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Abstract

Traditional approaches to Bayes net struc-
ture learning typically assume little regular-
ity in graph structure other than sparseness.
However, in many cases, we expect more
systematicity: variables in real-world sys-
tems often group into classes that predict the
kinds of probabilistic dependencies they par-
ticipate in. Here we capture this form of prior
knowledge in a hierarchical Bayesian frame-
work, and exploit it to enable structure learn-
ing and type discovery from small datasets.
Specifically, we present a nonparametric gen-
erative model for directed acyclic graphs as a
prior for Bayes net structure learning. Our
model assumes that variables come in one
or more classes and that the prior probabil-
ity of an edge existing between two variables
is a function only of their classes. We de-
rive an MCMC algorithm for simultaneous
inference of the number of classes, the class
assignments of variables, and the Bayes net
structure over variables. For several realistic,
sparse datasets, we show that the bias to-
wards systematicity of connections provided
by our model can yield more accurate learned
networks than the traditional approach of
using a uniform prior, and that the classes
found by our model are appropriate.

1 Introduction

Unsupervised discovery of structured, predictive mod-
els from sparse data is a central problem in artificial
intelligence. Bayesian networks provide a useful lan-
guage for describing a large class of predictive mod-
els, and much work in unsupervised learning has fo-
cused on discovering their structure from data. Most
approaches to Bayes net structure learning assume
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generic priors on graph structure, sometimes encoding
a sparseness bias but otherwise expecting no regular-
ities in the learned graphs. However, in many cases,
we expect more systematicity: variables in real-world
systems often play characteristic roles, and can be use-
fully grouped into classes that predict the kinds of
probabilistic dependencies they participate in. This
systematicity provides important constraints on many
aspects of learning and inference.

Consider the domain of medical learning and reason-
ing. Knowledge engineers in this area have historically
imposed strong structural constraints; the QMR-DT
network [Shwe et al., 1991], for example, segregates
nodes into diseases and symptoms, and only permits
edges from the former to the latter. Recent attempts
at medical knowledge engineering have continued in
this tradition; for example, Kraaijeveld et al. [2005]
explicitly advocate organizing Bayes nets for diagno-
sis into three layers, with influence flowing only from
context through fault to influence nodes. Similar divi-
sions into classes pervade the literature on probabilis-
tic graphical models for biological interactions; [Pe’er
et al., 2006], for example, learn gene networks by dis-
covering a salient example, structuring the problem
of learning gene networks around the discovery of a
small set of regulators that are responsible for con-
trolling the activation of all other genes and may also
influence each other.

Knowledge about relationships between classes pro-
vide inductive constraints that allow Bayesian net-
works to be learned from much less data than would
otherwise be possible. For example, consider a struc-
ture learner faced with a database of medical facts,
including a list of patients for which a series of oth-
erwise undifferentiated conditions have been provided.
If the learner knew that, say, the first ten conditions
were diseases and the rest symptoms, with influence
only possible from diseases to symptoms, the learner
would need to consider a dramatically reduced hypoth-
esis space of structures. Various forms of less specific



knowledge could also be quite useful, such as know-
ing that some variables played a similar causal role,
even without the precise knowledge of what that role
entailed. Causal roles also support transfer: a medi-
cal expert system knowledgeable about lung conditions
faced with data about liver conditions defined over en-
tirely new variables would not be able to transfer any
specific probabilistic dependencies but could poten-
tially transfer abstract structural patterns (e.g., that
diseases cause symptoms). Finally, abstract structural
knowledge is often interesting in its own right, aside
from any inductive bias it contributes. For example,
a biologist might be interested to learn that certain
genes are regulators, over and above learning about
specific predictive or causal links between particular
genes.

We present a hierarchical Bayesian approach to struc-
ture learning that captures this sort of abstract struc-
tural knowledge using nonparametric block-structured
priors over Bayes net graph structures. Given obser-
vations over a set of variables, we simultaneously in-
fer both a specific Bayes net over those variables and
the abstract structural features of these dependencies.
We assume that variables come in one or more classes
and that the prior probability of an edge existing be-
tween two variables is a function only of their classes.
In general, we do not assume knowledge of the num-
ber of classes, the class assignments of variables, or
the probabilities of edges existing between any given
classes; these aspects of the prior must be inferred or
estimated at the same time that we learn the structure
and parameters of the Bayes net. We derive an ap-
proach for simultaneous inference of all these features
from data: all real-valued parameters are integrated
out analytically, and MCMC is used to infer the num-
ber of classes, the class assignments of variables, and
the Bayes net structure over those variables. We show
that the bias towards systematicity of connections pro-
vided by our model can yield more accurate recovery
of network structures than a uniform prior approach,
when the underlying structure exhibits some system-
aticity. We also demonstrate that on randomly gen-
erated sparse DAGs, the nonparametric form of our
inductive bias can protect us from incurring a sub-
stantial penalty due to prior mismatch.

