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Abstract

Many human interactions involve pieces of information being passed from one
person to another, raising the question of how this process of information trans-
mission is affected by the capacities of the agents involved. In the 1930s, Sir
Frederic Bartlett explored the influence of memory biases in“serial reproduction”
of information, in which one person’s reconstruction of a stimulus from memory
becomes the stimulus seen by the next person. These experiments were done us-
ing relatively uncontrolled stimuli such as pictures and stories, but suggested that
serial reproduction would transform information in a way that reflected the biases
inherent in memory. We formally analyze serial reproduction using a Bayesian
model of reconstruction from memory, giving a general result characterizing the
effect of memory biases on information transmission. We then test the predic-
tions of this account in two experiments using simple one-dimensional stimuli.
Our results provide theoretical and empirical justification for the idea that serial
reproduction reflects memory biases.

1 Introduction

Most of the facts that we know about the world are not learned through first-hand experience, but
are the result of information being passed from one person toanother. This raises a natural question:
how are such processes of information transmission affected by the capacities of the agents involved?
Decades of memory research have charted the ways in which ourmemories distort reality, changing
the details of experiences and introducing events that never occurred (see [1] for an overview). We
might thus expect that these memory biases would affect the transmission of information, since such
a process relies on each person remembering a fact accurately.

The question of how memory biases affect information transmission was first investigated in detail
in Sir Frederic Bartlett’s “serial reproduction” experiments [2]. Bartlett interpreted these studies
as showing that people were biased by their own culture when they reconstruct information from
memory, and that this bias became exaggerated through serial reproduction. Serial reproduction
has become one of the standard methods used to simulate the process of cultural transmission, and
several subsequent studies have used this paradigm (e.g., [3, 4]). However, this phenomenon has not
been systematically and formally analyzed, and most of these studies have used complex stimuli that
are semantically rich but hard to control. In this paper, we formally analyze and empirically evaluate
how information is changed by serial reproduction and how this process relates to memory biases.
In particular, we provide a rational analysis of serial reproduction (in the spirit of [5]), considering
how information should change when passed along a chain of rational agents.

Biased reconstructions are found in many tasks. For example, people are biased by their knowledge
of the structure of categories when they reconstruct simplestimuli from memory. One common



effect of this kind is that people judge stimuli that cross boundaries of two different categories to
be further apart than those within the same category, although the distances between the stimuli
are the same in the two situations [6]. However, biases need not reflect suboptimal performance.
If we assume that memory is solving the problem of extractingand storing information from the
noisy signal presented to our senses, we can analyze the process of reconstruction from memory as
a Bayesian inference. Under this view, reconstructions should combine prior knowledge about the
world with the information provided by noisy stimuli. Use ofprior knowledge will result in biases,
but these biases ultimately make memory more accurate [7].

If this account of reconstruction from memory is true, we would expect the same inference process
to occur at every step of serial reproduction. The effects ofmemory biases should thus be accumu-
lated. Assuming all participants share the same prior knowledge about the world, serial reproduction
should ultimately reveal the nature of this knowledge. Drawing on recent work exploring other pro-
cesses of information transmission [8, 9], we show that a rational analysis of serial reproduction
makes exactly this prediction. To test the predictions of this account, we explore the special case
where the task is to reconstruct a one-dimensional stimulususing the information that it is drawn
from a fixed Gaussian distribution. In this case we can precisely characterize behavior at every step
of serial reproduction. Specifically, we show that this defines a simple first-order autoregressive, or
AR(1), process, allowing us to draw on a variety of results characterizing such processes. We use
these predictions to test the Bayesian models of serial reproduction in two laboratory experiments
and show that the predictions hold serial reproduction bothbetween- and within-subjects.

The plan of the paper is as follows. Section 2 lays out the Bayesian account of serial reproduction.
In Section 3 we show how this Bayesian account corresponds tothe AR(1) process. Sections 4 and
5 present two experiments testing the model’s prediction that serial reproduction reveals memory
biases. Section 6 concludes the paper.

