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Preface

Sir Edmond Halley was an astronomer, sailor, and arguably the first statistician. In 1695,

Halley was computing the orbits of a set of comets for inclusion in Newton’s Principia

mathematica when he noticed a surprising regularity: the comets of 1531, 1607, and 1682

took remarkably similar paths across the sky, and visited the Earth approximately 76 years

apart. In the first edition of the Principia, Newton had argued that comets, like planets,

follow orbits corresponding to conic sections – parabolas, hyperbolas, and ellipses – although

he concluded that “as to the transverse diameters of their orbits, and the periodic times

of their revolutions I leave them to be determined by comparing comets together which

after long intervals of time return again on the same orbit” (Newton, 1687/1962, p. 532).

Halley inferred that the comets of 1531, 1607, and 1682 were not three separate events, but

three consequences of a single common cause: a comet that had visited the Earth three

times, travelling in an elliptical orbit. He went on to state that “if according to what we

have already said it should return again about the year 1758, candid posterity will not

refuse to acknowledge that this was first discovered by an Englishman” (Halley, 1752, p.

Ssss3).1 The comet returned in December 1758, as predicted, and has continued to visit the

Earth approximately every 76 years since, providing a sensational confirmation of Newton’s

physics.

The discovery of Halley’s comet is a compelling example of causal induction: inferring

causal structure from data. In modern scientific practice, causal relationships are identified

through careful experimentation and statistical analysis. While the development of sta-

tistical methods for designing and analyzing experiments has greatly streamlined scientific

1Halley gave the more precise prediction of “about the end of the year 1758, or the beginning of the
next” (1752, p. Rrrr2) earlier in the text. Making this prediction was by no means trivial, as it had to take
into account the perturbation of the orbit of the comet by Saturn and Jupiter. Detailed accounts of Halley’s
discovery are provided by Cook (1998), Hughes (1990) and Yeomans (1991).
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argument, science was possible before statistics: in many cases, the causal relationships be-

tween variables that are critical to understanding our world could be discovered without any

need to perform explicit calculations. Science was possible because people have an intuitive

capacity for causal induction, using data to assess the plausibility of causal relationships.

This capacity is sufficiently accurate as to have resulted in genuine scientific discoveries,

and allows us to construct the intuitive theories that express our knowledge about the

world. The same notions about causality that allowed Halley to discover his comet guide

our more mundane everyday inferences, from evaluating whether drinking coffee improves

our productivity to working out which programs crash a computer.

Explaining Halley’s discovery requires appealing to two factors: prior knowledge, and

intuitive statistical inference. The prior knowledge that guided Halley was the physical

theory laid out by Newton in the Principia mathematica. Newton’s theory identified the

entities and properties relevant to understanding a physical system, formalizing notions

like velocity and acceleration, and characterized the relations that can hold among these

entities. This physical theory allowed Halley to generate a set of hypotheses about the causal

structure responsible for his astronomical observations: they could have been produced by

three different comets, each travelling in a parabolic orbit, or by one comet, travelling in an

elliptical orbit. Choosing between these hypotheses required the use of statistical inference.

While Halley made no formal computations of the probabilities involved, the similarity in

the paths of the comets and the fixed interval between observations convinced him that

“it was highly probable, not to say demonstrative, that these were but one and the same

Comet” (from the Journal Book of the Royal Society, July 1696, reproduced in Hughes,

1990, p. 353).

Scientific inferences like that of Halley can provide clues about how people solve problems

of causal induction in the course of everyday life. The capacity to reason about the causes

of events is an essential part of cognition from early childhood, whether it concerns the

forces involved in physical systems (e.g., Shultz, 1982b), the essential properties of natural

kinds (e.g., Gelman & Wellman, 1991), or the mental states of others (e.g., Perner, 1991).

Often, these causal relationships need to be inferred from data. Explaining how people

make these inferences is not just a matter of accounting for how causation is identified from

correlation, but of accounting for how complex causal structure is inferred in the absence

of (statistically significant) correlation. Halley’s discovery illustrates that people can infer

causal relationships from samples too small for any statistical test to produce significant
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results – in this case, three observations – and solve problems like inferring hidden causal

structure that still pose a major challenge for statisticians and computer scientists. In

this thesis, I will argue that both of the factors involved in Halley’s discovery – prior

knowledge, in the form of a causal theory, and statistical inference – are necessary to make

such inferences possible, and present a computational framework that indicates how they

are combined.

In the computational framework that forms the heart of this thesis, theory-based causal

induction, prior knowledge is formalized as a theory which generates a hypothesis space of

causal models that could have produced data. These hypotheses are evaluated by Bayesian

inference, resulting in a tight coupling between prior knowledge, in the form of a causal

theory, and statistical learning. I will argue that there are three aspects of prior knowledge

that are central to causal induction – the ontology of entities, properties, and relations

that organizes a domain, the plausibility of specific causal relationships, and the functional

form of those relationships – and that these three aspects are the key constituents of causal

theories. This account identifies the limitations of existing algorithms for causal induction,

makes it possible to explore the relationship between causes and coincidences, identifies

which aspects of causal induction should be domain-sensitive, clarifies how causal mecha-

nism knowledge is involved in human causal induction (c.f. Ahn & Kalish, 2000; Glymour

& Cheng, 1998; White, 1995), and suggests how statistical learning might be extended from

evaluating single causal relationships to evaluating entire causal theories.

The plan of the thesis is as follows. Chapter 1 introduces the key issues that I will

address, discussing how prior knowledge can influence causal induction. The analysis of a

scientific example indicates which aspects of prior knowledge are relevant to the assessment

of new causal relationships, and I connect these aspects of prior knowledge with intuitive

theories. The major challenge of the thesis is explaining how such theories can be integrated

with statistical learning.

Chapter 2 takes up this challenge, summarizing the background behind the compu-

tational tools used throughout the thesis. The chapter introduces the fundamental ideas

behind causal graphical models, which will be used as a basic representation of causal rela-

tionships, and highlights the ways in which generic algorithms for learning causal structure

are inadequate for explaining human inferences.

Chapter 3 presents the theory-based causal induction framework. The chapter discusses

how the aspects of intuitive theories relevant to causal induction can be formalized, and how
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they can be incorporated with statistical inference. The notion of a theory as a hypothesis

space generator is introduced, and used to explain how top-down and bottom-up information

interact in causal induction.

Chapter 4 applies the theory-based approach to the problem of learning from contingency

data. Causal graphical models are used to interpret two leading models of human judgments

in this task, and to illustrate that they only evaluate the strength of a causal relationship,

not asking the question of whether a causal relationship actually exists. A simple causal

theory is used to develop an alternative model, causal support, that addresses this structural

question. Causal support predicts several phenomena that cannot be explained by other

models, and provides the best account of several existing datasets.

Chapter 5 examines how people learn about causal relationships in physical systems

where events take place over a series of discrete trials. Here the problem is accounting for

how people learn so much from so little, in some cases identifying underlying causal structure

from just a single observation. The theory-based approach explains these inferences as the

result of strong constraints imposed by a simple physical theory. The framework is used to

account for people’s inferences about two kinds of physical systems: detectors and machines.