A number of previous approaches to learning and in-
ference have exploited structural constraints at more
abstract levels than a specific Bayesian network. These
approaches typically show a tradeoff between the rep-
resentational expressiveness and flexibility of the ab-
stract knowledge, and the ease with which that knowl-
edge can be learned. At one end of this tradeoff,
approaches like [Segal et al., 2005] assume that the
Bayes net to be learned must respect very strict con-

straints — in this case, that variables can be divided
into modules, where all variables in a module share the
same parents and the same conditional probability ta-
ble (CPT). This method yields a powerful inductive
bias for learning both network structure and module
assignments from data, especially appropriate for the
study of gene regulatory networks, but it is not as ap-
propriate for modeling many other domains with less
regular structure. The QMR-DT [Shwe et al., 1991]
or Hepar IT [Kraaijeveld et al., 2005] networks, for ex-
ample, contain highly regular but largely nonmodular
structure, and we would like to be able to discover both
this sort of network and a good characterization of this
sort of regularity. At the other end of the flexibility-
learnability tradeoff, frameworks such as probabilis-
tic relational models (PRMs) [Friedman et al., 1999]
provide a far more expressive language for abstract
relational knowledge that can constrain the space of
Bayesian networks appropriate for a given domain, but
it is a significant challenge to learn the PRM itself —
including the class structure — from raw, undifferen-
tiated event data. Our work aims at a valuable inter-
mediate point on the flexibility-learnability spectrum.
We consider hypotheses about abstract structure that
are less expressive than those of PRMs, but which
are simultaneously learnable from raw data along with
specific networks of probabilistic dependencies. Our
nonparametric models also yield a stronger inductive
bias for structure learning than a uniform prior but a
weaker and more flexible one than module networks.

2 Block-Structured Priors

The intuition that nodes in a Bayes net have predic-
tive classes can be formalized in several ways. In this
paper, we focus on two structure priors obtained from
similar formalizations: the ordered blockmodel and the
blockmodel. The joint distributions we work in (in-
cluding the uniform baseline) can be described by a
meta-model consisting of three major pieces (see Fig-
ure 1): a prior over the structure of Bayes nets, a
prior on the parameterizations of Bayes nets given
their structure, and the data likelihood induced by
that parameterization. For simplicity, we work with
discrete-state Bayesian networks with known domains,
and use the standard conjugate Dirichlet-Multinomial
model for their conditional probability tables [Cooper
and Herskovits, 1992]. Note that the variable G in
Figure 1 refers to a graph structure, with B its elab-
oration into a full Bayesian network with conditional
probability tables. Inference in the model of Figure
1 and its specializations characterizes the Bayes net
structure learning problem.

We are interested in discovering node classes that ex-
plain patterns of incoming and outgoing edges, as



a step towards representation and learning of causal
roles. Our starting point is the infinite blockmodel of
[Kemp et al., 2004], a nonparametric generative model
for directed graphs, which we modify in two ways to
only produce acyclic graphs. We first describe the gen-
erative process for the ordered blockmodel:

1. Generate a class-assignment vector Z containing a
partition of the N nodes of the graph via the Chi-
nese restaurant process or CRP [Pitman, 2002]
with hyperparameter . The CRP represents a
partition in terms of a restaurant with a countably
infinite number of tables, where each table corre-
sponds to a group in the partition (see Figure 1b)
and the seating assignment of person ¢ is the class
of the ith object. People are seated at each ex-
isting table k (from 1 up to K+) with probability
proportional to my, the number of previous occu-
pants of the table. New tables are created with
probability proportional to the hyperparameter c.
As the CRP is exchangeable, the distribution on
partitions (represented by Z) that it induces is in-
variant to the order of entry of people into the
restaurant. Specifically, we have:

N o I'(a) K
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2. Generate an ordering ¢ of the KT classes in the
partition z’ uniformly at random:

P@IZ) = ()

Then o, contains the order of class a.

