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Abstract

The tendency to test outcomes that are predicted by our current theory (the confirmation bias) is
one of the best-known biases of human decision making. We prove that the confirmation bias is an
optimal strategy for testing hypotheses when those hypotheses are deterministic, each making a sin-
gle prediction about the next event in a sequence. Our proof applies for two normative standards
commonly used for evaluating hypothesis testing: maximizing expected information gain and maxi-
mizing the probability of falsifying the current hypothesis. This analysis rests on two assumptions:
(a) that people predict the next event in a sequence in a way that is consistent with Bayesian infer-
ence; and (b) when testing hypotheses, people test the hypothesis to which they assign highest poster-
ior probability. We present four behavioral experiments that support these assumptions, showing that
a simple Bayesian model can capture people’s predictions about numerical sequences (Experiments
1 and 2), and that we can alter the hypotheses that people choose to test by manipulating the prior
probability of those hypotheses (Experiments 3 and 4).

Keywords: Confirmation bias; Rational analysis; Hypothesis testing; Decision making; Bayesian
inference; Determinism

1. Introduction

How should a scientist seek evidence to help her find the hypothesis that explains a
phenomenon? Over the last century, philosophers of science have explored this question.
For example, Popper (1935/1990) argued that scientists ought to follow the strategy of
Jalsification, seeking evidence most likely to invalidate their current theory. Popper’s main
argument examines the fundamental difference between two types of evidence a scientist
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can receive from an experiment: verifying and falsifying. A scientist discovers verifying
evidence from an experiment when the result of the experiment is predicted by her hypothe-
sis. Though the verifying evidence supports her hypothesis, it will not rule out other alterna-
tive hypotheses that also predict the evidence. On the other hand, she discovers falsifying
evidence from her experiment if its result is not predicted by her hypothesis. As falsifying
evidence invalidates her hypothesis and verifying evidence only supports it (while not ruling
out alternative accounts), she should seek this more powerful falsifying evidence when
testing her hypothesis.

For example, imagine that a scientist was investigating the link between blood pressure
and heart attacks (before it was discovered that such a relationship exists). After observing a
patient with a blood pressure of 180 mmHg have a heart attack, the scientist forms the
hypothesis that an average blood pressure of 180 mmHg or higher can lead to a heart attack
(and that having less than an average blood pressure of 180 mmHg has no relationship with
heart attacks). To test this hypothesis, she counts how many people with average blood pres-
sures of 180 mmHg or higher have heart attacks. By noticing that heart attacks are common
among people who have an average blood pressure of 180 mmHg or higher, she verifies her
hypothesis. Despite a large amount of evidence that is true under her hypothesis, this seems
to be an unwarranted conclusion. If she had sought evidence that is not true under her
hypothesis (e.g., looking at people who have an average blood pressure of 175 mmHg), she
would have falsified it and could go on to formulate a correct hypothesis about the causes of
heart attacks. Thus, it would seem that scientists ought to test their hypotheses by trying to
falsify them.

This type of argument about the kind of evidence that people should seek has been extre-
mely influential in the psychological decision-making literature. Interested in whether peo-
ple adhere to the strategy of falsification, Wason (1960) investigated how people intuitively
test their theories about the world. In Wason’s classic 2-4-6 task, participants were asked to
uncover a rule relating sequences of three numbers after being told that one triplet, (2,4,6),
conforms to the rule. The true rule, increasing numbers, subsumes most potential rules (e.g.,
two more than the previous number) with every triplet predicted by these rules also being
valid under the increasing numbers rule. Thus, the true rule can only be discovered by test-
ing numbers that are not predicted by one’s current best guess at the rule. This falsification-
oriented strategy is known in the literature as the negative test strategy or NTS (Klayman &
Ha, 1987). Rather than follow the NTS, participants choose to test triplets predicted by their
current hypothesis (known as the positive test strategy or PTS) even though it is impossible
to find the true rule this way. For example, many participants in the 2-4-6 task followed the
PTS by entertaining the hypothesis that each number is two more than the previous number
and testing sequences consistent with this hypothesis, such as (1,3,5). The tendency to
follow the PTS is just one instance of what has become known as the confirmation bias: the
general human tendency to interpret and seek evidence fitting their current theory differently
from evidence against it (Klayman & Ha, 1987).

In this paper, we outline a set of environmental conditions under which the PTS is
actually an optimal strategy, providing a way to understand why people might pursue this
strategy. Previous work has identified settings in which following either the PTS or NTS is
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more likely to yield falsification (e.g., Klayman & Ha, 1987). However, this normative anal-
ysis produces predictions that are quite different from human behavior. For example, people
still use positive tests in situations where negative tests are more likely to yield falsification,
such as those encountered in Wason’s (1960) experiment. We complement this analysis by
showing that the PTS is more likely to yield falsification and optimally reduces uncertainty
provided the world is inherently deterministic (i.e., given the rule is true, there is only one
possible next outcome). This suggests we could explain the use of the PTS as the result of
an assumption of determinism on the part of human learners, consistent with recent results
showing that children assume that many causal relationships are deterministic (e.g., Gelman,
Coley, & Gottfried, 1994; Schulz & Sommerville, 2006). This emphasis on the structure of
the environment parallels similar strategies pursued in other rational analyses of how people
seek information (e.g., Oaksford & Chater, 1994).

The plan of the paper is as follows. First, we introduce the task of predicting the next
event in a sequence. Under the assumption that hypotheses are deterministic (given a
sequence of events, a hypothesis predicts only one next event), we prove that the PTS is
optimal in many situations. Next, we define a Bayesian model of sequence prediction for
numerical stimuli and use two behavioral experiments to show that it captures human pre-
dictions. If people are seeking evidence optimally, then they should choose to verify the
next number predicted by the hypothesis they believe is most likely. Thus, our theoretical
analyses predict that the subjective probability of hypotheses should affect the way people
seek evidence in addition to their sequential predictions. In two other experiments, we dem-
onstrate that changing a person’s beliefs about the probability of hypotheses affects the evi-
dence they seek. We conclude by discussing the implications of our results and how they
relate to previous work.

2. Analyzing confirmation with deterministic hypotheses

Wason’s (1960) original demonstration of the confirmation bias used a task in which
people tried to identify an abstract rule relating sets of three numbers. However, a bias
toward confirmation can appear in any situation in which people need to test hypotheses.
In this paper, we consider the effects of different strategies in the related task of sequence
prediction. Given a sequence of events, how do we predict what will occur next? For
example, suppose you see a woman outside an airport and then at the security checkpoint.
How likely is it that she stays at the security checkpoint (she is a security guard), walks to
a gate waiting area (she is a passenger), or to a gate ticket collection booth (she is a
crewmember)? We use the sequence prediction task because it allows us to explore the
consequences of making different assumptions about the world in a way that is more
natural than Wason’s original task. In particular, it is possible that the hypotheses under
consideration are deterministic, predicting exactly one outcome. In our example, it might
be appropriate to assume that if the woman is a crewmember, the probability she walks to
the gate ticket collection booth is one, and likewise for all other hypotheses to their
respective locations. Clearly, the probability of each possible next event depends on the
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probability of the hypotheses explaining the observed events and the probability of the
next event under these hypotheses. As there is no means of predicting the next event with
complete certainty, this is an inductive problem.