2 A Bayesian view of serial reproduction

We will outline our Bayesian approach to serial reproduction by first considering the problem of
reconstruction from memory, and then asking what happens when the solution to this problem is
repeated many times, as in serial reproduction.

2.1 Reconstruction from memory

Our goal is to give a rational account of reconstruction frommemory, considering the underlying
computational problem and finding the optimal solution to that problem. We will formulate the
problem of reconstruction from memory as a problem of inferring and storing accurate information
about the world from noisy sensory data. Given a noisy stimulusx, we seek to recover the true state
of the worldµ that generated that stimulus, storing an estimateµ̂ in memory. The optimal solution
to this problem is provided by Bayesian statistics. Previous experience provides a “prior” distri-
bution on possible states of the world,p(µ). On observingx, this can be updated to a “posterior”
distributionp(µ|x) by applying Bayes’ rule

p(µ|x) =
p(x|µ)p(µ)∫
p(x|µ)p(µ) dµ

(1)

wherep(x|µ) – the “likelihood” – indicates the probability of observingx if µ is the true state of
the world. Having computedp(µ|x), a number of schemes could be used to select an estimate ofµ̂
to store. Perhaps the simplest such scheme is sampling from the posterior, witĥµ ∼ p(µ|x).

This analysis provides a general schema for modeling reconstruction from memory, applicable for
any form ofx andµ. A simple example is the special case wherex andµ vary along a single
continuous dimension. In the experiment presented later inthe paper we take this dimension to be
the width of a fish, showing people a fish and asking them to reconstruct its width from memory, but
the dimension of interest could be any subjective quantity such as the perceived length, loudness,
duration, or brightness of a stimulus. Assume that previousexperience establishes thatµ has a
Gaussian distribution, withµ ∼ N(µ0, σ

2
0), and that the noise process means thatx has a Gaussian

distribution centered onµ, x|µ ∼ N(µ, σ2
x
). In this case, we can use standard results from Bayesian

statistics [10] to show that the outcome of Equation 1 is alsoa Gaussian distribution, withp(µ|x)
beingN(λx + (1 − λ)µ0, λσ2

x
), whereλ = 1/(1 + σ2

x
/σ2

0).



The analysis presented in the previous paragraph makes a clear prediction: that the reconstruction̂µ
should be a compromise between the observed valuex and the mean of the priorµ0, with the terms
of the compromise being set by the ratio of the noise in the dataσ2

x
to the uncertainty in the priorσ2

0 .
This model thus predicts a systematic bias in reconstruction that is not a consequence of an error of
memory, but the optimal solution to the problem of extracting information from a noisy stimulus.
Huttenlocher and colleagues [7] have conducted several experiments testing this account of memory
biases, showing that people’s reconstructions interpolate between observed stimuli and the mean of
a trained distribution as predicted. Using a similar notionof recosntruction from memory, Hemmer
and Steyvers [11] have conducted experiments to show that people formed appropriate Bayesian
reconstructions for realistic stimuli such as images of fruit, and seemed capable of drawing on prior
knowledge at multiple levels of abstraction in doing so.

2.2 Serial reproduction

With a model of how people might approach the problem of reconstruction from memory in hand,
we are now in a position to analyze what happens in serial reproduction, where the stimuli that
people receive on one trial are the results of a previous reconstruction. On thenth trial, a participant
sees a stimulusxn. The participant then computesp(µ|xn) as outlined in the previous section, and
stores a samplêµ from this distribution in memory. When asked to produce a reconstruction, the
participant generates a new valuexn+1 from a distribution that depends on̂µ. If the likelihood,
p(x|µ), reflects perceptual noise, then it is reasonable to assume thatxn+1 will be sampled from this
distribution, substitutinĝµ for µ. This value ofxn+1 is the stimulus for the next trial.