3. Generate a square graph template matrix 7, of
size equal to the number of classes in the gener-
ated partition, where 7,, o, represents the prob-
ability of an edge between a node of class a and
a node of class b. To ensure acyclicity, fix all en-
tries to be 0 except those strictly above the di-
agonal; these possibly nonzero entries 7,,,,, with

-

op > 04 are drawn from a Beta(3) distribution
(with B(-,-) its normalizing constant):
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4. Generate a graph G by drawing each edge G, ;
from a Bernoulli distribution with parameter
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Note that all graphs are possible under this process,
though the ones lacking salient block structure typ-
ically require more classes. Also note that the hy-
perparameters in this process are intuitive and inter-
pretable. « controls the prior on partitions of nodes
into classes; smaller values favor fewer groups a pri-
ori. E controls the n matrix, with values such as (0.5,
0.5) favoring clean blocks (either all edges absent or
all present) and increases in [ or (2 yielding biases
towards sparseness or denseness respectively. The or-
dering 0 encodes the “causal depth” of nodes based
on their classes. Because we believe specific, directed
dependencies are important outputs of structure dis-
covery for causal systems, we do not constrain our pri-
ors to assign equal mass to members of a particular
Markov equivalence class.

The blockmodel prior does not include the ordering
0. Graph generation is essentially as above, with 7,
being the probability of an edge between a node of
class a and a node of class b, and all entries permitted
to be nonzero. Cyclic graphs are rejected afterwards
by renormalization. More formally, for the blockmodel
version, let A(G) be 1 if G is acyclic and 0 otherwise.
Then we have

N N
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Both priors may be appropriate depending on the situ-
ation. If we are interested in classes that correspond to
different stages (possibly unrolled in time) of a causal
process, the ordered blockmodel may be more appro-
priate. If we expect nodes of a given class to include
some connections with others of the same class, as in
the study of gene regulatory networks where some reg-
ulators influence others, then the blockmodel should
perform better. Additionally, both models can gener-
ate any directed acyclic graph. The blockmodel can
do this either by assigning all nodes to the same class,
learning the sparsity of the graph, or by assigning all
nodes to different classes (which may be useful for
dense, nearly cyclic graphs). The ordered blockmodel
has the option of assigning nodes to different classes
corresponding to layers in the topological ordering of
an arbitrary DAG.

Our data likelihood is the standard marginal likeli-
hood for complete discrete observations, assuming the
CPTs (represented by the parameters B) have been in-
tegrated out; v plays the role of the pseudo-counts set-
ting the degree of expected determinism of the CPTs
[Murphy, 2001]. Overall, then, our model has three
free parameters (in the symmetric 3 case) — «, 8 and
v — which each give us the opportunity to encode
weak prior knowledge at different levels of abstraction.
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Figure 1: (a) Graphical meta-model for the ordered
blockmodel. The dashed line indicates the compo-

nents of the meta-model corresponding to traditional
Bayes net structure learning with a uniform prior. (b)-
(d) Latent variables representing abstract structural
knowledge.

This nonparametric, hierarchical approach is attrac-
tive for several reasons. The CRP gracefully handles
a spectrum of class granularities, generally preferring
to produce clumps but permitting each object to be
in its own class if necessary. Z, 0 and 7 provide con-
venient locations for the insertion of strong or weak
prior knowledge, if we have it, ranging from complete
template knowledge to only the expectation that some
reasonable template can be found. They also represent
additional outputs of learning, which are of interest in
both cognitive applications (e.g. the concept disease
is at least as much about the patterns in the causal
relationships present across many particular diseases
as it is about those relationships in particular) and in
scientific data analysis (e.g. the notion that regula-
tors exist is useful even if one isn’t entirely sure about
which genes are regulated by which other ones).

Throughout this paper, we will compare our approach
with Bayes net structure learning given a conventional,
uniform prior on DAGs. Formally, this corresponds
to the subcomponent of the meta-model in Figure 1
indicated by the dashed box, and a prior on graph
structures G given by Equation 4 with a single class
and 1 (now a scalar) fixed to 0.5.