This problem can be expressed in terms of probability theory. Given a sequence of previ-
ous events or objects (X = (x,...,x;_1)) the probability of a next event (x;) is

P(x;|X) = ZPx,\hx (h|X), (1)

where P(x;|h,X) is the probability of the next event under hypothesis %, and P(/ | X) is the
posterior probability of that hypothesis given the sequence X. This posterior probability can
be obtained from Bayes’ rule, with

P(X|h)P(h)
> P(X[H)P(R)

being the normalized product of the likelihood, P(X|%), and the prior probability of the
hypothesis P(h). For the above example, the probability that the woman is a security guard
instead of a passenger depends on the relative probabilities of a security guard and a passen-
ger going to the security checkpoint and the base rates with which passengers and security
guards appear at the airport.

Suppose we now meet the woman’s husband, and we get to ask him one (yes or no) ques-
tion about where she will be next. What is the best question to ask in order to discover her
role (i.e., whether she’s a security guard, passenger, or crewmember)? This is equivalent to
a scientist determining the best question to test her hypothesis. In the remainder of this
section, we show that there is a simple answer to this question provided our hypotheses are
deterministic, allowing only one value for x given X. In this case, the positive test strategy
(asking about the event that corresponds to the most probable hypothesis) is optimal. Thus,
the best question to ask is our best guess about where the woman will be next.

We will analyze two methods for identifying which question we should ask. The first is
based on falsification—picking the question that is most likely to yield falsifying evidence
(Popper, 1935/1990). With both strategies, we can falsify our hypothesis, thus we should
pick the question that falsifies our hypothesis with highest probability (Klayman & Ha,
1987). If we believe the woman is a security guard, which question should we ask her
husband to yield falsifying evidence? In other words, should we ask her husband if she
will be at the security checkpoint, the gate sitting area, or the ticket collection counter? If
we ask her husband whether or not she is at the security checkpoint (PTS), we falsify our
hypothesis when her husband responds that she is not there (meaning she is somewhere at
a gate). If we ask her husband whether or not she is at the gate waiting area or the gate
ticket collection counter (NTS), we falsify our hypothesis when she is there. If maximizing
the probability of falsification is our goal, then intuitively (although we will prove it in
the subsequent sections) we should use the PTS because the probability that PTS yields
falsification is equal to the sum of the probabilities of falsifying with all the different
possible NTS questions.

P(h|X) = (2)
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The second method of identifying which question to ask that we analyze is a measure
based on information theory, the expected information gain (EIG; Klayman, 1987; Oaksford
& Chater, 1994). According to information theory (Shannon, 1948), the entropy

ZP )log, P(x)

measures the amount of randomness in a probability distribution P(x). For example, the
entropy of a fair coin is 1 (-=.5 log, .5+.5 log, .5 = 1) and the entropy of a two-headed coin
is 0 (=1 log, 1+0 log, 0 = 0, where O log, 0 is defined to be 0). This matches our intuition
that we are far more certain of the outcome from the toss of a two-headed coin. The amount
of information gained from observing an outcome is the difference between the entropy of
the distribution characterizing our beliefs before and after that observation. Thus, the infor-
mation gained about the a set of hypotheses for which our current beliefs are described by
the posterior distribution P(/]|X), given a sequence of objects from performing a test ¢ and
learning its outcome r, is

I(P(h|X), P(h|X,r,¢)) = H(P(h|X)) = H(P(h| X, r,c)),
where P(h| X, r, c¢) reflects the information provided by (r,¢),

P(r|h, ¢, X)P(h|X)
P(r|e,X)

P(h|X,rc)=

P(r|e,X) =Y P(r|h,c,%)P(h]| %)

h

being the probability of the outcome r from the test ¢ given our previous observations X. In
sequence prediction, the outcome of a test is either that the queried event is next in the
sequence or not. The probability of a positive response (r = +) to a query c is simply the
probability that c is the next event in the sequence, which depends on % and X.

As the outcome of a test is unknown prior to performing the test, the information gain
cannot be used directly. Instead, we define the optimal test to be the test that has the largest
expected information gain. The optimal choice ¢ is

- = argmax Ey. s[[(P(h| X), P(h| X, 1, ¢))],

where E,[f(r)] = >_ f(r)P(r) is the expectation of the function f with respect to the distribu-
tion P. This reduces to

= argmax ) [H(P(h|X)) = H(P(h|%,r, c))]P(r|c,X)
_argmmZH( (h|r,e,X))P(r|c,X)

being that choice which minimizes uncertainty after the response.
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Maximizing expected information gain has recently been used to explain how people
gather information about their hypotheses. Wason (1968b) famously demonstrated that par-
ticipants do not always conform to the laws of propositional logic when testing a rule, using
a card selection task. In this task, participants were asked to test a rule of the foom P — Q,
and they were shown four cards that provided information about P on one side and Q on the
other. Participants were likely to check the card indicating P was true to see whether the
other side indicated that Q was true, but they rarely checked the card indicating Q was false
in order to determine whether the other side indicated that P was true (which would violate
the rule). Instead, they checked the card showing that Q was true. Rather than focusing on
propositional logic as a normative standard for the task, Oaksford and Chater (1994) demon-
strated that the tendency to test P and Q shown by participants is normatively prescribed by
EIG. Additionally, EIG predicted that testing strategies should be sensitive to the prior prob-
abilities of P and Q, which was demonstrated empirically (Oaksford, Chater, Grainger, &
Larkin, 1997). Nelson (2005) found that EIG performs well as a predictor of people’s judg-
ments of the usefulness of questions, although other work suggests that people might not
always use EIG when testing the appropriateness of rules (Nelson & Movellan, 2001).

Instead of proving directly that the PTS is optimal given that the only possible rules are
deterministic, we will proceed in two stages. As the more general proof is conceptually the
same (but technically more involved), we first show how the result holds when the hypothe-
ses are deterministic and mutually exclusive. Afterwards, we generalize this constrained
proof to cover situations in which the possible hypotheses are any set of deterministic
hypotheses.

2.1. The special case of hypotheses mutually exclusive on the next event

By assumption, our hypothesis space contains only deterministic hypotheses. In this sec-
tion, we further constrain these hypotheses to all make mutually exclusive predictions for
the next event in the observed sequence. For example, if we were trying to predict the next
number that would appear in a sequence, and we had observed X = (3, 5), our hypothesis
space could include hypotheses corresponding to both the rules ‘‘+2”’ and ‘‘sum of the last
two numbers’’ because they make mutually exclusive predictions for the next number
(7 and 8, respectively) but could not include both ‘“+2’’ and ‘‘increasing prime numbers’’
because both predict 7. Under these conditions, every test is a positive test for some hypoth-
esis, and a positive response from such a test yields conclusive verification of the tested
hypothesis, while a negative response falsifies the tested hypothesis but is ambiguous
about all other hypotheses. We show that testing the event predicted by the a posteriori most
probable hypothesis maximizes both the probability of falsifying that hypothesis and the
expected information gain.

2.2. Maximizing probability of falsification

Using maximizing the probability of falsifying the current working hypothesis as our
normative standard (as in Klayman & Ha, 1987), the analysis is straightforward. The
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probability that testing the choice ¢, consistent with the most probable hypothesis 4 (and
only h°), falsifies that hypothesis is 1 — P(h°|X). The probability of falsifying the
hypothesis h° by testing the choice a predicted by some alternate hypothesis i* is P(h”| X).
As 1 — P(h°| X) is the sum of the posterior probabilities of all alternate hypotheses, the
probability of falsifying a hypothesis by testing the choice predicted by some alternate
hypothesis, P(h“|X), is one component of that sum (e, | — P(h‘|X) =
> aze P(|X) = P(h"|X)). Thus, to maximize the probability of falsifying the working
hypothesis, you should test the choice predicted by the working hypothesis or use the PTS.