Viewed from this perspective, serial reproduction defines astochastic process: a sequence of random
variables evolving over time. In particular, it is a Markov chain, since the reconstruction produced
on the current trial depends only on the value produced on thepreceding trial (e.g. [12]). The
transition probabilities of this Markov chain are

p(xn+1|xn) =

∫
p(xn+1|µ)p(µ|xn) dµ (2)

being the probability thatxn+1 is produced as a reconstruction for the stimulusxn. If this Markov
chain is ergodic (see [12] for details) it will converge to a stationary distributionπ(x), with p(xn|x1)
tending toπ(xn) asn → ∞. That is, after many reproductions, we should expect the probability
of seeing a particular stimulus being produced as a reproduction to stabilize to a fixed distribution.
Identifying this distribution will help us understand the consequences of serial reproduction.

The transition probabilities given in Equation 2 have a special form, being the result of sampling
a value from the posterior distributionp(µ|xn) and then sampling a value from the likelihood
p(xn+1|µ). In this case, it is possible to identify the stationary distribution of the Markov chain
[8, 9]. The stationary distribution of this Markov chain is theprior predictive distribution

π(x) =

∫
p(x|µ)p(µ) dµ (3)

being the probability of observing the stimulusx whenµ is sampled from the prior. This happens
because this Markov chain is a Gibbs sampler for the joint distribution on x and µ defined by
multiplying p(x|µ) andp(µ) [9]. This gives a clear characterization of the consequences of serial
reproduction: after many reproductions, the stimuli beingproduced will be sampled from the prior
distribution assumed by the participants. Convergence to the prior predictive distribution provides
a formal justification for the traditional claims that serial reproduction reveals cultural biases, since
those biases would be reflected in the prior.

In the special case of reconstruction of stimuli that vary along a single dimension, we can also
analytically compute the probability density functions for the transition probabilities and stationary
distribution. Applying Equation 2 using the results summarized in the previous section, we have
xn+1|xn ∼ N(µn, (σ2

x
+ σ2

n
)), whereµn = λxn + (1 − λ)µ0, andσ2

n
= λσ2

x
. Likewise, Equation

3 indicates that the stationary distribution isN(µ0, (σ
2
x

+ σ2
0)). The rate at which the Markov chain

converges to the stationary distribution depends on the value ofλ. Whenλ is close to1, convergence
is slow sinceµn is close toxn. Asλ gets closer to0, µn is more influenced byµ0 and convergence is
faster. Sinceλ = 1/(1 + σ2

x
/σ2

0), the convergence rate thus depends on the ratio of the participant’s
perceptual noise and the variance of the prior distribution, σ2

x
/σ2

0 . More perceptual noise results in



faster convergence, since the specific value ofxn is trusted less; while more uncertainty in the prior
results in slower convergence, sincexn is given greater weight.

3 Serial reproduction of one-dimensional stimuli as an AR(1) process

The special case of serial reproduction of one-dimensionalstimuli can also give us further insight
into the consequences of modifying our assumptions about storage and reconstruction from mem-
ory, by exploiting a further property of the underlying stochastic process: that it is a first-order
autoregressive process, abbreviated to AR(1). The generalform of an AR(1) process is

xn+1 = c + φxn + ǫn+1 (4)

whereǫn+1 ∼ N(0, σ2
ǫ
). Equation 4 has the familiar form of a regression equation, predicting one

variable as a linear function of another, plus Gaussian noise. It defines a stochastic process because
each variable is being predicted from that which precedes itin sequence. AR(1) models are widely
used to model timeseries data, being one of the simplest models for capturing temporal dependency.

Just as showing that a stochastic process is a Markov chain provides information about its dynamics
and asymptotic behavior, showing that it reduces to an AR(1)process provides access to a number
of results characterizing the properties of these processes. If φ < 1 the process has a stationary
distribution that is Gaussian with meanc/(1− φ) and varianceσ2

ǫ
/(1− φ2). The autocovariance at

a lag ofn is φnσ2
ǫ
/(1 − φ2), and thus decays geometrically inφ. An AR(1) process thus converges

to its stationary distribution at a rate determined byφ.