The models discussed in Chapters 4 and 5 both concern events that occur on discrete

trials. Chapter 6 extends the causal graphical model framework to cover events that occur

in continuous time. This makes it possible to model systems that have complex dynamics,

and to explain how people infer causal structure from the rates and times at which events

occur. The remainder of the chapter uses this extended framework to analyze people’s

inferences about two dynamic systems: particle emissions and explosions.

Chapter 7 discusses the relationship between causes and coincidences. Psychologists and

philosophers differ strongly in their treatment of coincidences, with the former focussing on

the irrationality of human reasoning about chance, and the latter noting the close rela-

tionship between coincidences and scientific discovery. The chapter explores this tension,

providing a formal definition of coincidences as events that provide support for a hypothesis

that one ultimately decides is false. This illuminates the role of coincidences in scientific

discovery, as well as how they can lead us astray, and provides some clues about the process

of theory change.

Chapter 8 considers the implications of the theory-based approach to causal induction for

the notion of an intuitive theory. The first part of the chapter examines the extent to which

the aspects of intuitive theories relevant to causal induction should be domain-sensitive,
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and explores the consequences of using cross-domain causes. This analysis motivates a

discussion of the role of causal mechanism knowledge in causal induction. The chapter also

considers the question of how theories might be acquired, synthesizing some of the results

from the previous chapters.

Chapter 9 concludes the thesis.

viii



Acknowledgements

Over the last few years, I have had the privilege to meet and work with some wonderful

people. I would like to thank everybody who has played a role in the development of the

ideas presented in this thesis:

I met Josh Tenenbaum back when there was only one hypothesis space, and theories

were not even a glint in his eye. I think we have both benefitted from sharing an unusually

productive collaborative relationship, going beyond the usual mode of interaction between

student and advisor, and I am looking forward to continuing to share ideas with him as

a colleague. In addition to the substantive outcomes of this collaboration, I have enjoyed

his camaraderie and his ability to recognize the most interesting aspects of everything. By

holding me to the same rigorous standards he sets for himself, he helped me discover both

personal and intellectual capacities that I was not aware I possessed.

Gordon Bower and Ewart Thomas, the other members of my reading committee, have

both enriched my time at Stanford, and tempered our youthful enthusiasm with their wis-

dom. Persi Diaconis and Lee Ross both made me think about this work in a new light,

although that process is not yet complete. Persi was also responsible for introducing me to

coincidences.

Mark Steyvers and Dave Blei have both been great collaborators, giving me the oppor-

tunity to work on a variety of projects that have nothing to do with this thesis, which was

at times a great relief.

My lab- and class-mates have made graduate school both intellectually and socially

stimulating. Thanks to the Computational Cognitive Scientists at MIT – Chris Baker, Liz

Baraff, Charles Kemp, Konrad Koerding, Tevye Krynski, Amy Perfors, Lauren Schmidt,

and Pat Shafto – and my friends at Stanford – Nick Davidenko, Phil Goff, Julie Heiser, Julie

Turchin (née McGuire), Danny Oppenheimer, and Kelly Wilson. Liz and Danny deserve

to be singled out, for helping to run what must be hundreds of subjects over the last few

ix



years. I will continue to pay Danny in icecream, but Liz gets the less tangible reward of my

sincere gratitude. Ronnie Bryan, Onny Chatterjee, Anne Chin, Carrie Niziolek, and Davie

Yoon were also all part of the lab experience at Stanford and MIT, and contributed ideas

and data.

Being an International Exchange Scholar involved certain challenges, and I thank Lorie

Langdon, Denise Heintze, Rolando Villalobos, and Pat Cook for resolving those challenges

with efficiency and a smile. While working on this thesis, I was supported by a Hackett

Studentship from the University of Western Australia and a Burt and Deedee McMurtry

Stanford Graduate Fellowship, for which I am extremely grateful.

Finally, I would like to thank my family, which has expanded along with my intellectual

horizons. My parents, Rod and Judy Griffiths, have always supported me in achieving my

goals, and we continue to discover parallels in our interests through lengthy international

telephone conversations. My brother, Simon Griffiths, inspires me with his travels, maturity,

and independent spirit. Tsing and Keith Bardin took the idea of a “host family” to heart,

making me feel welcome in America time after time. Enrique and Viviana Lombrozo have

also provided me with another place to consider home, and have warmly tolerated the fact

that I am always doing something urgent whenever I visit. They have also generously shared

their daughter, Tania, with me. My work has been enriched by her intellectual clarity, and

my life has been enriched by her love.

x



Contents

Preface iv

Acknowledgements ix

1 Introduction 1

1.1 The role of knowledge in causal induction . . . . . . . . . . . . . . . . . . . 2

1.1.1 Ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Plausible relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.3 Functional form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Causal induction is guided by causal theories . . . . . . . . . . . . . . . . . 6

1.3 Key issues in causal induction . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.1 Causal graphical models . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.2 Causes and coincidences . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.3 Domain specificity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.4 Theories and mechanisms . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.5 Cognitive development and everyday learning . . . . . . . . . . . . . 11

1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Causal graphical models 13

2.1 Defining a causal graphical model . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.2 Causal structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.3 Parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Observations and interventions . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Quantification and plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

xi



2.4 The problem of causal induction . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.1 Constraint-based algorithms . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.2 Bayesian structure learning . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Beyond causal graphical models . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Theory-based causal induction 29

3.1 Theories as hypothesis space generators . . . . . . . . . . . . . . . . . . . . 29

3.1.1 Formalizing intuitive theories . . . . . . . . . . . . . . . . . . . . . . 30

3.1.2 Generating a hypothesis space . . . . . . . . . . . . . . . . . . . . . 33

3.2 Top-down and bottom-up information . . . . . . . . . . . . . . . . . . . . . 36

3.3 Descriptive and explanatory goals . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Contingency data 39

4.1 Causal induction from contingency data . . . . . . . . . . . . . . . . . . . . 41

4.1.1 Rational models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1.2 The debate over ∆P and causal power . . . . . . . . . . . . . . . . . 45

4.2 Theory-based causal induction . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Alternative accounts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3.1 Functional form without structure learning . . . . . . . . . . . . . . 52

4.3.2 Structure learning without functional form . . . . . . . . . . . . . . 54

4.3.3 Comparing the models . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4 Interaction between ∆P and P (e+|c−) . . . . . . . . . . . . . . . . . . . . . 54

4.4.1 Experiment 4.1: The effect of functional form . . . . . . . . . . . . . 60

4.5 Non-monotonic effects of P (e+|c−) . . . . . . . . . . . . . . . . . . . . . . . 63

4.5.1 Experiment 4.2: Testing for non-monotonicities . . . . . . . . . . . . 67

4.6 Sample size effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.6.1 Experiment 4.3: Sample size effects with ranking . . . . . . . . . . . 71