2.3. Maximizing the expected information gain

The same result holds when we take maximizing the expected information gain as our
goal. As shown above, maximizing the EIG is equivalent to minimizing the expected
entropy of the posterior distribution informed by the results of the test. As the hypotheses
all predict different next events, if we learn that ¢ is in fact the next event, than we
know with certainty that its corresponding hypothesis is true, resulting in an entropy of
0. Thus, the expected entropy reduces to the product of the posterior probability that the
tested hypothesis is false and the entropy of the renormalized posterior without the tested
hypothesis

P(h|X) :
Hl ————= |(1 = P(h°|X
(P piit) 1~ P01

where £ is the hypothesis corresponding to the choice C. This simplifies to

= P(h| %) P(h] %)
—(1 = P(h°|%)) . TP 5 1082 TP
azc

=— 27; P(h|X)log, P(h|X) + %; P(h| X)logy(1 — P(h*|X))

The first of the two sums is the entropy of the posterior without the contribution from the
tested hypothesis, and the second simplifies because the log portion does not vary over the
sum. Consequently, we can rewrite this quantity as

H(P(h|X)) 4 P(h|X)log, P(h|X) 4 (1 — P(h°| X)) log,(1 — P(h| X))
As the entropy of the posterior does not depend on the choice ¢, it does not influence the
optimal choice. This means that the choice that maximizes the EIG is
¢ = argmin P(h| X)log, P(h|X) + (1 — P(h°| X)) log,(1 — P(h‘|X))
C
which is the negative entropy of a distribution in which A and its alternatives are the only
two possible outcomes.

The entropy of a distribution is concave (there is one global maximum) and is maximized
when the distribution is uniform (Cover & Thomas, 1991). Thus, the optimal strategy is to
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make the choice corresponding to the hypothesis with posterior probability closest to .5. It is
easy to show that this is the hypothesis with highest posterior probability.! There are two
cases. If all probabilities P(/1|X) are less than .5, then the hypothesis for which P(/ | X) is
greatest is clearly the closest to .5. If the probability of some hypothesis is greater than .5,
there is only one such hypothesis, and the distance of the probability of all other hypotheses
from .5 will be at least as great, as these hypotheses divide the remaining probability mass.
Thus, confirmation—choosing to test the hypothesis with highest posterior probabil-
ity—maximizes the EIG.

2.4. Generalization to any set of deterministic hypotheses

We now generalize this analysis for both maximizing the probability of falsification and
the EIG by relaxing the assumption that all hypotheses must predict different next numbers.
In other words, if X = (3,5), our hypothesis space can be ‘‘+2’’ and ‘‘increasing prime
numbers,”” or any countably infinite space of deterministic hypotheses. In this more general
case, the PTS is still optimal for maximizing the probability of falsification; however, there
are cases where the PTS may be suboptimal for EIG.

2.5. Maximizing the probability of falsification

Similar to the previous analysis, we demonstrate that the probability of falsifying the
working hypothesis with the NTS is one component of the total probability of falsifying
with the PTS and thus the PTS is optimal. In general, let # be the set of hypotheses that
predict ¢ as the next event. The most probable hypothesis is a member of this set, but unlike
the constrained analysis other hypotheses can be in /. The probability that the PTS yields
falsification is the posterior probability that ¢ is not the next event in the sequence or
I — P(#°|X) = >,z P(A“| X). The probability that the NTS yields falsification is the
posterior probability that the alternate event a (not predicted by the working hypothesis) is
the next event in the sequence or P(#“ | X). As the probability of falsifying with NTS is the
posterior probability of only one alternate event and the probability of PTS includes the pos-
terior probability of all alternate events (not the working hypothesis), the PTS is always as
good or better than the NTS.

2.6. Maximizing the expected information gain

We can now generalize this analysis for the EIG, relaxing the assumption that all
hypotheses make distinct predictions for the next event. In the general case, every choice ¢
partitions the hypothesis space into two sets. Let # be the set of hypotheses that predict ¢
as the next event and #° be the set of hypotheses that do not. The set that makes the
wrong prediction will be eliminated, receiving probability 0, and the set that makes
the right prediction will have their posterior probabilities renormalized. The analysis
then proceeds similarly to the derivation given above, replacing h° with #°, with
P(AH|X) = > jcpe P(h|X), although there is an extra wrinkle produced by the fact that
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confirmation does not guarantee an entropy of 0. Analogously, choosing the choice that
maximizes the EIG is equivalent to argmax, H([P(#¢|X),1 — P(#°|X)]). Thus, the
optimal test is that which produces P(#¢|X) closest to .5. If there is a single hypothesis
with posterior probability greater than or equal to a half, then confirming that hypothesis
(which is the current best hypothesis) is the optimal strategy. If this is not the case, confirm-
ing the current best hypothesis can be suboptimal, as it may be possible to construct an
amalgam of hypotheses that agree on some ¢ and have posterior probabilities that sum to a
value closer to .5. However, such circumstances are unusual, and our result thus indicates
that in many cases where we believe there is a rule governing a sequence of events, the PTS
is also optimal according to maximizing EIG.

2.7. Summary

According to the two normative standards, when discovering what rule underlies
the events you observe, testing the event predicted by your most probable hypothesis is
rational—as long as the rules are deterministic. This result is similar to that obtained by
Oaksford and Chater (1994) in their analysis of Wason’s (1968b) card selection task, which
we introduced earlier in the paper. By assuming that the consequent and antecendent of rules
are rare and that participants are trying to become as certain as possible of whether or not a
rule applies (i.e., that they are maximizing EIG), Oaksford and Chater (1994) provided a
rational justification for behavior that seems irrational from a logical perspective. The
results of Klayman and Ha (1987) also have a similar character, demonstrating that the PTS
is rational (in terms of maximizing the probability of falsification) when the objects that
rules act on in the world are rare. Our analysis replaces the rarity of predicates with deter-
ministic rules, providing another way to understand why people might pursue a strategy of
confirmation (the PTS) rather than falsification (the NTS).

In order for this formal analysis of the consequences of determinism to provide a poten-
tial explanation for why people choose to confirm hypotheses rather than falsify them, we
need to show that the assumptions that it makes about human inferences are plausible. In
particular, we need to justify two assumptions: that people predict the next event in a
sequence in a way that can be described in terms of Bayesian inference, and that they test
the rule with highest posterior probability. In the remainder of the paper, we develop a sim-
ple Bayesian model for predicting numerical sequences, and we use a series of experiments
to examine the adequacy of this model as a characterization of human judgments and the
extent to which people are sensitive to the posterior probability of rules in selecting their
tests.

Importantly, we are not proposing that our Bayesian model is an account of how people
actually predict the next event in a sequence of events. The model is intended as a computa-
tional-level analysis in the sense introduced by Marr (1982): an analysis of how an ideal
solution to the problem of sequence prediction should look. Appealing to Marr’s classic
analogy, it is useful to understanding human sequence prediction in the same sense that the
physics of aerodynamics is useful for understanding bird flight. Our analysis provides a
way to understand the confirmation bias as a rational strategy for testing hypotheses in a
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deterministic sequential world. We are not claiming it is an accurate description of human
sequence prediction at the process or algorithmic level.” Exploring the mechanisms and pro-
cesses by which people predict sequential events and test hypotheses is an interesting ave-
nue for future work, and we consider some possibilities in Section 8.