3 Inference

Having framed our approach to structure learning as
inference in the graphical model of Figure 1, we must
provide an effective procedure for performing it. Note

that when determining the contribution of a given
structure to the predictive distribution, we will ex-
plicitly represent the posterior on parameters for that
structure, again using conjugacy. To further reduce
the size of our hypothesis space for the experiments
in this paper, we also integrate out the n matrix. Let
n’ , be the number of edges between nodes of class a

and nodes of class b, n, , the corresponding number

of missing edges, with KT the number of classes as
before. Then we have:

KK B(py +nab,ﬁ2+” b)
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Note that in the case of the blockmodel, where 7 is
not itself constrained to generate acyclic graphs, this
equality is instead only a proportionality, due to renor-
malization of the prior over acyclic graphs.

Inference, in general, will entail finding posterior be-
liefs about 2, ¢ and G. We organize our inference
around a Markov chain Monte Carlo procedure, con-
sisting of both Gibbs and Metropolis-Hastings (MH)
kernels, to retain theoretical correctness guarantees in
the limit of long simulations. Of course, it is straight-
forward to anneal the Markov chain and to periodically
restart if we are only interested in the MAP value or a
set of high-scoring states for selective model averaging
[Madigan et al., 1996].

Our overall MCMC process decouples into moves on
graphs and, if relevant, moves on the latent states of
the prior (a partition of the nodes, and in the ordered
case, an ordering of the groups in the partition). Our
graph moves are simple: we Gibbs sample each poten-
tial edge, conditioned on the rest of the hidden state.
This involves scoring only two states — the current
graph and the graph with a given edge toggled —
under the joint, renormalizing, and sampling, and is
therefore quite computationally cheap. As all our pri-
ors place 0 probability mass on cyclic graphs, cyclic
graphs are never accepted. Furthermore, much of the
likelihood can be cached, since only nodes whose par-
ent set changed will contribute a different term to the
likelihood. We found these Gibbs moves to be more
effective than the classic neighborhood based graph
moves discussed in [Giudici and Castelo, 2003], though
in general we expect combinations of our moves, MH-
moves that randomly propose reversing edges, and
neighborhood-based moves to be most effective.

Conditionally sampling the latent states that describe
the block structure is also straightforward. In the un-
ordered case, we simply use the standard Gibbs sam-
pler for the Chinese restaurant process, fixing the class
assignments of all nodes but one — call it i — and
running the free node through the CRP [Rasmussen,
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Figure 2: Results for three models on a 12-node layered topology with 75 data samples provided for training.
The upper row displays the marginal probabilities of each edge in the graph under each model, obtained via
selective model averaging over 100 samples. The bottom row displays the same edge marginals as an adjacency
matrix, along with the marginal probabilities that z; = z;, indicating inferences about the class structure.

2000]. Specifically, as the process is exchangeable, we
can Gibbs sample a given entry by taking i to be the
last person to enter the restaurant, and sampling its
class assignment z; from the normalized product of the
CRP conditionals (below) and Equation 5:

. Tk if 0
P(Zl _ k|a7z—z) — { z—}j—a I mg >

i— 14+«

k is a new class (6)
In the ordered case, we must be more careful. There,
we fix the relative ordering of the classes of all ob-
jects except i, whose z; we will be resampling. When
considering the creation of a new class, we consider
insertions of it into ¢ at all possible free spots in the
relative order. This leaves us with an exhaustive, mu-
tually exclusive set of possibilities for Z and ¢ which we
can score under the joint distribution and renormalize
to get a Gibbs sampler.

For very large problems, obtaining even approximate
posteriors is beyond our current computational capa-
bilities, but search techniques like those in [Teyssier
and Koller, 2005] would no doubt be very useful for
approximate MAP estimation. Furthermore, addi-
tional temperature and parallelization schemes, as well
as more sophisticated moves, including splitting and
merging classes, could all be used to improve mixing.

4 Evaluation

We evaluate our approach in three ways, comparing
throughout to the wuniform model, a baseline that
uses a uniform prior over graph structures. First we
consider simple synthetic examples with and with-
out strong block structure. Second, we explore net-
works with topologies and parameterizations inspired
by networks of real-world interest, including the QMR-
DT network and a gene regulatory network. Finally,
we report model performance on data sampled from
HEPAR II [Onisko et al., 2001], an engineered net-
work that captures knowledge about liver disorders.