4.7 Inferences from incomplete contingency tables . . . . . . . . . . . . . . . . . 73

4.7.1 Experiment 4.4: Incomplete contingency tables . . . . . . . . . . . . 74

4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5 Discrete physical systems 77

5.1 Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.1.1 Theory-based causal induction . . . . . . . . . . . . . . . . . . . . . 79

xii



5.1.2 Alternative accounts . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1.3 Priors and ambiguous evidence . . . . . . . . . . . . . . . . . . . . . 86

5.1.4 Learning the right theory . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2 Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2.1 Theory-based causal induction . . . . . . . . . . . . . . . . . . . . . 95

5.2.2 Alternative accounts . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6 Continuous physical systems 102

6.1 Causal graphical models for continuous time . . . . . . . . . . . . . . . . . . 103

6.1.1 From Bernoulli to Poisson . . . . . . . . . . . . . . . . . . . . . . . . 104

6.1.2 A continuous equivalent of the noisy-OR . . . . . . . . . . . . . . . . 106

6.2 Particle emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2.1 Experiment 6.1: Causal induction from rates . . . . . . . . . . . . . 108

6.2.2 Theory-based causal induction . . . . . . . . . . . . . . . . . . . . . 111

6.2.3 Alternative accounts . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.3 Explosions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.3.1 Theory-based causal induction . . . . . . . . . . . . . . . . . . . . . 116

6.3.2 Three questions about dynamic systems . . . . . . . . . . . . . . . . 119

6.3.3 Experiment 6.2: Inferences about Nitro X . . . . . . . . . . . . . . . 124

6.3.4 Alternative accounts . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7 Coincidences 130

7.1 Coincidences are not just unlikely events . . . . . . . . . . . . . . . . . . . . 132

7.2 Approaching coincidences via causal induction . . . . . . . . . . . . . . . . 136

7.2.1 What makes a coincidence? . . . . . . . . . . . . . . . . . . . . . . . 136

7.2.2 Coincidences in coinflips . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.2.3 Empirical predictions . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.3 The transition from coincidence to evidence . . . . . . . . . . . . . . . . . . 142

7.3.1 Experiment 7.1: Psychokinesis and genetics . . . . . . . . . . . . . . 145

7.4 The strength of coincidences . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.4.1 Coincidences in date . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.4.2 Experiment 7.2: Birthdays . . . . . . . . . . . . . . . . . . . . . . . 154

xiii



7.4.3 Coincidences in space . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.4.4 Experiment 7.3: Bombing . . . . . . . . . . . . . . . . . . . . . . . . 161

7.5 The locus of human irrationality . . . . . . . . . . . . . . . . . . . . . . . . 163

7.6 Coincidences and theory change . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

8 Implications for intuitive theories 170

8.1 Domain specificity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

8.1.1 The effect of domain on functional form . . . . . . . . . . . . . . . . 171

8.1.2 The effect of domain on plausibility . . . . . . . . . . . . . . . . . . 175

8.2 Theories and mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

8.3 Theory acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

8.4 Higher-level theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

8.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

9 Conclusion 186

A Causal graphical models considered 189

A.1 Defining causality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

A.2 Algorithms for causal induction . . . . . . . . . . . . . . . . . . . . . . . . . 191

A.3 The possibility of inferring causation . . . . . . . . . . . . . . . . . . . . . . 191

B Contingencies 193

B.1 Maximum likelihood parameter estimates . . . . . . . . . . . . . . . . . . . 193

B.2 Evaluating causal support . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

B.3 An algorithm for computing causal support . . . . . . . . . . . . . . . . . . 195

B.4 The χ2 approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

C Stick-balls 198

D Explosions 201

D.1 A Boolean theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

D.2 Evaluating probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

D.3 A generative procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

D.4 What caused what? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

xiv



E Bombing 208

E.1 A Boolean theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

E.2 Evaluating probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

References 212

xv



List of Tables

1.1 Key issues in causal induction . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.1 Contingency Table Representation used in Causal Induction . . . . . . . . . 41

4.2 Rank-Order Correlations for Different Rational Models . . . . . . . . . . . . 62

4.3 Correlations of Rational Models with Lober and Shanks (2000) . . . . . . . 66

4.4 Correlations of Rational Models with Sample Size Experiments . . . . . . . 71

5.1 Probability of Identifying Blocks as Blickets for 4-year-old Children . . . . . 79

5.2 Predictions of Probabilistic Theory and Alternative Models . . . . . . . . . 83

5.3 Modal Inferences by Children and Bayes for Two-Ball Machines . . . . . . . 93

5.4 Probability of Choosing Different Causal Structures in Kushnir et al. (2003) 95

5.5 Graph Structures and Probabilities of Events for Two-Ball Machine . . . . 99

7.1 Parameters Used in Generating the Stimuli for Experiment 7.3. . . . . . . . 162

8.1 Effect of Domain on Functional Form . . . . . . . . . . . . . . . . . . . . . . 172

8.2 Effect of Domain on Plausibility . . . . . . . . . . . . . . . . . . . . . . . . 176

xvi



List of Figures

1.1 Causal structure relating four chemicals, shown at the top of the figure, to

the expression of two genes, shown at the bottom of the figure, as reported

by Hamadeh et al. (2002). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Directed graphs involving two variables, C and E. C is a potential cause,

and E the effect of interest. In Graph 0, the two variables are independent,

while Graph 1 depicts a causal relationship. . . . . . . . . . . . . . . . . . . 16

2.2 Plate notation for causal graphical models. (a) A causal relationship that

holds over all instantiations of a logical variable produces causal graphical

models with redundant structure. In this case, Ci indicates Injected(c,mi),

and Ei indicates Expressed(g,mi) for mice m1, . . . , m4. (b) Quantification can

be expressed efficiently using plates. Here C indicates Injected(c,M) and

E indicates Expressed(g,M), while the plate indicates that the relationship

holds for all mice M. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Three levels of representation in (a) language comprehension and (b) causal

induction. Each level generates the level below, and language comprehension

and causal induction both involve inferring the middle level based upon data

below and constraints from above. . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Theory for causal induction from contingency data in a medical setting. . . 33

xvii



3.3 Hypothesis spaces generated by the theory shown in Figure 3.1. The top of

the figure shows the hypothesis space for one chemical and one gene, which

includes only two causal structures. With two chemicals and two genes, the

hypothesis space includes sixteen causal structures, as shown in the lower

portion of the figure. In the graphs, C corresponds to Injected(c,M) for

Chemical c and E corresponds to Expressed(g,M) for Gene g. C1, C2, E1,

and E2 should be interpreted similarly. M is a logical variable, and the plates

indicate that these relationships hold for all mice M. . . . . . . . . . . . . . . 35

4.1 Predictions of rational models compared with the performance of human

participants from Buehner and Cheng (1997, Experiment 1B). Numbers along

the top of the figure show stimulus contingencies, error bars indicate one

standard error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Predictions of rational models compared with the performance of participants

from Lober and Shanks (2000, Experiments 4-6). Numbers along the top of

the figure show stimulus contingencies. . . . . . . . . . . . . . . . . . . . . . 48