3. A Bayesian model for predicting numerical sequences

The analysis of the positive test strategy outlined above relies upon the assumption that
we can accurately characterize people’s predictions about sequences in terms of Bayesian
inference. In the remainder of the paper, we develop a Bayesian model of a particular kind
of sequence prediction—prediction of the next element in a sequence of numbers—and use
this model to test this basic assumption, and to show that people are sensitive to the relative
probabilities of different hypotheses in exactly the way that this account predicts. The sole
purpose of developing this Bayesian model and conducting these experiments is to test the
predictions of our analysis. To do this, we first define a simple Bayesian model for predict-
ing numerical sequences, postulating a hypothesis space that might capture people’s judg-
ments in this task. We then estimate appropriate prior probabilities for these hypotheses
from human judgments in Experiments 1 and 2. Experiments 3 and 4 manipulate those prior
probabilities and demonstrate that people adapt their tests to their environment as our analy-
sis predicts.

The numerical sequence prediction task we use is inspired by Wason’s (1960) 2-4-6 task,
in that the domain is ordered sequences of numbers. However, the potential space of hypoth-
eses in this case is more constrained, with relevant rules being easier to identify. This makes
it easier to test the predictions produced by our analysis. The rules in this domain (e.g., two
more than the last number and increasing numbers) include some of the rules that partici-
pants found in Wason’s experiment (Wason, 1968a). However, they do not include other
rules that participants in Wason’s experiment found (e.g., the middle number is the average
of the outer two numbers). For example, consider the sequence (2,4). Some rules predict the
same next number (e.g., X1 + 2 and sum of the last two numbers) and others a different next
number (e.g., increasing powers of two). Given a set of hypotheses defined on number
sequences, Egs. 1 and 2 provide the hypothesis with highest posterior probability and the
most likely next number, respectively. For the example of the sequence (2,4), these equa-
tions would assign highest posterior probability to whichever rule had highest prior proba-
bility, and the probability of 6 being the next number would be the sum of the posterior
probabilities of X1 + 2 and sum of the last two numbers, while the probability of 8 being the
next number would be the posterior probability of increasing powers of two.

Our model assumes that the sequence of observed numbers, ¥ = (x,...,x;_1), is gener-
ated from some relational rule A, and that people try to identify this rule based on the
observed sequence in order to make accurate predictions. The model is based upon the con-
cept learning framework presented in Tenenbaum (1999) and Tenenbaum and Griffiths
(2001), a version of which was applied to a simple ‘‘number game’’ similar to our task. In
this model, a hypothesis or concept is a set of numbers. Given a set of observed numbers,
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the probability that another number is in the set is the sum of the posterior probability of all
hypotheses given the observed numbers. Although this model captures people’s generaliza-
tion judgments (e.g., given 8 is in the set, what is the probability that 16 is in the set?), it
does not allow for inferences about sequences of numbers. Thus, we extend this Bayesian
model to make predictions about sequences. The goal of the model is not to capture all the
intricacies of human sequence prediction, but rather to show that people approximate Bayes-
ian inference, and to estimate prior probabilities for a set of hypotheses that allow us to com-
pare the predictions of our theoretical analysis to human hypothesis testing.

Instead of defining the hypotheses as sets of numbers, each hypothesis / is a rule linking
k;, previous numbers to the possible next numbers of the sequence. Each hypothesis is asso-
ciated with a probability distribution over the next number given the previous k; observed
numbers, defining the likelihood function that will be used with that hypothesis in Bayesian
inference. For example, ‘‘add three to previous number’” would be associated with a distri-
bution that is one for x; = x;_; + 3 and zero otherwise. Based on these distributions, we
divide the types of hypotheses into two separate categories: deterministic and nondetermin-
istic. A deterministic hypothesis, such as ‘‘add three to previous number,”’ has only one cor-
rect next number and conforms to the following form: (x;_1, ..., Xjj+1): & K 7, where
Z is the set of integers. In other words, a deterministic hypothesis is a function from sets of
kj, numbers to a single number. For example, the likelihood function for the ‘‘sum of the last
two numbers’’ rule (Fibonacci sequence, k), = 2) is:

1 if x;=x1 +x_0,
P(xilh, xi-1,xi2) = { L l
0  otherwise
Conversely, a nondeterministic hypothesis allows the next number to take more than one
value. For example, the following likelihood function models the ‘‘increasing numbers’’
rule (k, = 1):

v+

1
Xi 2 Xist Axi—Xxi21 <y,
P(x,-\h,x,-,l;v) :{ i = Ai—1 i i—1 >

0 otherwise,

where v is the largest increase possible from the last number (v was fixed to 65 for all exper-
iments). As all the rules are based on preceding numbers, we also need a scheme for gener-
ating the initial numbers in a sequence. We do this by sampling the first number in the
sequence, X, from a distribution assigning probability 1/I1 + x¢l to the entire set of positive
and negative integers. For rules that require multiple initial numbers to generate the next
number (i.e., with k;, > 1), we sampled the next number in the sequence from the same dis-
tribution, but now centered it around the last number.

To develop a model that describes human judgments, we need to define a set of hypothe-
ses that capture the kinds of regularities that people expect to see expressed in sequences.
Our goal is not to be exhaustive in listing all of the hypotheses that people consider, but to
cover the possibilities with sufficient resolution to allow us to test the predictions our formal
account makes about the confirmation bias. The hypotheses we used are partitioned
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into seven different sets of the same rule type: *“XC + K,”” ‘‘sum of the last two numbers,’’
pairwise mixtures of ‘‘XC + K’ rules (with the next number chosen with equal probability
from one of two rules each time), ‘‘repeat the last k, numbers,”” “‘the kth power’” (for k = 2
and 3), ‘‘consecutive prime numbers’’ (starting at three), and the random rules (‘‘decreas-
ing,”” ‘‘increasing,”’ and ‘‘random numbers’’). The ‘“xC + K’ hypotheses cover any rule of
the form x; = Cx;_; + K (e.g., “X1 + 3”" or ““+3,”” or X1 + 0, which is ‘‘repeat the same
number’’), and we considered C € {-3,...,3} except zero, K € {-5, ... ,5}. In total, this
yields 135 hypotheses. The prior probability of all rules of a given type is uniform within
that set, and the prior probabilities of the rules of different types are free parameters of the
model. As the prior probability distribution defined through the parameters must sum to
one, the model thus has six free parameters, which are used to bring its predictions into line
with human performance.

The model defined in this section provides all we need to compute the posterior distribu-
tion over hypotheses given a sequence of numbers (Eq. 2) and consequently to predict the
next number in a sequence (Eq. 1). To generate the posterior distribution over hypotheses,
the likelihood of each hypothesis is found by stepping through each number in the sequence.
First, starting at the beginning of the sequence, the first numbers (k, of them) are generated
from the initial number distribution until the hypothesis can be applied (e.g., zero numbers
for the ‘‘prime number’’ hypothesis, one number for the XC + K rule, two numbers for the
“‘sum of the last two numbers’’ hypothesis).> Once the hypothesis can be applied, the proba-
bility of each number in the sequence given the previous k;, numbers is multiplied together
until the last number of the sequence is included. Finally, the result is multiplied by the prior
probability, and then normalized over all hypotheses included in the model.