Because our interest is in using structured priors to
learn predictive structure from very small sample sizes,
we usually cannot hope to identify any structural fea-
tures definitively. We thus evaluate learning perfor-
mance in a Bayesian setting, looking at the marginal
posterior probabilities of edges and class assignments.
We have focused our initial studies on fairly small net-
works (between 10 and 40 variables) where approxi-
mate Bayesian inferences about network structure can
be done quickly, but scaling up to larger networks is
an important goal for future work.

In all cases, we used our MCMC scheme to explore
the space of graphs, classes, and orders, and report
results based on an approximate posterior constructed
from the relative scores of the 100 best models found.
The pool of models we chose from was typically con-
structed by searching 10 times for 2000 iterations each;
we found this was generally sufficient to find a state
that at least matched the score of the ground truth
structure.

We sampled several training and test sets from each
structure; here, we report representative results. Hy-
perparameters were set to the same values throughout:
a = 0.5, = 1.0 and v = 0.5. For real-world appli-
cations we might adjust these parameters to capture
prior knowledge that the true graph is likely to be
sparse, and that the number of underlying classes is
either large or small, but fixing the hyperparameters
allows a fairer comparison with the uniform model.

Compared to the uniform model, we expect that the
block models will perform well when the true graph is
block-structured. Figure 2 shows results given 75 sam-
ples from the three-layered structure on the left. CPTs
for the network were sampled from a symmetric Dirich-
let distribution with hyperparameter 0.5. The true
graph is strongly block structured, and even though
the number of samples is small, both block models dis-
cover the three classes, and make accurate predictions
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Figure 3: Learning results for data sampled from a
graph without block structure. (a) adjacency matrix
representing the true graph (the (4,7) entry is black
if there is an edge from i to j) (b) edge and class
assignment marginal probabilities for a subset of the
sample sizes, as in Figure 2. (c) estimated Kullback-
Leibler divergences between the posterior predictive
distributions of each model and ground truth.

about the edges that appear in the true graph. The
inferences made by the uniform model are less accu-
rate: in particular, it is relatively confident about the
existence of some edges that violate the feed-forward
structure of the true network. No prior will be appro-
priate for all datasets, and we expect that the uniform
model will beat the block models in some cases when
the true graph is not block-structured. Ideally, how-
ever, a learning algorithm should be flexible enough to
cope with many kinds of data, and we might hope that
the performance of the block models does not degrade
too badly when the true graph does not match their
priors. To explore this setting we generated data from
graphs with sparse but non-block-structured connec-
tivity, like the one shown in Figure 3. This graph was
sampled by including each edge with probability 0.3,
where we rejected all cyclic graphs and all graphs with
in- or out-degrees greater than 4; CPTs were sampled
from a Dirichlet distribution with hyperparameter 0.5.
As expected, the block model discovers no block struc-
ture in the data, remaining confident throughout that
all nodes belong to a single class. To our surprise,
the block model performed better than the uniform
model, making fewer mistaken predictions about the
edges that appear in the true structure, and matching
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Figure 4: Learning results for data sampled from a
noisy-OR QMR-like network.

the true distribution more closely than the uniform
model. Even though the block model found only one
class, it learned the density of connections is low, win-
ning over the uniform model (which reserves much of
its probability mass for highly connected graphs) on
very sparse datasets. Since the ordered block model
allows no connections within classes, it cannot offer
the same advantage, and Figure 3 shows that its per-
formance is comparable to that of the uniform model.

Our approach to modeling abstract structure was mo-
tivated in part by common-sense medical knowledge,
and networks like QMR-DT. The QMR network is pro-
prietary, but we created a QMR-like network with the
connectivity shown in Figure 4. The network has two
classes, corresponding to diseases and the edges all ap-
pear between diseases and symptoms. CPTs for the
network were generated using a noisy-or parameteri-
zation. The results in Figure 4 show that both block
models recover the classes given a small set of exam-
ples, and it is particularly striking that the unordered
model begins to make accurate predictions about class
membership when only 20 examples have been pro-
vided. By the time 80 examples have been provided,
the blockmodel makes accurate predictions about the
edges in the true graph, and achieves a predictive dis-
tribution superior to that of the uniform model.

