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People are very sensitive to deviations from their expec-
tations about randomness. For example, the game Yahtzee 
involves repeatedly rolling 5 six-sided dice. If you were to 
roll all sixes 6 times in a row, you would probably be quite 
surprised. The probability of such a sequence arising by 
chance is 1/630. However, the low probability of such an 
event is not sufficient to explain its apparent nonrandom-
ness, since any other ordered sequence of the same num-
ber of dice rolls has the same probability. Consequently, 
recent accounts of human subjective randomness (our 
sense of the extent to which an event seems random) have 
focused on the regularities in an event. These regularities 
suggest that a process other than chance might be at work 
(Falk & Konold, 1997; Feldman, 1996, 1997; Griffiths 
& Tenenbaum, 2003, 2004). The basic idea behind these 
accounts is that stimuli will appear random when they do 
not express any regularities.

An important challenge for any account of subjective 
randomness based on the presence of regularities is to ex-
plain why people should be sensitive to a particular set 
of regularities. In the example given above, systematic 
runs of the same number may suggest loaded dice or some 
other nonrandom process influencing the outcomes. How-
ever, for other kinds of stimuli, such as the one- or two-

dimensional binary arrays used in many subjective ran-
domness experiments, explanations are more difficult to 
come by. A common finding in these experiments is that 
people consider arrays in which cells take different values 
from their neighbors (such as the one-dimensional array 
0010101101) more random than arrays in which cells take 
the same values as their neighbors (such as 0000011111) 
(Falk & Konold, 1997). This result makes it clear that 
people are sensitive to certain regularities, such as cells 
having the same values as their neighbors. However, it is 
difficult to explain why these regularities should be more 
important than others that seem a priori plausible, such as 
neighboring cells differing in their values.

In this article, we explore a possible explanation for the 
origins of the regularities that influence subjective random-
ness judgments for one class of stimuli: two- dimensional 
binary arrays. These stimuli are essentially images, with 
the cells in the array having the appearance of a grid of 
black and white pixels (see Figure 1). We might thus ex-
pect that the kinds of regularities detected by the visual 
system should play an important role in determining their 
perceived randomness. A great deal of recent research sug-
gests that the human visual cortex efficiently codes for the 
structure of natural scenes—scenes containing natural ele-
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denote the probability that X will be generated by chance 
and P(X | regular) be the probability of X under the regular 
generating process, Bayes’s rule gives the posterior odds 
in favor of random generation as
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where P(random) and P(regular) are the prior probabili-
ties assigned to the random and regular processes, respec-
tively. Only the first term on the right-hand side of this ex-
pression, the likelihood ratio, changes as a function of X, 
making it a natural measure of the amount of evidence X 
provides in favor of a random generating process. Hence, 
we can define the randomness of a stimulus X as
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where the logarithm simply places the result on a linear 
scale.

The measure of subjective randomness defined in 
Equation 2 has been used to model human randomness 
judgments for single-digit numbers and one-dimensional 
binary arrays (Griffiths & Tenenbaum, 2001, 2003, 
2004). Following Schreiber and Griffiths (2007), we ex-
amine how subjective randomness might be applied to 
two- dimensional binary arrays of the kind shown in Fig-
ure 1. A reasonable choice of P(X | random) is to assume 
that each cell in the array takes on a value of 1 or 0 with 
equal probability, making P(X | random) 5 1/2m, where m 
is the number of cells in the array. However, defining 
P(X | regular) is more challenging. Direct estimation of 
the probability of all 2m binary arrays becomes intractable 
as m becomes large. Thus, we use 4 3 4 binary arrays for 
which we can exhaustively tabulate the frequencies of all 

ments, such as trees, flowers, and shrubs, that represent the 
visual environment in which humans evolved (Olshausen 
& Field, 2000; Simoncelli & Olshausen, 2001). We con-
sider the possibility that the kinds of regularities that peo-
ple detect in two- dimensional binary arrays are those that 
are characteristic of natural scenes.

Preliminary support for the idea that the statistics of 
natural scenes may explain subjective randomness was 
provided by a study conducted by Schreiber and Griffiths 
(2007). In this study, human randomness judgments were 
found to correspond to the predictions of a simple proba-
bilistic model estimated from images of natural scenes. 
This model examined the frequency with which neighbor-
ing regions of an image had the same intensity value. It 
was found that neighboring regions tend to have similar 
intensity values, providing a potential explanation for why 
people consider binary arrays in which neighboring cells 
differ in their values more random. However, a full charac-
terization of natural scene statistics is not feasible for large 
binary arrays, due to the exponentially large number of 
patterns of cell values that can be expressed in such arrays. 
In our present work, we use small binary arrays, which 
allow us to directly estimate a probability distribution over 
all possible patterns of cell values from images of natural 
scenes. We then conduct an experiment with human partic-
ipants to examine the relationship between this probability 
distribution and the subjective randomness of the image.