Before looking at whether or not the hypotheses that people select are sensitive to the
manipulation of people’s prior beliefs, we need to ensure that the hypotheses included in
our model capture human judgments. Thus, Experiments 1 and 2 examine how well this
model can characterize the predictions that people make about sequences of numbers. We
fit the six parameters defining the prior distribution over hypotheses through comparison to
human judgments in Experiment 1. The generalization performance of the model was then
assessed by comparing the predictions produced using these fitted values to human perfor-
mance in Experiment 2, which used a slightly different task and a different set of partici-
pants. Experiment 2 thus provided a way to check that the model was not overfitting human
responses, as well as a further test of whether people were performing in a way that was
consistent with Bayesian inference.

4. Experiment 1: Predicting freeform responses

The analysis presented above demonstrated that the optimal test strategy for testing deter-
ministic rules over sequential events is the PTS. However, our analysis assumes that people
can identify the most probable rule and next event given a sequence of events. As this is not
a trivial task, our first experiment investigates how participants predict the next number for
a given sequence. In particular, we are interested in whether or not these responses can be
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captured by a Bayesian model. If so, our analysis is not only a philosophical endeavor
but also a justification for human hypothesis-testing behavior. Establishing the prior proba-
bilities of different hypotheses is also a necessary step toward being able to examine how
modification of these prior probabilities changes the hypotheses that people choose to test.
In this experiment, participants were asked to predict the next number for five sequences,
each generated by a different rule. There were five patterns, four deterministic and one
stochastic, each expressed in four sequences of increasing size (length ranging from three to
six). The four deterministic patterns were chosen to illustrate how people and the model made
judgments for simple and complex rules and when the given sequence was ambiguous as
to the underlying rule. The stochastic pattern was chosen to demonstrate that both people
and the model make sensible related judgments when the generating rule is not deterministic.

4.1. Methods

4.1.1. Participants

A total of 64 undergraduates from Brown University participated in the experiment for a
free ice cream voucher and 82 undergraduates from the University of California, Berkeley
participated in the experiment for course credit.

4.1.2. Stimuli

Five relational rules were tested: ‘‘repeat the last number’” or x1 + 0 (1,1,1,1,1,1—
simple), ‘‘sum of the last two numbers’’ (1,1,2,3,5,8—complex), ‘‘increasing odd numbers’’
(3,5,7,9,11,13—ambiguous), ‘‘increasing prime numbers’’ (3,5,7,11,13,17—ambiguous),
and ‘‘increasing numbers’’ (2,5,17,33,94,100—stochastic).

4.1.3. Procedure

The experiment was conducted as a survey. The four subsequences of each rule were ran-
domly distributed across four different surveys, with each survey containing one subse-
quence of each rule. Each participant received one survey, with approximately 11
participants seeing each survey. To provide the strongest test of our model, we asked partici-
pants to write down what they believed the next number would be, without imposing any
constraints on this choice. Participants were told that the sequences may have been gener-
ated by a simple relational rule which may not be deterministic, with ‘‘decreasing numbers’’
being given as an example, and asked to make predictions for each sequence independently.

4.2. Results and discussion

As shown in Fig. 1, the model and human prediction distributions are in close qualitative
correspondence. For example, the model captures extremely well the bimodal nature of the
human predictive distribution for the sequence (1,1,2). The predictions shown for the model
were obtained by optimizing the prior probability of the different hypothesis types to fit the
human data. The estimated prior probabilities of the seven types of hypotheses were .472
for ““xC + K’ as .011 for ‘‘sum of the last two numbers,”’ .014 for mixtures of ““XC + K.’
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Fig. 1. Results of Experiment 1. Each row of plots shows the predictions for one sequence as the number of ele-
ments increases from 3 to 7 across the columns. The five rules used to generate the sequences are (from top to
bottom) repeating ones, sum of the last two numbers, increasing odd numbers, increasing odd prime numbers,
and increasing numbers. Note that the scale of the increasing numbers is different from the other plots, and it
may omit some values of both distributions for visual clarity.

.004 for “‘repeat the last k;, numbers,”” .0249 for ‘‘kth power,”” .0001 for ‘‘prime numbers,”’
and .2499 for the set of stochastic rules.*

Although not essential for applying our theoretical analysis, the quantitative fit of the
Bayesian model to human predictions is good. The correlation between the sets of predic-
tions is r = .88. As the ‘‘increasing numbers’’ pattern is unpredictably random, both the
participant and model predictive distributions are diffuse, lowering this correlation. The pre-
dictive distributions are nearly identical for the four deterministic sequences, with r = .98.
If we remove the sequences for which people and the model only produce a single predic-
tion (the first and third deterministic sequences), the correlation between responses is r =
.80 (this includes the ‘‘increasing numbers’’ pattern). As the correlation between the partici-
pant and model predictions is increased every time both produce near-zero probability for a
number, we also calculated a more stringent G test statistic between the responses. The
result of the G? test is that the model and human responses are not significantly different
(7*(2194) = 838.87,p = 1.0).

To demonstrate that the correlations are robust to variations in the parameter values, we
looked at the model’s sensitivity to random variations in the parameter values. To do this,
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we looked at the quantitative fit of the Bayesian model with randomly drawn parameters
O~Dirichlet(20"), where 0" are the parameters fit to the data and o controls how much we
vary from the fitted parameters. We chose o = 50 and 1,000 (which yield standard devia-
tions in the parameter for the most probable rule of seven and two percent, respectively) and
calculated the correlation between the predictive distributions for 20 randomly drawn
parameters. Including all sequences, r = .87 with a standard deviation of 0.004 for o = 50
and r = .88 with a standard deviation of 0.0004 for & = 1,000. Considering only the deter-
ministic sequences, r = 0.98 with a standard deviation of 0.005 for & = 50 and r = .98 with
a standard deviation of 0.0005 for « = 1,000. Finally the correlations removing the
sequences with a single prediction are » = .79 with a standard deviation of 0.007 for o = 50
and r = .80 with a standard deviation of 0.0007 for « = 1,000.

Even though the quantitative fit of the model is good, there is still some discrepancy
between human and model predictions. For example, there are some clear differences
between the two distributions for the ‘‘prime numbers’’ and Fibonacci rules. This could be
due to the fact that many participants who did not know the prime or Fibonacci numbers
would invent a complex rule composed of multiple ‘“XC + K’ rules, which was not
included in the model (e.g., +2,+2,44,+2,+2,... for the sequence [3,5,7,11,13]). Thus, the
current model cannot capture this aspect of human behavior.

As future work, it could be interesting to extending the model using a compositional rule
grammar to generate hypotheses could explain the combinations of XC + K that many par-
ticipants invent, as was done by Coen and Gao (2009). One example of how this extension
to the simple Bayesian model could explain cases where human responses deviate from the
model’s predictions is the Fibonacci sequence (sequence 2 of Experiment 1). For example,
the second most predicted number for the sequence (1,1,2,3,5) is seven, which would be
predicted by the following simple composition of XC + K rules: +0,+1,+2,+1,+0.... We
consider how other discrepancies between the Bayesian model and human responses could
be explained at the process level in Section 8.