4.3 Hypothesis space for causal induction from contingency data. C corresponds

to Injected(c,M) for Chemical c and E corresponds to Expressed(g,M)

for Gene g. The plates indicate that these relationships hold for all mice M. 49

4.4 Marginal posterior distributions on w1 and values of causal support for six

different sets of contingencies. The first three sets of contingencies result in

the same estimates of ∆P and causal power, but different values of causal

support. The change in causal support is due to the increase in sample size,

which reduces uncertainty about the value of w1. As it becomes clear that w1

takes on a value other than zero, the evidence for Graph 1 increases, indicated

by the increase in causal support. The second set of three contingencies

shows that increasing sample size does not always result in increased causal

support, with greater certainty that w1 is zero producing a mild decrease in

causal support. The third set of three contingencies illustrates how causal

support and causal power can differ. While the peak of the distribution over

w1, which will be close to the value of causal power, decreases across the

three examples, causal support changes in a non-monotonic fashion. . . . . 51

xviii



4.5 Marginal posterior distributions on w1 and values of causal support for the

contingencies used in Buehner and Cheng (1997, Experiment 1B). . . . . . 57

4.6 Predictions of rational models compared with the performance of human

participants from Buehner and Cheng (1997, Experiment 1A). Numbers along

the top of the figure show stimulus contingencies, error bars indicate one

standard error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.7 Effect of assumptions about functional form on causal induction. The top

row shows people’s judgments for a set of stimuli for which ∆P = 0, under

three different kinds of instructions, as described in the text. The bottom

row shows the predictions of the theory-based account under three different

assumptions about the functional form of a causal relationship. There ap-

pears to be a direct correspondence between task instructions and assumed

functional form. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.8 Predictions of rational models compared with the performance of participants

from Lober and Shanks (2000, Experiments 1-3). Numbers along the top

of the figure show stimulus contingencies, but the results are constructed

by averaging over the blocks of trials seen by individual subjects, in which

contingencies varied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.9 Predictions of rational models compared with results of Experiment 4.2.

Numbers along the top of the figure show stimulus contingencies. These

numbers give the number of times the effect was present out of 100 trials, for

all except the last column, where the cause was present on 7 trials and ab-

sent on 193. The first three groups of contingencies are organized to display

non-monotonicities in judgments, the last group contains distractor stimuli.

Error bars indicate one standard error. . . . . . . . . . . . . . . . . . . . . . 69

5.1 Theory for causal induction with deterministic blicket detectors. . . . . . . 80

5.2 Causal structures generated by the theory for the blicket detector with two

blocks, a and b, and one detector, d. A and B indicate the truth value of

Contact(a,d,T) and Contact(b,d,T) for Block a and b and Detector d,

while E indicates the truth value of Active(d,T). The plates indicate that

these causal relationships hold for all trials T. . . . . . . . . . . . . . . . . . 81

xix



5.3 Adult judgments with “super-pencils,” an analogue of the blicket detector

task, from Tenenbaum, Sobel, & Gopnik (submitted). (a) and (b) show

inferences from the same set of trials, but with different prior probabilities

for super-pencils, being rare and common respectively. (c) Inferences from

ambiguous evidence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4 Causal structures generated by the theory for the blicket detector with three

blocks, a, b, and c, and one detector, d. A and B and C indicate whether

contact between the appropriate block and the detector occurred on a par-

ticular trial, while E indicates whether the detector activated. The plates

indicate that these causal relationships hold for all trials T. . . . . . . . . . 89

5.5 Choosing between two theories. The bar graphs along the top of the fig-

ure show the probabilities of the two theories, with “Det” indicating the

deterministic detector theory, and “Prob” indicating the probabilistic detec-

tor theory. The bar graphs along the bottom show the probabilities that the

blocks a and b are blickets. The probabilities after successive trials are shown

from left to right. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.6 A two-ball stick-ball machine (Kushnir et al., 2003). . . . . . . . . . . . . . 93

5.7 Schematic diagrams indicating possible causal structures for the stick-ball

machine (after Kushnir, Gopnik, Schulz, & Danks, 2003). . . . . . . . . . . 94

5.8 Theory for causal induction with the stick-ball machine. . . . . . . . . . . . 96

5.9 Hypothesis space for a two-ball stick-ball machine. A and B indicate Moves(a,T)

and Moves(b,T) for Ball a and b respectively, while Hi indicates Active(hi,T)

for the HiddenCause hi. The plates indicate that these causal relationships

hold for all trials T. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.1 The probability of an event on a given trial (left column), and the rate at

which events occur (right column) as a unit of time is partitioned into ever-

finer intervals. The rows indicate an increase in NT , the number of intervals

per unit time, with NT = 10, 20, 50, 100,∞. . . . . . . . . . . . . . . . . . . 105

6.2 Important properties of Poisson processes. . . . . . . . . . . . . . . . . . . . 106

6.3 Predictions of rational models compared with results of Experiment 6.1.

Numbers along the top of the figure show stimulus rates, error bars indi-

cate one standard error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

xx



6.4 Theory for causal induction from particle emissions. . . . . . . . . . . . . . 111

6.5 Hypothesis space generated by theory of particle emissions with one Field f

and one Compound c. C and E indicate Charged(f,T) and Emission(c,T)

respectively. The plates indicate that these causal relationships hold for all

times T. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.6 Theory for causal induction with explosives. D(C1, C2) is the distance between

the locations of cans C1 and C2. . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.7 Hypothesis space for four cans of Nitro X. Ci indicates ExplosionTime(ci)

for Can ci, while Hi indicates ActivationTime(hi) for HiddenCause hi. The

dependence of ExplosionTime(ci) on ExplosionTime(cj) and Position(ci)

is suppressed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.8 (a) Four cans of explosive. (b)-(e) A pattern of explosions consistent with a

causal chain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.9 Marginal posterior distributions over α, ω, and µ for a set of explosion times

C constituting a chain reaction. . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.10 The third stimulus used in Experiment 6.2, with NC = 4. (a) Four dormant

cans. (b) A simultaneous explosion. . . . . . . . . . . . . . . . . . . . . . . 126

6.11 Results for the third stimulus in Experiment 6.2, compared with predictions

of the theory-based Bayesian account. . . . . . . . . . . . . . . . . . . . . . 127

7.1 Theories for coincidences in coinflipping. . . . . . . . . . . . . . . . . . . . . 140

7.2 Mere and suspicious coincidences both feature a high likelihood ratio and low

prior odds in favor of h1, but in suspicious coincidences the posterior odds

exceed a threshold that makes it seem possible that h1 could actually be true.144

7.3 Results of Experiment 7.1. The upper panel shows the proportion of cases

judged to be coincidences in the coincidence condition, and the lower panel

shows the mean responses in the posterior condition. Dotted lines show model

predictions, obtained by estimating prior probabilities for each participant. 148