Subjective Randomness As Bayesian Inference
One explanation for human randomness judgments is 

to view them as the result of an inference as to whether an 
observed stimulus, X, was generated by chance or by some 
other, more regular process (Feldman, 1996, 1997; Grif-
fiths & Tenenbaum, 2003, 2004). If we let P(X | random) 

Figure 1. An example of a two-dimensional binary array. This is a screenshot from the 
experiment, indicating how the participants made their responses.
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MeThod

Participants
The participants were 77 members of the University of California, 

Berkeley community, who participated for course credit.

Stimuli
The participants were shown one hundred 4 3 4 binary arrays. 

The stimuli were restricted to evenly balanced 4 3 4 patches, con-
taining an equal number of black and white pixels, in order to avoid 
any effects resulting from the ratio of black to white pixels in each 
patch. All stimuli with this property were rank-ordered by the prob-
ability with which they appeared in natural scenes. We determined 
the stimulus for which this probability equaled P(X | random) 5 
1/216, and labeled this the neutral stimulus because its probability 
is equal under the regular and random generating processes and its 
randomness score is thus zero. Test stimuli were selected from 50 
evenly spaced quantiles on either side of the neutral stimulus for a 
total of 100 images and are shown in Figure 3. Five practice stimuli 
were selected from the 10%, 30%, 50%, 70%, and 90% quantiles of 
the ordered images.

Procedure
The participants were told that the stimuli were created using either 

a random process or another undefined process. The proportion of 
each was unspecified. They were asked to decide which process gen-
erated each stimulus. Below the stimulus were two buttons, as shown 
in Figure 1. The first button was labeled “Random,” and the second 
was labeled “Not Random.” The participants were instructed to press 
the button corresponding to their intuition about which process had 
generated the stimulus. In order to familiarize the participants with 

patterns that can appear, providing a nonparametric esti-
mate of P(X | regular) that allows for a comprehensive test 
of our hypothesis.

We estimated the values of P(X | regular) for a set of 
stimuli X corresponding to 4 3 4 binary arrays. Since there 
are only 216 possible patterns that can be expressed in such 
an array, we can count the frequency with which each pat-
tern appears in natural images. These stimuli were extracted 
from a set of images of natural scenes that have been used in 
previous research (Doi, Inui, Lee, Wachtler, & Sejnowski, 
2003). This set consisted of 62 still nature shots containing 
trees, flowers, and shrubs, as shown in Figure 2. There were 
no images of humans, animals, or cityscapes. Image patches 
of varying sizes were extracted from each natural image to 
measure statistics at a range of scales. A total of 700,000 
patches were sampled at random from among the 62 im-
ages with dimensions n 3 n, for n 5 4, 8, 16, 32, 64, 128, 
and 256 pixels. All the patches were then reduced through 
averaging down to 4 3 4 arrays, binarized by setting pixels 
with intensity greater than 0 (the overall mean intensity) 
to 1 and with all other pixels being set to 0. The resulting 
4,900,000 binary arrays were then divided into the 216 pos-
sible patterns, and the frequency of each pattern was re-
corded. Normalizing these frequencies gives us an estimate 
for the probability distribution P(X | regular), which we can 
use to compare the Bayesian measure of randomness given 
in Equation 2 with human judgments.

Figure 2. examples of natural scene images used in our study. The images are from a data set used in the 
study “Spatiochromatic Receptive Field Properties derived From Information-Theoretic Analyses of Cone 
Mosaic Responses to Natural Scenes,” by e. doi, T. Inui, T. W. Lee, T. Wachtler, and T. J. Sejnowski, 2003, 
Neural Computation, 15, published by MIT Press. Printed with the authors’ permission.
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However, the pixelation resulting from reducing all im-
ages to 4 3 4 binary arrays caused this stimulus to appear 
more random than it may appear at full resolution. Other 
deviations from model predictions include stimuli with 
symmetry, such as Image 83 (9th row, 3rd column) and 
Image 99 (10th row, 9th column). This gridlike design is 
an example of a pattern that is not probable among natural 
scenes but still appears highly structured. Such examples 
illustrate that properties other than those of natural scenes 
also give rise to perceived structure.

dISCuSSIoN

Accounts of subjective randomness that appeal to 
people’s ability to detect regularities in stimuli need to be 
able to characterize those regularities and their origins. 
For example, if subjective randomness is viewed as the 
statistical evidence that a stimulus provides for having 
been produced from a random generating process, rather 
than from one with a more regular structure (Griffiths & 
Tenenbaum, 2003, 2004), we need to know what distribu-
tion over stimuli is induced by the more regular process, 
P(X | regular). Studying the subjective randomness of two-
dimensional binary arrays provides one way to approach 
this problem, making it possible to explore the hypothesis 

this procedure, the first 5 stimuli were presented as practice trials, 
followed by the 100 stimuli that constituted the main experiment.

ReSuLTS

The results are shown in Figure 4. A one-way ANOVA 
showed a statistically signif icant effect of image 
[F(99,7524) 5 30.26, MSe 5 0.17, p , .001]. The linear 
correlation between random(X ) and the probability that 
the stimulus would be classified as random was r(98) 5 
.75, p , .001, and the rank–order correlation (taking into 
account only the relative ordering of these different mea-
sures) was r 5 .75 ( p , .01). These results bear out the 
predictions of the Bayesian model and indicate that, for 
the most part, the distribution estimated using a nonpara-
metric histogram of natural scene images provides a rea-
sonable candidate for P(X | regular).

