting more weight on the 
topic route, this leads to an increase in generalization beyond the list words which is 
associated with an increase in false recall. Similarly, with an increasing weight on the 
topic route, there is a corresponding decrease in weight for the special-word route. This 
route is needed to reconstruct the specific words present on a list and as the weight on 
this route decreases, there is a decrease in veridical recall. Therefore, the model explains 
these findings in a qualitative fashion by underlying change in the balance between gist 
and verbatim level information. One advantage of this model over other dual route 
memory models (e.g. Brainerd, Reyna, & Mojardin, 1999; Brainerd, Wright, & Reyna, 
2002) is that the model explains performance at the level of individual words and 
specifies a representation for gist and verbatim information. 
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Figure 5. (a) Example study lists varying the number of words associated to the lure ANGER which is 
not presented on the list. (b) Data from Robinson and Roediger (1997), Experiment 2, showing the 
observed recall probabilities for studied items and the lure item as a function of the number of 
associates on the list. (c) Predictions from the dual-route topic model.  
 

4.5. Application to Information Retrieval 
 
The dual-route topic model can be applied to documents to probabilistically decompose 
words into contextually unique and gist related words. Such as decomposition can be 
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useful for information retrieval because it allows queries to be matched to documents at 
two levels of generality: specific information captured by the special-word route and 
content related information captured by the topic model. To illustrate how the model 
operates on documents, we applied the model with T=100 topics to a set of 1281 abstracts 
from Psychological Review, and separately to a set of 3104 articles from the New York 
Times. Figure 6 shows fragments of two example documents that were encoded with the 
dual-route topic model. The background color of words indicates the probability of 
assigning words to the special words topic—darker colors are associated with higher 
probability that a word was assigned to the special topic. The words with gray foreground 
colors were treated as stopwords and were not included in the analysis. The model 
generally treats contextually unique words as special words. This includes names of 
people (e.g. NOSOFSKY, SCHAFFER in the psych review abstract) and low frequency words 
(e.g. THERMOELECTRIC in the New York Times article).  
 

alcove attention learning covering map is a 
connectionist model of category learning that 
incorporates an exemplar based representation d . l . 
medin and m . m . schaffer 1978 r . m . nosofsky 1986 
with error driven learning m . a . gluck and g . h . bower 
1988 d . e . rumelhart et al 1986 . alcove selectively 
attends to relevant stimulus dimensions is sensitive to 
correlated dimensions can account for a form of base 
rate neglect does not suffer catastrophic forgetting and 
can exhibit 3 stage u shaped learning of high frequency 
exceptions to rules whereas such effects are not easily 
accounted for by models using other combinations of 
representation and learning method .  

Psychological Review abstract New York Times article

south korea took a big step today toward opening up its 
state run power generation industry to foreign investors the 
state owned korea electric power corporation or kepco the 
only company in the nation involved in power generation 
said it would spin off six independent companies in 
november the company s first concrete move toward 
privatization in its 38 year history later this month the 
government will offer the six companies for sale to both 
foreign and domestic buyers kepco will allot 42 power 
generation facilities either currently in operation or under 
construction to five hydro and thermoelectric power 
companies lee hyung chul director of restructuring at the 
utility said nuclear power plants will be separated into a

 
 

Figure 6. Finding contextually unique words in two example documents. The background shading 
indicates the probability that a word is assigned to the special-word route.    
 
 
Chemudugunta, Smyth and Steyvers (2007) reported some initial information retrieval 
results of the dual-route topic model. They applied the model to a several sets of articles 
from the TREC corpus, which was developed by the information retrieval community to 
compare and test methods. For each candidate document, they calculated how likely the 
query q was when “generated” from the distributions associated with topics and special 
words. Under the assumption that the query words are generated independently, the query 
likelihood can be calculated by: 
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where the product is over all words that are part of the query. The retrieval performance 
of the model can be assessed by comparing the query likelihoods to human relevance 
judgments that are part of the TREC database. Chemudugunta et al. (2007) showed that 
the dual-route topic model significantly outperforms a variety of information retrieval 
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methods such as LSI and LDA which focus on content-based matching and TF-IDF 
which focuses on keyword matching.  
 
The results of this test indicate that the dual-route topic model does not suffer from the 
weakness of techniques such as LSI and LDA, which are not able to match specific words 
in queries and therefore might be prone to over-generalization. Similarly, the model does 
not suffer from the limitations of the TF-IDF approach in terms of its ability to 
generalize. The results thus suggest that the best information retrieval results can be 
obtained by a combination of content-based and keyword-based matching techniques, 
paralleling contemporary accounts of the structure of human memory. 
 

5. Discussion 
 
In a rational analysis of cognition, the cognitive system is analyzed in terms of the 
computational demands that arise from the interaction with our environment (Anderson, 
1990; Chater & Oaksford, 1999; Marr, 1982; Oaksford & Chater, 1998). We proposed 
that both human memory and internet search faces similar computational demands. Both 
systems attempt to retrieve the most relevant items from a large information repository  in 
response to external cues or queries. This suggests not only that there are many useful 
analogies between human memory and internet search but also that computational 
approaches developed in one field potentially lead to novel insights in the other. 
 
For example, we have shown how the PageRank algorithm, developed for the Google 
search engines to rank webpages, can be useful in understanding human retrieval from 
semantic memory.   We showed how PageRank can be used to measure the prominence 
of words in a semantic network by analyzing the associative link structure between 
words. The PageRank measure outperforms other measures for prominence such as word 
frequency in predicting performance in a simple fluency task. We also showed how 
research in memory that distinguishes between verbatim and gist information can lead to 
new computational approaches for encoding and retrieval that are not only useful to 
explain phenomena such as isolation and false memory effects related to human memory, 
but can also lead to new information retrieval methods. The central idea in these methods 
is striking the right balance between content-based (i.e. gist) and form-based (i.e. 
verbatim) matching approaches when comparing the query to candidate documents.   
 
There are exciting new possibilities for cognitive research in language and memory to 
influence the design of search engines. If the user formulates a query to a search engine, 
this query is likely to be influenced by a complex combination of memory and language 
processes. The user is unlikely to remember all the details of a particular document that 
needs to be retrieved and therefore cognitive theories of memory organization, encoding, 
retention and retrieval become relevant. Similarly, the content that is indexed by search 
engines is often produced by human activity that can be described and explained from a 
cognitive perspective. While it should not be surprising that there are many cognitive 
aspects to information retrieval (e.g. Spink & Cole, 2005), often such cognitive aspects 
are stated quite informally based on intuitive notions of user behavior. For example, in 
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the original paper that motivated the Google search engine, Brin and Page (1998, p. 108) 
mentioned that the PageRank algorithm was specifically designed as a measure of 
importance because it “corresponds well with people’s subjective ideas of importance”. 
Cognitive research can help to formalize and empirically validate intuitive notions of user 
behavior and the representation and usage of information in memory. Therefore, the 
connection between cognitive and information retrieval research can work in both 
directions.  
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