7.4 Theories for coincidences in birthdays. . . . . . . . . . . . . . . . . . . . . . 152

7.5 Causal graphical models generated by theories of birthdays. Bi indicates

Birthday(pi), and Pi indicates Present(pi) . . . . . . . . . . . . . . . . . . 152

xxi



7.6 The leftmost panel shows the mean judgment of the strength of coincidences

from human participants in Experiment 7.3. Error bars indicating one stan-

dard error in either direction are shown in the upper right hand corner of

the panel. The second panel shows the predictions of the Bayesian model,

the third shows the consequences of removing the size principle, and the

third shows the consequences of using a uniform prior on filters, P (B). The

fifth panel shows the combined effects of these two omissions, illustrating the

performance of the model when each filter B contributes equally to P (D|h1). 156

7.7 Theories for coincidences in bombing. . . . . . . . . . . . . . . . . . . . . . 160

7.8 Causal graphical models generated by theories of bombing. Li indicates

Location(ti), Xi indicates ExplosionPoint(bi), and tC is the common target.160

7.9 Results of Experiment 7.2. Each line shows the three stimuli used to test

the effects of manipulating one of the statistical properties of the stimulus,

together with the mean judgments of strength of coincidences from human

participants and the predictions of the Bayesian model. Error bars show one

standard error, and letters label the different stimuli. . . . . . . . . . . . . . 164

8.1 Theory for causal induction with “biology” (sneezing monkeys). . . . . . . . 173

8.2 Theory for causal induction with “psychology” (scared rabbits). . . . . . . . 173

8.3 Hypothesis space for causal induction in both the “biology” and “psychology”

settings. A indicates Present(A, T) for either a Flower or Beast a, and

likewise for B and C. E indicates either Sneezes(M, T) or Scared(R, T), for

a Monkey m or Rabbit r. The plates indicate that these causal relationships

hold for every Trial T. The same hypothesis space applies to causal induction

across domains, with A and B indicating the presence of InDomain causes,

and C indicating the presence of an OutDomain cause. . . . . . . . . . . . . 174

8.4 Theory for causal induction across domains. . . . . . . . . . . . . . . . . . . 177

8.5 Two conceptions of causal mechanism knowledge. (a) The causal mechanism

specifies the chain of events mediating between a cause C and its effect E.

(b) Often, people know that some mechanism exists, but not the details. . . 179

xxii



C.1 Dealing with bidirectional causal relationships in stick-ball machines. (a) A

causal graphical model generated by the theory of stick-ball machines given

in Chapter 5. (b) The same model “unrolled” through time, removing the

cyclic causal relationship. Both models show the causal relationships among

variables on a single trial, but can be quantified over trials as discussed in

Chapter 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

D.1 Theory for causal induction with explosives using Boolean predicates. TC

indicates the time at which can C explodes, while D(C1, C2) is the distance

between the locations of cans C1 and C2. . . . . . . . . . . . . . . . . . . . . 202

D.2 Causal relationships among variables over time for a system in which NC = 2.

The dependence of each variable on its previous state and the dependence of

Explodes(ci, T) on Located(ci, S) are not shown in this figure. . . . . . . . 203

E.1 Theories for coincidences in bombing using Boolean predicates. . . . . . . . 209

xxiii



Chapter 1

Introduction

The fundamental problem in explaining how people infer causal structure from data is un-

derstanding how we learn so much from so little. Halley inferred a common cause from

three observations. In some of the experiments discussed in this thesis, people do likewise

from only a single observation. The study of causal induction has a long history in philoso-

phy (e.g., Hume, 1739/1978), statistics (e.g., Pearson, 1911), and psychology (e.g., Piaget,

1930).1 However, this history sheds little light on people’s remarkable capacity for causal

induction. Hume (1748) emphasized the importance of large samples in inferring causal

relationships, stating that “Even after one instance or experiment, where we have observed

a particular event to follow upon another, we are not entitled to form a general rule, or

foretell what will happen in like cases; it being justly esteemed an unpardonable temerity to

judge the whole course of nature from one single experiment, however accurate or certain”

(p. 50). Similarly, the statistical tests that scientists use to evaluate causal claims, and

which are at the heart of many contemporary algorithms for identifying causal structure

(e.g., Pearl, 2000; Spirtes et al., 1993), require large samples to produce results.

People learning a lot from a little is a familiar problem in cognitive science, and has

a familiar solution. The strength of the conclusion reached in any inductive inference is a

function of both data and prior knowledge. Strong conclusions from sparse data must thus

be a result of strong prior knowledge. This principle appears most prominently in Chomsky’s

(1965) notorious “poverty of the stimulus” argument for the role of innate knowledge in

language acqusition. However, it need not be connected to nativism, and has implications

that go beyond the study of language. In fact, it suggests a general strategy for studying

1Reviews of some of this history are provided by Shultz (1982b), White (1990; 1995) and Pearl (2000).
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the mind: in any setting where people learn a lot from a little, we can explore the prior

knowledge that informs their inferences by examining the conclusions that they draw from

different patterns of data. In the case of causal induction, examining what people infer from

a few observations can begin to tell us about the principles by which human knowledge about

causality is organized.

The claim that causal induction is guided by prior knowledge is not novel. Several cogni-

tive scientists have proposed that human causal learning is best thought of as a knowledge-

based, theory-based or top-down process (e.g., Waldmann, 1996; Lagnado & Sloman, 2004).

However, these proposals have been strictly qualitative and informal. The goal of this thesis

is to provide a computational account of human causal induction, in the sense introduced by

Marr (1982). This involves answering three questions: “what is the goal of the computation,

why is it appropriate, and what is the logic of the strategy by which it can be carried out”

(Marr, 1982, p. 25). Answering these questions requires being precise about the nature

of the prior knowledge that informs causal induction, and explaining how it is integrated

with statistical inference. Having developed such a computational account, we can begin

to investigate the content of the knowledge that is necessary to explain human inferences

about causal relationships in different settings. A first step in this process is identifying the

ways in which prior knowledge influences human causal induction.

1.1 The role of knowledge in causal induction

The nature of the prior knowledge that allowed Halley to make his causal inference is very

clear – it was Newton’s mathematical theory of physics. Newton’s theory identifies a set

of observable and unobservable entities, specifies the plausible relationships among these

entities, and defines the functional form of those relationships. In most cases of causal

induction, the nature of the prior knowledge involved is less apparent. A central claim of

this thesis is that this knowledge generally has the same structure as that used by Halley:

a causal theory. In this section, I will present a scientific example more representative of

everyday causal induction, illustrating how prior knowledge can influence our expectations

about causal relationships.

Many empirical studies of causal induction (e.g., Buehner & Cheng, 1997; Buehner,

Cheng, & Clifford, 2003; Lober & Shanks, 2000) use medical cover stories, such as evaluating

the influence of chemicals on outcomes like gene expression. These studies typically examine
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learning about a single causal relationship, such as whether injecting a chemical results in

gene expression, and pay little attention to the effects of prior knowledge. I will use a

slightly more complex medical scenario to examine the influence of prior knowledge on

causal induction. This scenario is based upon a real scientific problem of causal induction,

using the results of a study published in the journal Toxicological Sciences by Hamadeh,

Bushel, Jayadev, Martin, DiSorbo, Sieber, Bennett, Tennant, Stoll, Barrett, Blanchard,

Paules, and Afshari (2002). Hamadeh et al. (2002) used gene microarray analysis to assess

causal relationships between chemicals and gene expression in mice. The methods they used

to discover these relationships amount to little more than the assessment of covariation, but

the resulting structure leads to strong expectations about what other causal relationships

might be observed.