A few stimuli deviated noticeably from the model pre-
dictions. For example, Image 26 (3rd row, 6th column, of 
Figure 3) was rated as significantly more random, on aver-
age, than were other images with similar random(X ) val-
ues. Here, the patch seemed to capture an intersection of a 
curve with a line (a semicircle on the bottom half with a line 
on the left side). This is a common occurrence in natural 
images—hence, its relatively high value of P(X | regular). 
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Figure 3. Stimuli for the experiment: Binary images for which a randomness score is es-
timated from a nonparametric histogram of natural images. The stimuli are ordered from 
the lowest to the highest value of random(X ), with numbers increasing from left to right and 
then from top to bottom.
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in this study is suitable only for small binary arrays, thus 
capturing only limited aspects of the structure of natu-
ral scenes. Schreiber and Griffiths (2007) used a simple 
probabilistic model of images to explore randomness 
perception for larger binary arrays, but this analysis was 
limited to the extent to which neighboring cells shared the 
same value. With more sophisticated image models (e.g., 
Freeman, Pasztor, & Carmichael, 2000; Gimel’farb, 1996; 
Roth & Black, 2005; Zhu, Wu, & Mumford, 1998), we 
may be able to capture more of the nuances of subjective 
randomness judgments for larger binary arrays, enabling 
us to provide a more exhaustive exploration of how these 
judgments correspond to the statistics of our natural visual 
environment.

A deeper understanding of human randomness judg-
ments may also be achieved by considering the structure of 
the human visual system in more detail. High-level prop-
erties of our stimuli, such as symmetry, seem important to 
human randomness judgments but are not captured by our 
models. Other phenomena, such as translation invariance, 
might fall out of the neural processes supporting vision. 

that the regularities that people detect in these arrays and 
the resulting evaluation of their randomness are influ-
enced by the statistical structure of our visual world. This 
statistical structure can be estimated from images of natu-
ral scenes, providing an objective method for estimating 
P(X | regular). In this study, we explored the consequences 
of estimating P(X | regular) for binary arrays extracted 
from natural scenes through an exhaustive enumeration 
of patterns that can appear in small arrays. We found that a 
Bayesian model of randomness perception using this dis-
tribution as the alternative to random generation provides 
a reasonably good model of human judgments, with the 
subjective randomness of a pattern decreasing as its prob-
ability of appearing in natural scenes increases.

These results demonstrate that it is possible to define 
good models of subjective randomness using objective 
sources of regularities—in our case, the statistics of natu-
ral scenes. However, there is room for future work toward 
a more complete analysis of the hypothesis that the statis-
tics of these images can explain human randomness judg-
ments. The method for estimating P(X | regular) we used 
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Figure 4. Results of the experiment. The proportion of the participants who classified each stimulus as having come 
from a random source as a function of random(X ), computed using the distribution estimated from a nonparametric 
histogram of natural scenes as P(X | regular). Randomness judgments generally followed model predictions, with a few 
exceptions. Images 26, 83, and 99 (marked on the figure) are examples of patches that did not follow model predictions, 
for reasons that we discuss in the text.
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For example, images could be initially passed through ori-
ented filters, simulating receptive fields for V1 neurons. If 
this results in a significant transformation of the stimulus 
space, arrays that we considered distinct in our analysis 
could be considered the same by the visual system, and 
their probabilities should be combined accordingly. Other, 
more sophisticated models of visual processing could also 
be used, with the potential to further improve the fit be-
tween predicted and actual human randomness judgments 
and to help us understand how we come to form our judg-
ments about visual structure.

AuThoR NoTe

This work was supported by Grant FA9550-07-1-0351 from the Air 
Force Office of Scientific Research and Grant RES-000-22-3275 from 
the Economics and Social Research Council. The authors thank Evan 
Moss and Joseph Vuong for assistance in data collection. Correspondence 
concerning this article should be addressed to T. L. Griffiths, Department 
of Psychology, University of California, 3210 Tolman Hall #1650, Berke-
ley, CA 94720-1650 (e-mail: tom_griffiths@berkeley.edu).

ReFeReNCeS

Doi, E., Inui, T., Lee, T. W., Wachtler, T., & Sejnowski, T. J. (2003). 
Spatiochromatic receptive field properties derived from information-
theoretic analyses of cone mosaic responses to natural scenes. Neural 
Computation, 15, 397-417.

Falk, R., & Konold, C. (1997). Making sense of randomness: Implicit 
encoding as a basis for judgement. Psychological Review, 104, 301-
318.

Feldman, J. (1996). Regularity vs genericity in the perception of col-
linearity. Perception, 25, 335-342.

Feldman, J. (1997). Curvilinearity, covariance, and regularity in percep-
tual groups. Vision Research, 37, 2835-2848.