As [Segal et al., 2005] have shown, genetic expression
data may be explained in part by the existence of un-
derlying classes, or modules. Unlike the QMR exam-
ple, links within classes should be expected: in par-
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Figure 5: Learning results for data sampled from a
model inspired by a genetic regulatory network.

ticular, we expect that genes belonging to the class
regulator will sometimes regulate each other. To test
our models on a simple setting with this structure, we
generated data from the network shown in Figure 5,
with CPTs sampled from a Dirichlet distribution with
hyperparameter 0.5. After 1000 samples, the block
model is confident of the correct class structure (with
4 regulators), and is considering one of the two correct
within-regulator edges (between variables 1 and 2), al-
though it is uncertain about the orientation of this
edge. The uniform model has similar beliefs about this
edge after 1000 samples, but it has equally confident
incorrect beliefs about other influences on the regu-
lators. The ordered blockmodel begins to infer class
differences earlier, and is considering grouping various
subsets of the regulators.

As already suggested, knowledge about medical condi-
tions can sometimes be organized as knowledge about
interactions between three classes of variables: risk
factors, diseases and symptoms. The HEPAR II net-
work captures knowledge about liver diseases in a
structure close to this three-part template. The struc-
ture of HEPAR II was elicited from medical experts,
and the CPTs were learned from a database of med-
ical cases. We generated training data from a sub-
set of the full network that includes the 21 variables
that appear in Figure 1 of Onisko et al. [2001] and
all edges between these nodes from the true model.
The network structure is shown in Figure 6. When
provided with 1000 training examples, the unordered
block model finds two classes, one which includes 4 of
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Figure 6: Learning results for data sampled from a
subset of the HEPAR II network.

the 5 diseases, and a second which includes all the re-
maining variables. Note that the missing disease has
a pattern of connections that is rather unusual: un-
like the other 4 diseases, it has a single outgoing edge,
and that edge is sent to another disease rather than a
symptom. The model fails to distinguish between the
risk factors and the symptoms, perhaps because the
connectivity between the risk factors and the diseases
is very sparse. Although neither block model recovers
the three part structure described by the creators of
the network, both discover sufficient structure to allow
them to match the generating distribution better than
the uniform model.

5 Discussion and Conclusions

In this paper we have explored two formalisms for rep-
resenting abstract structural constraints in Bayes nets
and shown how this knowledge can support structure
learning from sparse data. Both formalisms are based
on nonparametric, hierarchical Bayesian models that
discover and characterize graph regularities in terms
of node classes. We have seen how this approach suc-
ceeds when block structure is present without incur-
ring a significant cost when it is not. We have also
seen how this approach can, at the same time as it
is learning Bayes net structure, recover abstract class-
based patterns characterizing an aspect of the causal
roles that variables play.

Our approach admits several straightforward exten-



sions. First, the blockmodel prior, without modifica-
tions for acyclicity, should be directly applicable to
discovering latent types in undirected graphical mod-
els and Markov models for time series, such as dy-
namic Bayesian networks or continuous-time Bayesian
networks. Second, we expect our approach to pro-
vide additional benefits when observational data is in-
complete, so that prior knowledge about likely roles
becomes more significant. Such data could be incor-
porated via approximations to the marginal likelihood
such as those from [Beal and Ghahramani, 2003].

An exploration of richer pattern languages should also
be useful. For example, the notion that nodes of a cer-
tain class can connect to nodes of another type (but
may do so only rarely, or with parameters unrelated
to the types), might be more appropriate for some do-
mains. The literature on social networks, e.g. [Wasser-
man and Faust, 1994], provides many examples of simi-
lar, interesting relational patterns ripe for probabilistic
formalization. Closer dependence of parameterization
on class would also be interesting to explore: for ex-
ample, some classes might project only excitatory or
inhibitory edges. Finally, we note that transfer to new
systems of variables, an important function of abstract
knowledge, could be implemented by adding another
layer to our hierarchical model. In particular, we could
flexibly share causal roles across entirely different net-
works by replacing our CRP with the Chinese restau-
rant franchise of [Teh et al., 2004].

A central feature of this work is that it attempts to
negotiate a principled tradeoff between the expressive-
ness of the space of possible abstract patterns (with
the attendant advantages of particular patterns as in-
ductive constraints) and the possibility of learning the
abstract patterns themselves. Our nonparametric ap-
proach was inspired by a striking capacity of human
learning, which should also be a desideratum for any
intelligent agent: the ability to learn certain kinds of
“simple” or “natural” structures very quickly, while
still being able to learn arbitrary — and arbitrarily
complex — structures given enough data. We expect
that exploring these tradeoffs in more detail will be a
promising area for future research.
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