I will use this example to argue that human causal induction is influenced by three

aspects of prior knowledge: information about the types of entities, properties, and relations

that arise in a domain (which I will refer to as an ontology), constraints on the plausible

relations among these entities, and constraints on the functional form of such relations. Each

of these aspects of prior knowledge has previously been identified by psychologists as playing

a role in causal induction, although no previous work has considered them simultaneously,

or provided a detailed account of how they interact with statistical learning. I will highlight

some of the ways in which these ideas have arisen elsewhere as I discuss each aspect of prior

knowledge.

1.1.1 Ontology

Among several other results, Hamadeh et al. (2002) reported the set of causal relationships

among six variables shown in Figure 1.1. Four of these variables refer to the injection of

chemicals – clofibrate, Wyeth 14,643, gemfibrozil, and phenobarbital – and the other two

indicate expression of a particular gene. Imagine that another variable, X, was involved

in the study. Without knowing anything more about X, it would be hard to predict what

causal relationships X might participate in. However, if you knew what variable X referred

to – injection of a chemical or expression of a gene – you would probably have quite strong

expectations about the causal relationships in which X would participate. In particular,

discovering that X represents the injection of a chemical would probably lead you to believe

that if X did participate in any causal relationships, it is likely that it would cause one

of the genes to be expressed, or perhaps be affected by the expression of one of the genes.
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Gemfibrozil PhenobarbitalWyeth 14,643Clofibrate

p450 2B1 Carnitine Palmitoyl Transferase 1

Figure 1.1: Causal structure relating four chemicals, shown at the top of the figure, to the
expression of two genes, shown at the bottom of the figure, as reported by Hamadeh et al.
(2002).

Chemicals and genes differ in the properties that apply to them, and the causal relationships

in which they participate.

The question of how entities are differentiated based upon their causal properties has

been thoroughly explored in developmental psychology, through consideration of the on-

tological commitments reflected in the behavior of infants and young children. Both in-

fants and young children have strong expectations about the behavior of physical objects,

and these expectations are quite different from those for intentional agents (e.g., Opfer

& Gelman, 2001; Saxe, Tenenbaum, & Carey, in press; Shultz, 1982a; Spelke, Phillips, &

Woodward, 1995). Similarly, children have different expectations about the properties of bi-

ological and non-biological entities (e.g., Springer & Keil, 1991). Gopnik, Sobel, Schulz, and

Glymour (2001) have shown that children use the causal properties of entities to determine

whether they belong to a novel type – objects that differed in appearance but both activated

a “detector” were more likely to both be considered “blickets” than objects with similar

appearance that differed in their causal properties (these studies will be discussed in more

detail in Chapter 5). Research with adults has also examined how the types of entities in-

fluence causal inferences. For example, Lien and Cheng (2000) examined the circumstances

under which causal properties are generalized across the members of a category.
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1.1.2 Plausible relations

Knowledge of the types of entities can provide quite specific information about the plausi-

bility of causal relationships. The expectation that chemicals influence genes, and not vice

versa, is one illustration of type influencing plausibility, but carving up the types of entities

at a finer scale can produce even stronger expectations. For example, the chemicals clofi-

brate, Wyeth 14,643, and gemfibrozil are all peroxisome proliferators, while phenobarbital

is an enzyme inducer. If you were told that the chemical represented by X was a peroxisome

proliferator, the relationship between the other peroxisome proliferators and gene expres-

sion might lead you to expect that X would influence expression of the gene p450 2B1, but

not carnitine palmitoyl transferase I.

There is little controversy as to whether expectations about the plausibility of causal

relations influence causal induction – even those who endorse covariation-based views rec-

ognize the role of “top-down knowledge” (e.g., Cheng, 1993; 1997). The key issue is how

such knowledge is integrated with other sources of evidence (e.g., Alloy & Tabachnik, 1984).

This issue is compounded when the goal is not just to learn a single causal relationship, but

to simultaneously learn about multiple relationships. Waldmann (1996; 2000; Waldmann &

Holyoak, 1992; Waldmann, Holyoak, & Fratianne, 1995) has shown that the way that peo-

ple evaluate the strength of relationships among a set of variables is dramatically affected

by their expectations about the underlying causal structure.

1.1.3 Functional form

Type information can also affect expectations about the functional form of causal rela-

tionships: whether they are positive or negative, and whether multiple causes interact or

are independent. For example, discovering that the three other peroxisome proliferators

all increase expression of p450 2B1 would probably lead you to believe that the chemical

represented by X would also increase expression of this gene. Furthermore, finding that the

other peroxisome proliferators each have an independent effect on the gene would suggest

that X would combine with the variables representing other chemicals in a similar fashion.

A number of psychological studies have dealt with issues related to functional form,

although often doing so obliquely. Many theories of animal learning assume that multiple

causes of a single effect combine additively, each making a constant contribution to the
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effect (e.g. Rescorla & Wagner, 1972). A number of researchers, including Shanks, Wasser-

man, and their colleagues, have advocated these linear models as accounts of human causal

learning (e.g., Shanks, 1995a; 1995b; López, Cobos, Caño, & Shanks, 1998; Shanks & Dick-

inson, 1987; Wasserman, Elek, Chatlosh, & Baker, 1993). Waldmann (1996) described a

study that shows that the validity of the linearity assumption depends upon people’s be-

liefs about how the cause influences the effect. Cheng (1997) has argued that these linear

models result in purely “covariational” measures, and people’s causal inferences result from

the innate assumption of a particular non-linear functional form, which is a probabilis-

tic generalization of a logical OR gate (Glymour, 1998; Griffiths & Tenenbaum, in press;

Tenenbaum & Griffiths, 2001). Kelley (1973) made a comprehensive attempt to spell out

the functional forms of causal relationships, suggesting that causal induction from small

numbers of observations may be guided by “causal schemas,” such as sufficiency, necessity,

and compensatory causation.

In addition to determining whether or not an effect occurs, the functional form of a causal

relationship can also determine when that effect occurs. The time between the occurrence

of a potential cause and the occurrence of an effect is a critical variable in many instances

of causal induction. Several studies have explored covariation and temporal proximity as

cues to causality in children, typically finding that the event that immediately precedes an

effect is most likely to be perceived as the cause, even if there is covariational evidence to

the contrary (e.g., Shultz, Fisher, Pratt, & Rulf, 1986). Hagmayer and Waldmann (2002)

presented an elegant series of studies that showed that different assumptions about the

delay between cause and effect could lead to different interpretation of the same set of

events, determining which events were assumed to be related. Anderson (1990) provided

a computational analysis of data involving the interaction between spatial separation and

temporal contiguity in causal induction.