It is straightforward to show that the stochastic process defined by serial reproduction where a sam-
ple from the posterior distribution onµ is stored in memory and a new valuex is sampled from the
likelihood is an AR(1) process. Using the results in the previous section, at the(n + 1)th iteration

xn+1 = (1 − λ)µ0 + λxn + ǫn+1 (5)

whereλ = 1/(1 + σ2
x
/σ2

0) andǫn+1 ∼ N(0, (σ2
x

+ σ2
n
)) with σ2

n
= λσ2

x
. This is an AR(1) process

with c = (1 − λ)µ0, φ = λ, andσ2
ǫ

= σ2
x

+ σ2
n
. Sinceλ is less than1 for anyσ2

0 andσ2
x
, we can

find the stationary distribution by substituting these values into the expressions given above.

Identifying serial reproduction for single-dimensional stimuli as an AR(1) process allows us to relax
our assumptions about the way that people are storing and reconstructing information. The AR(1)
model can accommodate different assumptions about memory storage and reconstruction.1 All these
ways of characterizing serial reproduction lead to the samebasic prediction: that repeatedly recon-
structing stimuli from memory will result in convergence toa distribution whose mean corresponds
to the mean of the prior. In the remainder of the paper we test this prediction.

In the following sections, we present two serial reproduction experiments conducted with stimuli
that vary along only one dimension (width of fish). The first experiment follows previous research
in using a between-subjects design, with the reconstructions of one participant serving as the stimuli
for the next. The second experiment uses a within-subjects design in which each person reconstructs
stimuli that they themselves produced on a previous trial, testing the potential of this design to reveal
the memory biases of individuals.

4 Experiment 1: Between-subjects serial reproduction

This experiment directly tested the basic prediction that the outcome of serial reproduction will
reflect people’s priors. Two groups of participants were trained on different distributions of a one-
dimensional quantity – the width of a schematic fish – that would serve as a prior for reconstructing

1In the memorization phase, the participant’s memoryµ̂ can be 1) a sample from the posterior distribution
p(µ|xn), as assumed above, or 2) a value such thatµ̂ = argmax

µ
p(µ|xn), which is also the expected value

of the Gaussian posterior,p(µ|xn). In the reproduction phase, the participant’s reproductionxn+1 can be 1)
a noisy reconstruction, which is a sample from the likelihoodp(xn+1|µ̂), as assumed above, or 2) a perfect
reconstruction from memory, such thatxn+1 = µ̂. This defines four different models of serial reproduction,
all of which correspond to AR(1) processes that differ only in the varianceσ

2
ǫ (although maximizingp(µ|xn)

and then storing a perfect reconstruction is degenerate, withσ
2
ǫ = 0). In all four cases serial reproduction thus

converges to a Gaussian stationary distribution with meanµ0, but with different variances.



similar stimuli from memory. The two distributions differed in their means, allowing us to examine
whether the mean of the distribution produced by serial reproduction is affected by the prior.

4.1 Method

The experiment followed the same basic procedure as Bartlett’s classic experiments [2]. Participants
were 46 members of the university community. Stimuli were the same as those used in [7]: fish with
elliptical bodies and fan-shaped tails. All the fish stimulivaried only in one dimension, the width of
the fish, ranging from 2.63cm to 5.76cm. The stimuli were presented on an Apple iMac computer
by a Matlab script using PsychToolBox extensions [13, 14].

Participants were first trained to discriminate fish-farm and ocean fish. The width of the fish-farm
fish was normally distributed and that of the ocean fish was uniformly distributed between2.63 and
5.75cm. Two groups of participants were trained on one of the two distributions of fish-farm fish
(prior distributions A and B), with different means and samestandard deviations. In condition A,
µ0 = 3.66cm,σ0 = 1.3cm; in condition B,µ0 = 4.72cm,σ0 = 1.3cm.