5. Experiment 2: Predicting probability ratings

The results of Experiment 1 demonstrate that the model can describe human predictions
on simple number sequences. In addition to capturing these predictions, we would like
our model to have similar uncertainty to people in predicting which number will be next.
This way, the model would also capture how much information is gained by learning the
next number of the sequence, giving us an indication of how similar its assessment of
expected information gain might be to those of our participants. In Experiment 1, we
asked each participant to provide a single estimate of which number they believed will be
next for a given sequence. A single estimate does not capture how certain participants are
of which number is next. Thus, in Experiment 2 we asked participants to rate the proba-
bility that each of four different numbers would be the next number in the sequence. We
then used these ratings to compare levels of uncertainty between participants and our
model.
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5.1. Method

5.1.1. Participants
Participants were 20 volunteers from the undergraduate population at Brown University.

5.1.2. Stimuli

The four sequences tested were (1,1,1,1,1), (2,4,6,7,8,10), (1,1,2,3,5,8), and
(3,5,7,9,11,13). Four possibilities for the next number were chosen for each subsequence of
these sequences. Possible next numbers were selected to be consistent with multiple rules
matching each subsequence.

5.1.3. Procedure

The experiment was presented as a written survey. The participants received the follow-
ing instructions: ‘‘I have created four sequences where the numbers are related by a simple
relational rule, such as increasing numbers, decreasing numbers, increasing odd numbers,
decreasing even numbers, and the last number plus one.”” The survey began with the first
number of a sequence and asked the participants to rate how likely (from 1 to 7) they feel
four different numbers are to be the next number in the sequence. After they finished rating
the four potential next numbers, the next number in the sequence was given and four new
possible next numbers to rate. This repeated until the participants had received the full
sequence, at which point the next sequence began.

5.2. Results and discussion

To get the probability of each next number from the judgments produced by the partici-
pants, we subtracted one from each rating, averaged over participants, and normalized over
the four judgments for the sequences at each length. To compare our model to human judg-
ments, we computed the probability of each next number according to our model using
Egs. 1 and 2 and the hypothesis space defined above. We used the parameters established in
Experiment 1, allowing us to test whether these parameters overfit the data from that experi-
ment. Fig. 2 shows the aggregate human and model predictive distributions for the
sequences at all lengths. The correlation between our model using these parameters and par-
ticipant judgments was r = .68, providing support for the claim that our model is not over-
fitting the data and is robust to technique as in the previous experiment, the correlation
between the predictive distributions for 20 randomly drawn parameters was r = .67 with a
standard deviation of 0.0093 for o = 50 and was r = .68 with a standard deviation of
0.0008 for a = 1,000.

Analysis of the entropy of the distributions produced by the model and people
suggested that both are similarly surprised by the same next numbers. In other words, the
change in the entropy in the model and human predictive distributions is qualitively
similar. Aside from (1,1,2,3), both the model and human show the same qualitative
changes in entropy. For example, as the sequence (2,4,6) grows from (2) to (2.4,6), both
participants and the model become more certain that the rule is “‘4+2.”” As 7 is the next
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Fig. 2. Results of Experiment 2. Each column of plots shows the predictions for one sequence as the number of
elements increases from 1 to 6 (5 for the repeating ones sequence).

13

number, the previously most likely rule is ““+2’” is falsified and there is no clear deter-
ministic alternate. Thus, the entropy of both distributions appropriately increases. The
expected information gain thus seems to be roughly in accordance between people and
the model.

Although the judgments are qualitatively similar, the model clearly does not perfectly
capture human predictive judgments. Using the more stringent G~ test, the two distributions
are statistically significantly different (X2(69) = 1470,p < .001). One clear issue is that peo-
ple are much more conservative in their judgments on this task. This is echoed in the fact
that the human entropy is always larger than the model entropy (see Fig. 3). This is not a
major concern for our analysis for two main reasons. First, we are not proposing this as a
model of how people predict the next number in a sequence, but rather as a tool for testing
the predictions of our theoretical analysis. It is clear from the first two experiments that the
Bayesian model’s predictions are similar to human predictions. Second, it is possible that
the difference between people and the model’s predictions is due to a process-level factor.
For example, people may be acting more conservatively because they think there may be an
aspect of deception in the experiment or because rating how likely different numbers will be
the next number is an unnatural task. These factors are not taken into account in our more
abstract, computational-level model.
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Fig. 3. The change in entropy as each sequence increases in length for both the human aggregate and model
predictive distributions for Experiment 2.

6. Experiment 3: Testing confirmation of the most probable hypothesis

Having verified that a Bayesian model can capture human sequence predictions, we can
use it to test how human hypothesis testing is affected by prior knowledge. Our analysis of
optimal hypothesis testing predicts that people should seek to confirm the hypothesis that
they assign highest posterior probability. To test this prediction, Experiment 3 manipulated
the prior probability of different types of hypotheses to see whether we could induce people
to change which hypotheses they sought to confirm.

6.1. Methods

6.1.1. Participants

A total of 67 undergraduates from the University of California, Berkeley participated in
exchange for course credit. Participants were split into three conditions, with 22 participants
in the XC + K condition, 22 participants in the sum last two condition, and 23 participants in
the control condition.

6.1.2. Stimuli

In order to establish the priors in different sequence prediction environments, participants
in the XC + K and sum last two conditions were trained on 100 sequences of numbers. The
training sequences in the XC + K condition had a high prevalence (87%) of sequences
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generated by rules of the form ‘“XC + K’ and no sequences generated by summing the last
two numbers, and vice versa in the sum last two condition (with 89% of sequences conform-
ing to the ‘‘sum of the last two numbers’’ rule). No training was provided in the control con-
dition. Test selection was probed with 21 sequences consistent with both the ‘‘sum of the
last two numbers’’ and the ‘“xXC + K’ rules, shown to participants in all three conditions.
For example, one of the 21 test sequences, (3,6,9), can be interpreted as X1 + 3 or the sum
of the last two numbers (3 + 6 = 9).

6.1.3. Procedure

The experiment had two phases: a training phase and a test phase. In the training phase,
participants were asked to predict the next number in the sequence and the underlying rule,
and then told whether their responses were correct. The group of participants in the control
condition were not trained on any sequences and only were given the test portion of the
experiment. In the test phase, participants were told that they could pick one number and
find out whether that number was the next in the sequence, being told to select the number
that would help them figure out the underlying rule the best. They were asked to write down
both what they thought the rule was and their number choice. The experiment was adminis-
tered on a computer with instructions given by the experimenter. The participants were also
provided a calculator to ensure that arithmetic ability was not a factor in people’s responses.

6.2. Results and discussion

If participants are sensitive to the prior probabilities of different environments, then they
should choose to confirm the same rule as their training condition. As the priors in both the
control (established by the priors learned from Experiment 1) and XC + K conditions are
similar, our main concern is whether participants are more likely to confirm the ‘‘sum of the
last two numbers’’ rule when trained in the sum last two condition. For all of the test
sequences, the model predicts confirmation of the current hypothesis, which in turn is deter-
mined by the prior probabilities established by the training condition.

The responses produced by the participants for all sequences were grouped into three
categories: XC + K, sum of the last two numbers, or other. Two coders who were blind to
condition assigned the rules people selected as belonging to these three groups, with high
inter-rater reliability (x = 0.90). Disagreements were resolved through discussion. As the
model predicts, participants were sensitive to the environment given in their training condi-
tion and changed their responses appropriately (see Fig. 4). Although participants did not
confirm the appropriate hypothesis for every sequence as the model predicts, the variation
was statistically significant. Participants in the sum last two condition tested the ‘‘sum of the
last two numbers’’ rule significantly more often than participants in either the XC + K con-
dition (4*(2) = 9.71, p < .01) or the control condition (3*(2) = 9.35, p < .01). Additionally,
the responses for the XC + K and control conditions were not significantly different
(4*(2) = 1.11, p > .55). Thus, when testing their theories and hypotheses, people are
sensitive to the prior probabilities in the environment, choosing to confirm the hypothesis
rendered most probable by that environment.
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Fig. 4. Results of Experiment 3, averaged over participants in each group. Error bars show one standard error.