1.2 Causal induction is guided by causal theories

The toxicology example introduced above illustrates how causal induction can be influenced

by three aspects of causal knowledge – ontological assumptions, constraints on plausibility,

and constraints on functional form. These three aspects of prior knowledge can support

strong expectations about possible causal relationships. Having an ontology, knowing the

plausibility of relationships among the entities identified within that ontology, and knowing
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the functional form of those relationships provides information that makes it possible to

generalize about the causal relationships among new variables. For example, if X refers to

a peroxisome proliferator, and it is known that clofibrate, another peroxisome proliferator,

increases expression of a newly discovered gene, represented by Y , then we might expect

that X would also increase Y . This kind of generalization is central to causal induction,

making it possible for known causal relationships to influence our expectations about new

relationships. However, it is not something that has been addressed by previous accounts of

causal induction: inferring this relationship between X and Y does not require covariation

between the two variables, or knowledge of the mechanism by which X influences Y .

I will argue that these three aspects of prior knowledge reflect the role of intuitive

theories in guiding causal induction. Even in settings where we might not have the kind of

explicit theory that was available to Halley, we often have an implicit theory that guides our

inferences. In the case of the toxicology example, our theory concerns the interactions of

genes and chemicals. Our limited understanding of this domain is sufficient to tell us that

whether something is a chemical or a gene (or a peroxisome proliferator) is an important

determinant of its causal properties. In particular, it affects our expectations about which

causal relationships are plausible, and the form that those relationships might take.

Many cognitive scientists have suggested that human cognition and cognitive develop-

ment can be understood by viewing knowledge as organized into intuitive theories, with a

structure analogous to scientific theories (Carey, 1985a; Gopnik & Meltzoff, 1997; Karmiloff-

Smith, 1988; Keil, 1989; Murphy & Medin, 1985). This approach has been used to explain

people’s intuitions in the biological (Atran, 1995; Inagaki & Hatano 2002; Medin & Atran,

1999), physical (McCloskey, 1983) and social (Nichols & Stich, 2003; Wellman, 1990) do-

mains, and suggests some deep and interesting connections between issues in cognitive

development and the philosophy of science (Carey, 1985a; Gopnik, 1996).

While there are no formal accounts of intuitive theories, there is a consensus on what

kind of knowledge they incorporate: an ontology, indicating the types of entities that can

be encountered in a given domain, and a set of causal laws expressing the relations that

hold among these entities. For example, Carey (1985b) states that:

A theory consists of three interrelated components: a set of phenomena that

are in its domain, the causal laws and other explanatory mechanisms in terms

of which the phenomena are accounted for, and the concepts in terms of which

the phenomena and explanatory apparatus are expressed. (p. 394)
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When discussing causal theories, it is often productive to distinguish among different levels

at which a theory might operate. In a philosophical work that has inspired much of the

treatment of theories in cognitive development, Laudan (1977) made such a distinction, sep-

arating everyday scientific theory from higher level “research traditions.” He characterizes

a research tradition as consisting of

. . . an ontology which specifies, in a general way, the types of fundamental entities

which exist in the domain or domains within which the research tradition is

embedded. . . .Moreover, the research tradition outlines the different modes by

which these entities can interact. (p. 79)

This distinction between these different levels of theory has been carried over into research

on cognitive development, where Wellman (1990) and Wellman and Gelman (1992) distin-

guished between “specific” and “framework” theories:

Specific theories are detailed scientific formulations about a delimited set of

phenomena . . . framework theories outline the ontology and the basic causal

devices for their specific theories, thereby defining a coherent form of reasoning

about a particular set of phenomena. (p. 341)

All of these definitions draw upon the same elements – ontologies and causal laws.

The three aspects of prior knowledge that influence causal induction map loosely onto

the content of intuitive theories identified in these definitions. The division of the entities

in a domain into a set of different types is the role of an ontology, and causal laws identify

which relationships are plausible, and what form they take. It thus seems reasonable to

assert that the form of the causal knowledge that guides causal induction is that of a causal

theory. In particular, it is a theory that plays the role of a framework theory, providing a set

of constraints that are used in discovering the causal structure of a system (the analogue of a

specific theory). Despite the widespread use of intuitive theories in explaining cognition and

cognitive development, there exist no formal accounts of the content of intuitive theories,

or their role in guiding human cognition. In the remainder of the thesis, I will develop such

an account for the case of causal induction.
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Table 1.1: Key issues in causal induction
Causal graphical models

Can causal graphical models represent the content of human causal knowledge?
Can standard algorithms for learning causal structure explain human inferences?

Causes and coincidences
What makes a coincidence?
What is the role of coincidences in theory change?

Domain specificity
Which aspects of causal induction are domain-sensitive?

Theories and mechanisms
What role does mechanism knowledge play in causal induction?

Cognitive development and everyday learning
Do cognitive development and everyday learning act upon the same representations?

1.3 Key issues in causal induction

Developing a computational account of the role of intuitive theories in causal induction

has the potential to shed light on a number of questions about how people assess causal

relationships. These issues will arise throughout the thesis, and are summarized in the form

of questions in Table 1.1.

1.3.1 Causal graphical models

Causal graphical models (also known as Bayesian networks) are a language for represent-

ing and reasoning about causal relationships that has been developed in computer science

and statistics (Pearl, 2000; Spirtes, Glymour, & Schienes, 1993), and has begun to be used

in psychology (e.g., Danks & McKenzie, under revision; Gopnik, Glymour, Sobel, Schulz,

Kushnir, & Danks, 2004; Glymour, 1998; 2001; Griffiths & Tenenbaum, in press; Lagnado &

Sloman, 2002; Rehder, 2003; Steyvers, Wagenmakers, Blum, & Tenenbaum, 2003; Tenen-

baum & Griffiths, 2001, 2003; Waldmann & Martignon, 1998). I will provide a formal

introduction to causal graphical models in the next chapter, but the basic idea is that the

causal relationships among a set of variables can be represented in a graph in which variables

are nodes and causation is indicated with arrows.

By providing a computational framework for addressing issues of causality, causal graph-

ical models make it tempting to conclude that simple graphical representations are going

to be sufficient to capture the causal knowledge that people have about the world. Indeed,
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Gopnik and Glymour (2002; Gopnik et al., 2004) argue that the “causal maps” provided

by such graphical representations can capture the knowledge contained in intuitive theo-

ries. Gopnik, Glymour, and their colleagues have also argued that the standard algorithms

developed for learning causal graphical models might provide a domain-general account of

human causal induction (e.g., Glymour, 2001; Gopnik & Glymour, 2002; Gopnik et al.,

2004). These algorithms (e.g., Cooper & Herskovits, 1992; Pearl, 2000; Spirtes et al., 1993)

are primarily data-driven, making little use of prior knowledge. This property of these

algorithms has been criticized by statisticians (e.g., Humphreys & Freedman, 1996), and

suggests that such algorithms may not be ideal for explaining human inferences. This leaves

us with two questions: whether causal graphical models are the appropriate representation

for human causal knowledge, and whether the algorithms for causal learning developed in

computer science and statistics can shed light on the process by which people identify causal

relationships.