In the training phase, participants first received a block of60 trials. On each trial, a stimulus was
presented at the center of a computer monitor and participants tried to predict which type of fish it
was by pressing one of the keys on the keyboard and they received feedback about the correctness of
the prediction. The participants were then tested for 20 trials on their knowledge of the two types of
fish. The procedure was the same as the training block except there was no feedback. The training-
testing loop was repeated until the participants reached 80% correct in using the optimal decision
strategy. If a participant could not pass the test after five iterations, the experiment halted.

In the reproduction phase, the participants were told that they were to record fish sizes for the fish
farm. On each trial, a fish stimulus was flashed at the center ofthe screen for 500ms and then
disappeared. Another fish of random size appeared at one of four possible positions near the center
of screen and the participants used the up and down arrow keysto adjust the width of the fish until
they thought it matched the fish they just saw. The fish widths seen by the first participant in each
condition were 120 values randomly sampled from a uniform distribution from2.63 to 5.75cm.
The first participant tried to memorize these random samplesand then gave the reconstructions.
Each subsequent participant in each condition was then presented with the data generated by the
previous participant and they again tried to reconstruct those fish widths. Thus, each participant’s
data constitute one slice of time in 120 serial reproductionchains.

At the end of the experiment, the participants were given a final 50-trial test to check if their prior
distributions had drifted. Ten participants’ data were excluded from the chains based on three cri-
teria: 1) final testing score was less than 80% of optimal performance; 2) the difference between
the reproduced value and stimulus shown was greater than thedifference between the largest and
the smallest stimuli in the training distribution on any trial; 3) there were no adjustments from the
starting value of the fish width for more than half of the trials.

4.2 Results and Discussion

There were 18 participants in each condition, resulting in 18 generations of serial reproduction. Fig-
ure 1 shows the initial and final distributions of the reconstructions, together with the autoregression
plots for the two conditions. The mean reconstructed fish widths produced by the first participants
in conditions A and B were4.22 and4.21cm respectively, which were not statistically significantly
different (t(238) = 0.09, p = 0.93). For the final participants in each chain, the mean reconstructed
fish widths were3.20 and3.68cm respectively, a statistically significant difference (t(238) = 6.93,
p < 0.001). The difference in means matches the direction of the difference in the training provided
in conditions A and B, although the overall size of the difference is reduced and the means of the
stationary distributions were lower than those of the distributions used in training.

The autoregression plots provide a further quantitative test of the predictions of our Bayesian model.
The basic prediction of the model is that reconstruction should look like regression, and this is
exactly what we see in Figure 1. The correlation between the stimulusxn and its reconstructionxn+1

is the correlation between the AR(1) model’s predictions and the data, and this correlation was high
in both conditions, being 0.91 and 0.86 (p < 0.001) for conditions A and B respectively. Finally,
we examined whether the Markov assumption underlying our analysis was valid, by computing the
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Figure 1: Initial and final distributions for the two conditions in Experiment 1. (a) The distribution of
stimuli and Gaussian fits to reconstructions for the first participants in the two conditions. (b) Gaus-
sian fits to reconstructions generated by the 18th participants in each condition. (c) Autoregression
plot for xn+1 as a function ofxn for the two conditions.

correlation betweenxn+1 andxn−1 given xn. The resulting partial correlation was low for both
conditions, being 0.04 and 0.01 in conditions A and B respectively (bothp < 0.05).

5 Experiment 2: Within-subjects serial reproduction

The between-subjects design allows us to reproduce the process of information transmission, but
our analysis suggests that serial reproduction might also have promise as a method for investigating
the memory biases of individuals. To explore the potential of this method, we tested the model
with a within-subjects design, in which a participant’s reproduction in the current trial became the
stimulus for that same participant in a later trial. Each participant’s responses over the entire exper-
iment thus produced a chain of reproductions. Each participant produced three such chains, starting
from widely separated initial values. Control trials and careful instructions were used so that the
participants would not realize that some of the stimuli weretheir own reproductions.