7. Experiment 4: Predicting or testing?

The results of Experiment 3 suggest that participants are sensitive to the base rates of
rules in their environment when predicting the next event in a sequence and performing tests
to discover the rule producing a sequence. However, according to our theoretical analysis,
both the most likely next number in the sequence and the optimal test are the same number.
Thus, it is not clear whether participants in the second part of Experiment 3 actually pro-
cessed their instructions to perform tests to discover the rule, or simply guessed the next
number in the sequence (like they did in the first part of the experiments). To rule out this
alternative explanation, Experiment 4 replicated Experiment 3 except the training phase was
replaced with a feedback phase, where participants performed tests on the training
sequences from Experiment 3 and were given feedback as to whether or not their tests were
successful. As participants are actively testing throughout the entire experiment and are
never asked to predict the next number of a sequence, the alternative explanation that they
are making predictions during the test phase does not apply.

7.1. Methods

7.1.1. Participants

A total of 29 undergraduates from the University of California, Berkeley participated in
exchange for course credit. Participants were split into two conditions, with 12 participants
in the XC + K condition and 13 participants in the sum last two condition. Four participants
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wrote the number to test twice instead of the most likely hypothesis to have generated the
data and were removed from further analysis.

7.1.2. Stimuli

The training sequences for the XC + K and sum last two conditions from Experiment 3
were used in Experiment 4. The same set of test sequences from Experiment 3 was used in
both conditions of Experiment 4.

7.1.3. Procedure

The experiment had two phases: a feedback phase and a test phase. In the feedback phase,
participants were given the task of discovering the underlying rule of a sequence for 100
sequences. They were told that to achieve the goal, they got to choose a number and they
would receive feedback as to whether or not it is the next number in the sequence. They
were reminded that more than one rule could fit the sequence they saw, so that they should
pick the number that helps them figure out the underlying rule as best as possible. For the
test phase, participants were told that it was identical to the first part, except that they would
not be given feedback, but that they should still make their choices as if it were given. They
were asked to write down both what they thought the rule was and their number choice. The
experiment was administered on a computer with instructions read by an experimenter. The
participants were also provided a calculator to ensure that arithmetic ability was not a factor
in people’s responses.

7.2. Results and discussion

Fig. 5 shows the average numbers of tests of each type made by participants in Experi-
ment 4. Replicating Experiment 3, participants adapt their tests appropriately to their envi-
ronment. Participants in the sum last two condition test the sum last two rule more often
than those in the XC + K condition (y*(2) = 8.14, p < .05). As participants only performed
tests and never predicted the next number in the experiment, the alternative explanation that
participants in Experiment 3 continued predicting in the test phase has been ruled out. The
combination of Experiments 3 and 4 provide strong evidence that participants adapt their
testing strategy in accordance with the prior probability of rules in their environment in the
direction predicted by our analysis.

8. General discussion

We have shown that the PTS is optimal under the assumption that the hypotheses
under consideration are deterministic, using both maximizing the probability of falsifica-
tion and reduction of uncertainty as measures of test utility. Our experiments provide
the pieces of evidence needed to connect this result to human behavior. Experiment 1
showed that a Bayesian model of sequence prediction accurately characterizes human
expectations. Experiment 2 showed that this model could also capture levels of
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Fig. 5. Results of Experiment 4, averaged over participants in each group. Error bars show one standard error.
These results replicate Experiment 3 and demonstrate participants are actively testing, and not just predicting the
next number.

uncertainty, and how this uncertainty changed with new observations. These experiments
thus supported our use of a Bayesian framework in analyzing how people test their
hypotheses. Our formal analysis predicts that changing the relative prior probabilities of
two hypotheses that could both have generated ambiguous sequences should change the
test that people choose. Experiments 3 and 4 showed that people behave in a way that
matches this prediction, selecting tests that confirmed the hypothesis most probable in
each environment. Thus, participants are not blindly testing the same choice regardless of
the environment, but are identifying the most probable hypothesis and then systematically
seeking to confirm that hypothesis. In this section, we consider the plausibility of the
assumption of determinism, how these results relate to previous work on the confirmation
bias, and close by briefly summarizing their implications for understanding why people
might exhibit such a bias.

8.1. How realistic is the assumption of determinism?

Our analysis shows that the positive test strategy can be optimal when the hypotheses
being evaluated are deterministic. This suggests a natural explanation for why people might
pursue this strategy: They assume that the kinds of causal systems they encounter operate
deterministically. However, the plausibility of this explanation depends on the existence of
independent evidence that people make this assumption. Fortunately, a number of recent
studies suggest that both adults and children seem to operate under the assumption that
causal relationships are deterministic.
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In discussing determinism, it is useful to distinguish between ‘‘weak’’ determinism—the
idea that all events have causes—and ‘‘strong’’ determinism—the idea that causes produce
their effects every time (e.g., Schulz & Sommerville, 2006). Evidence that people minimally
assume weak determinism comes from a variety of studies in causal learning and reasoning,
but perhaps the most systematic characterization of this assumption appears in the literature
on psychological essentialism (Gelman, 2003; Gelman et al., 1994). Psychological essen-
tialism asserts that hidden behind every object or event we observe is something underlying
it (its “‘essence’’) that explains its existence. The essence usually is causally responsible for
the observable properties of the object or event. Evidence that people hold such a belief
comes from studies showing that children search for hidden causal mechanisms when an
event violates known causal laws (Chandler & Lalonde, 1994) and adults (Luhmann & Ahn,
2003).

Our analysis assumes the stronger form of determinism, with the probability of the next
event in a sequence being either zero or one. Evidence that children make this kind of
assumption comes from recent work by Schulz and Sommerville (2006). A series of experi-
ments demonstrated that when children observe a stochastic cause, they resist accepting that
it is inherently stochastic. Instead, they infer either unobserved inhibitory or generative
causes appropriate to the probabilistic information given (Schulz & Sommerville, 2006). As
this is the determinism assumption used in our analysis, this provides empirical justification
that children do not believe rules are inherently probabilistic—even when provided probabi-
listic information. Further experiments with adults suggest that the assumption of determin-
ism is necessary in order to explain how people learn certain kinds of causal relationships so
quickly, and that this assumption operates as a default in certain domains (Griffiths, 2005;
T. L. Griffiths, D. M. Sobel, J. B. Tenenbaum, & A. Gopnik, unpublished data).

Intuitively, the strong form of determinism is appealing. Most of the laws in natural
domains follow strong determinism (e.g., gravity in intuitive physics). Although intuitively
appealing, clearly further research is needed to determine how domain specific the
assumption of the strong form of determinism is, as previous experiments focused on
mechanical relations. In particular, establishing whether people assume that mathematical
rules are deterministic seems necessary in order to understand the difficulty that people
have with falsification in contexts like that of Wason’s (1960) 2-4-6 task (the low prior
probability assigned to mixtures of ‘“XC + K’ rules in our experiments provides prelimin-
ary support for this idea). Our results demonstrate the importance of exploring the psycho-
logical validity and the problems with this assumption; if we do actually assume strong
determinism, our tendency to use the PTS is rational, at least relative to our assumptions
about the world.

8.2. Relationship to previous work on the PTS

Though our analytic results are a novel justification of our tendency to use the PTS, other
researchers have also provided mathematical arguments that the PTS can be a sensible strat-
egy under certain circumstances. Klayman and Ha (1987) derived general conditions for
when the probability of falsifying the current hypothesis with the PTS is greater than with
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the NTS. They demonstrated that the PTS is often optimal when the number of events that
the true rule applies to is small (the minority phenomenon or rarity assumption), a result that
is in concordance with Oaksford and Chater’s (1994) analysis of confirmation in the card
selection task. A similar result was recently presented by Perfors and Navarro (2009). Addi-
tionally, Klayman (1995) argued that the PTS is justified if one is only interested in suffi-
ciency and not necessity. In other words, if one is only interested in a hypothesis that can
explain all of the events one has observed but perhaps not the only hypothesis that can do
so, then testing events true under the candidate hypothesis is sensible. Our work comple-
ments these analyses by providing another justification for the human bias toward the PTS,
founded in an assumption about the structure of the environment. Interesting directions for
further research include exploring how the optimality of the PTS is affected by incorporat-
ing all of these assumptions together, and how robust it is to mild violations of these
assumptions (such as including a few low-probability nondeterministic hypotheses, as we
did by allowing mixtures of deterministic rules in our experiments).

Klayman and Ha (1987) proposed exploring the role of the set of possible hypotheses on
testing; however, few papers have used constrained hypothesis spaces to analyze the opti-
mality of different strategies. One exception is Nelson and Movellan (2001) who explored
directly applying the Bayesian generalization model of Tenenbaum (1999) and Tenenbaum
and Griffiths (2001) to a task similar to Wason’s (1960) 2-4-6 task, using EIG to determine
optimal tests. In their task, hypotheses were sets of numbers and the goal was to find the
hypothesis most likely to have generated a given set of numbers. The participants were
allowed to ask whether one other number followed the rule. Nelson and Movellan (2001)
found that in cases of high posterior uncertainty, the tests predicted by EIG matched the
tests given by simply seeking confirmation; however, in cases of low uncertainty, the tests
predicted by EIG conflicted with the tests given by seeking confirmation (and with those
selected by human participants). One representive example where human responses deviate
from EIG is for the given set {60,80,10,30}. Here, the working hypothesis is multiples of
10, but multiples of five is also possible. In this case, analogous to the original 2-4-6 task,
the alternative hypothesis (increasing numbers for Wason (1960), multiples of five for Nel-
son and Movellan (2001) picks a superset of the outcomes consistent with the most probable
hypothesis. This is where our analysis differs from previous work: By assuming that hypoth-
eses are deterministic, we require them to pick only a single prediction and thus no hypo-
thesis strictly subsumes another.

8.3. Connecting to process models of sequence prediction and testing

The Bayesian model of sequence prediction that we developed in this paper was intended
primarily to allow us to explore whether the assumptions behind our analysis of hypothesis-
testing strategies held with human learners. This model was specified at Marr’s (1982) com-
putational level, focusing on the abstract problem of sequence prediction and its solution in
terms of Bayesian inference. Using this model, we could examine whether human behavior
approximated Bayesian inference and estimate prior probabilities for different hypotheses
that then allowed us to manipulate these probabilities and examine the effects on hypothesis
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testing. However, it is still an open question how people are solving this problem at the algo-
rithmic level, with the development of appropriate psychological process models being an
interesting direction for future work.

As with many Bayesian models, it is clear people are not explicitly performing exact
Bayesian inference when they are solving problems of sequence prediction and hypothesis
selection. In other words, people are not creating a giant list of all the possible hypotheses in
their minds and summing the result of multiplying the prior and likelihoods for each hypoth-
esis. Additionally, people are not explicitly using a giant list of posterior probabilities to
calculate the EIG or probability of falsifying using PTS or NTS. However, our experiments
do suggest that people are changing their beliefs in a way that is approximately consistent
with Bayes’ rule, and changing their testing behavior in accordance with the prior probabili-
ties of the rules they observe in the environment. These results provide a constraint on
process models, indicating that whatever the underlying psychological mechanisms are they
need to yield behavior that is approximately Bayesian.

One way to define process models that satisfy this constraint is to start with methods of
approximating Bayesian inference that have been developed in computer science and sta-
tistics, and then consider how those methods could be implemented in psychologically
plausible ways. This is the strategy that is taken in deriving ‘‘rational’’ process models
(Sanborn et al., 2006; Shi, Feldman, & Griffiths, 2008), which approximate Bayesian
inference under certain processing constraints (such as limits on the amount of memory or
computation that can be used). Many of these models are based on the Monte Carlo prin-
ciple, approximating a probability distribution with a set of samples from that distribution.
In particular, the problem of updating a probability distribution over hypotheses as more
observations are acquired (which arises in sequence prediction) can be approximated
using a particle filter, in which the distribution at each stage is approximated by a set of
samples (known as “‘particles’’) (Doucet, Freitas, & Gordon, 2001). Particle filters have
become a popular method for exploring the effects of processing constraints in probabilis-
tic models (Brown & Steyvers, 2009; Levy, Reali, & Griffiths, 2009; Sanborn et al.,
2006), and they may provide a way of constructing more psychologically plausible
models of sequence prediction.

9. Conclusion

Since Wason’s (1960) introduction of the 2-4-6 task, philosophers and psychologists have
been fascinated by explaining why people tend to test their hypotheses about the world with
examples that are true under their hypothesis. We have provided a novel explanation for the
effect: that this strategy can be optimal, if people assume the rules underlying the world are
deterministic. Once this assumption is made, choosing examples that are true under their
current hypothesis provides a rational way to test that hypothesis, whether people’s norma-
tive standard is to maximize their probability of falsifying their current hypothesis or the
expected information they will gain through their test. Our experiments support the basic
assumptions behind this analysis, showing that people make predictions in a way that can be
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characterized by Bayesian inference and that their selection of which tests to perform is sen-
sitive to the posterior probability of different hypotheses. Furthermore, recent studies of
human causal learning suggest that people often assume the kind of determinism required
by our analysis. Taken together, these results suggest that the assumption of determinism
can play a similar role in explaining why people might pursue a strategy of confirmation
when predicting sequences to the role that rarity plays in explaining how people choose to
test logical rules (Oaksford & Chater, 1994): While people might not always pursue the best
strategy for the problem posed by the experimenter, they act in a way that is rational with
respect to their assumptions about their environment.

Notes

1. More precisely, choosing the hypothesis with highest posterior probability is always at
least as good as choosing any other hypothesis, with equality holding in the case where
just two hypotheses have nonzero posterior probability.

2. In presenting the model, we sometimes use process-level language in order to make
the mathematics more intuitive, but this should not be interpreted as a claim that the
mathematical operations we describe are intended to be interpreted as psychological
processes.

3. The different penalizations from the initial number distribution based on k; does not
have a unique effect on the model predictions because its effect is confounded with the
parameters from the prior probability.

4. The estimates of the prior probabilities were based on a relatively large amount of
data—by allowing freeform responses we gained a lot of information about the
values of the parameters from each response—and we were thus not concerned about
overfitting the data. As our goal was primarily to determine whether our model incor-
porated an appropriate set of hypotheses—something that could be seen even allowing
a free parameter for each rule type—the fact that the model has six free parameters did
not interfere with evaluating its performance. As a further check against overfitting,
we test the generalization performance of the model in Experiment 2.
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