5.1 Method

Forty-six undergraduates from the university research participation pool participated the experiment.
The basic procedure was the same as Experiment 1, except in the reproduction phase. Each partici-
pant’s responses in this phase formed three chains of 40 trials. The chains started with three original
stimuli with width values of2.63cm, 4.19cm, and5.76cm, then in the following trials, the stimuli
participants saw were their own reproductions in the previous trials in the same chain. To prevent
participants from realizing this fact, chain order was randomized and the Markov chain trials were
intermixed with 40 control trials in which widths were drawnfrom the prior distribution.

5.2 Results and Discussion

Participants’ data were excluded based on the same criteriaas used in Experiment 1, with a lower
testing score of 70% of optimal performance and one additional criterion relevant to the within-
subjects case: participants were also excluded if the threechains did not converge, with the criterion
for convergence being that the lower and upper chains must cross the middle chain. After these
screening procedures, 40 participants’ data were accepted, with 21 in condition A and 19 in condi-
tion B. It took most participants about 20 trials for the chains to converge, so only the second half of
the chains (trials 21-40) were analyzed further.

The locations of the stationary distributions were measured by computing the means of the repro-
duced fish widths for each participant. For conditions A (3.66cm) and B (4.72cm), the average of
these means was3.32 and4.01cm respectively (t(38) = 2.41, p = 0.021). The right panel of Figure



Figure 2: Stimuli, training distributions and stationary distributions for Experiment 2. Each data
point in the right panel shows the mean of the last 20 iterations for a single participant. Boxes show
the 95% confidence interval around the mean for each condition.
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Figure 3: Chains and stationary distributions for individual participants from the two conditions.
(a) The three Markov chains generated by each participant, starting from three different values.
(b) Training distributions for each condition. (c) Gaussian fits for the last 20 iterations of each
participant’s data. (d) Autoregression for the last 20 iterations of each participant’s data.

2 shows the mean values for these two conditions. The basic prediction of the model was borne
out: participants converged to distributions that differed significantly in their means when they were
exposed to data suggesting a different prior. However, the means were in general lower than those
of the prior. This effect was less prominent in the control trials, which produced means of3.63 and
4.53cm respectively.2

Figure 3 shows the chains, training distributions, the Gaussian fits and the autoregression for the
second half of the Markov chains for two participants in the two conditions. Correlation analysis
showed that the AR(1) model’s predictions are highly correlated with the data generated by each
participant, with mean correlations being 0.90 and 0.81 forconditions A and B respectively. The

2Since both experiments produced stationary distributions with means lower than those of the training dis-
tributions, we conducted a separate experiment examining the reconstructions that people produced without
training. The mean fish width produced by 20 participants was3.43cm, significantly less than the mean of the
initial values of each chain,4.19cm (t(19) = 3.75, p < 0.01). This result suggested that people seem to have
ana priori expectation that fish will have widths smaller than those used as our category means, suggesting that
people in the experiments are using a prior that is a compromise between thisexpectation and the training data.



correlations are significant for all participants. The meanpartial correlation betweenxt+1 andxt−1

given xt was low, being 0.07 and 0.11 for conditions A and B respectively, suggesting that the
Markov assumption was satisfied. The partial correlations were significant (p < 0.05) for only one
participant in condition B.

6 Conclusion

We have presented a Bayesian account of serial reproduction, and tested the basic predictions of this
account using two strictly controlled laboratory experiments. The results of these experiments are
consistent with the predictions of our account, with serialreproduction converging to a distribution
that is influenced by the prior distribution established through training. Our analysis connects the
biases revealed by serial reproduction with the more general Bayesian strategy of combining prior
knowledge with noisy data to achieve higher accuracy [7]. Italso shows that serial reproduction can
be analyzed using Markov chains and first-order autoregressive models, providing the opportunity
to draw on a rich body of work on the dynamics and asymptotic behavior of such processes. These
connections allows us to provide a formal justification for the idea that serial reproduction changes
the information being transmitted in a way that reflects the biases of the people transmitting it,
establishing that this result holds under several different characterizations of the processes involved
in storage and reconstruction from memory.
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