1.3.2 Causes and coincidences

Coincidences receive quite different treatment from psychologists and philosophers. Psy-

chologists typically use the conclusions that people draw from coincidences to support the

argument that human beings reason poorly about chance (e.g., Gilovich, 1993; Plous, 1993).

In contrast, philosophers of science have emphasized the connection between causes and co-

incidences, recognizing that coincidences are not merely improbable events, but events that

provide support for a causal relationship (e.g., Horwich, 1982; Owens, 1992). Recognizing

this connection begins to explain how it is that noticing suspicious coincidences often leads

people to make significant scientific discoveries. Answering the question of what makes an

event a coincidence has the potential to shed light on a deeper issue: since coincidences are

often involved in scientific discoveries, what might they tell us about the processes by which

intuitive theories change?

1.3.3 Domain specificity

One of the central questions in the investigation of causal induction in children is the extent

to which such abilities are domain-specific. Different domains, such as physics, biology,

and psychology, employ different ontologies and different kinds of causal relationships. The

early manifestation of domain-specific causal inferences, such as knowledge of the causal

properties of objects (e.g., Spelke, Breinlinger, Macomber, & Jacobson, 1992) has led to
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claims that these inferences are the result of distinct and specialized cognitive modules (e.g.,

Leslie, 1994). It is these claims of domain-specificity that Gopnik and Glymour (2002) argue

against when they appeal to the kind of domain-general learning mechanisms provided by

causal graphical models. Precisely formulating the interaction between theory and evidence

provides the opportunity to establish which aspects of causal induction should be domain-

sensitive.

1.3.4 Theories and mechanisms

Historically, psychological theories about causal induction have fallen into two camps (New-

some, 2003): covariation-based approaches characterize human causal induction as the con-

sequence of a domain-general statistical sensitivity to covariation between cause and effect

(e.g., Cheng & Novick, 1990; 1992; Shanks & Dickinson, 1987), while mechanism-based ap-

proaches focus on the role of prior knowledge about the mechanisms by which causal force

can be transferred (e.g., Ahn & Kalish, 2000; Shultz, 1982b; White, 1995).

Neither of these accounts is satisfactory. While sensitivity to covariation is an important

aspect of causal learning, what counts as evidence for a causal relationship and how much

evidence is required to conclude that such a relationship exists are both determined by

prior knowledge. Appealing to causal mechanism recognizes the importance of this knowl-

edge, but suffers from the vagueness of the notion of “mechanism.” Various ideas have

been appealed to by advocates of this view (e.g., Ahn & Kalish, 2000; Bullock, Gelman, &

Baillargeon 1982; Shultz, 1982b; White, 1995) and different definitions are used in formal

approaches to causality (e.g. Glymour & Cheng, 1998; Pearl, 1996). A complete under-

standing of the mechanisms mediating between cause and effect is clearly not necessary for

causal induction – if one possessed such knowledge there would be nothing to learn, and

recent results suggest that people have quite a limited understanding of the mechanisms

involved in causal systems (e.g., Rozenblit & Keil, 2002). This leaves open the questions of

which aspects of causal mechanism knowledge are involved in causal induction.

1.3.5 Cognitive development and everyday learning

Many of the most extensive studies of causal induction have been performed by develop-

mental psychologists (e.g., Bullock et al., 1982; Gopnik et al., 2004; Shultz, 1982b). Ex-

plaining cognitive development poses a challenging problem: accounting for how children
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acquire the detailed understanding of the causal structure of their environment exhibited

by adults. Causal induction is at the heart of this problem, being the process by which chil-

dren come to identify new causal relationships. However, developmental psychologists have

also emphasized the importance of large-scale shifts in children’s causal understanding over

the course of cognitive development (e.g., Carey, 1985a; Gopnik & Meltzoff, 1997; Piaget,

1930). Instead of concerning just a single causal relationship, such changes are described

as concerning entire causal theories.

Computational accounts of causal induction have implications for whether cognitive

development and everyday causal induction act upon the same representations. Gopnik and

Glymour (2002) propose that causal graphical models provide an appropriate representation

for the causal knowledge of children, and that algorithms for learning causal graphical

models can describe how this knowledge changes. This proposal suggests that there is a

single representational substrate that is modified by both the long-term process of cognitive

development and the short-term process of learning a new causal relationship (which is the

more common form of causal induction as experienced by adults). However, this need not

be the case: if causal graphical models are not the only representational format for human

causal knowledge, then cognitive development and causal learning might operate at different

levels of representation.

1.4 Summary

Understanding human causal induction requires explaining how people can infer causal

relationships from small amounts of data. Such inferences are the result of strong constraints

from prior knowledge. By formalizing how prior knowledge and statistical inference interact

in causal induction, we can examine what kind of knowledge is needed to explain human

inferences across different contexts. The kind of knowledge that influences causal induction

is that expressed in intuitive theories: ontological assumptions about the types of entities

and the properties and relations that apply to those entities, and causal laws that state the

plausibility and form of causal relationships. Developing a computational account of the

role of theories in causal induction has the potential to provide insight into a number of

questions about how people assess causal relationships. I begin to explore these questions

in the next chapter, introducing causal graphical models and using them to formulate the

computational problem of causal induction that will be the focus of this thesis.
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Causal graphical models

Causality was excluded from the subject matter of statistics for much of the 20th century,

largely as a consequence of the fervent arguments against causality made by Karl Pearson

(e.g., Pearson, 1911). Techniques like structural equation modeling (Wright, 1921) were

intended to make it possible to evaluate causal models, but their use for this purpose

remains controversial (e.g., Freedman, 1991). Significant advances towards understanding

the circumstances under which causal relationships could be identified were made in the

1970s and 1980s, resulting in several different formal treatments of causality (Rubin, 1974;

Robins, 1986; 1987; see Rubin, 1990, and Holland, 1986, for reviews). Causal graphical

models synthesize many of these advances into a single intuitive framework, providing a

means of representing the causal relationships among a set of variables (Pearl, 2000; Spirtes

et al., 1993). Recent work in computer science has focused on developing algorithms for

learning causal structure from data, a project that has drawn some of the same criticisms

as traditional structural equation modeling (e.g., Humphreys & Freedman, 1996).

Causal graphical models, also known as Bayesian networks or Bayes nets, have recently

begun to be used in psychological research on causality (e.g., Danks & McKenzie, under

revision; Gopnik, Glymour, Sobel, Schulz, Kushnir, & Danks, 2004; Glymour, 1998; 2001;

Griffiths & Tenenbaum, in press; Lagnado & Sloman, 2002; Rehder, 2003; Steyvers, Tenen-

baum, Wagenmakers, & Blum, 2003; Tenenbaum & Griffiths, 2001, 2003; Waldmann &

Martignon, 1998). Several authors, most notably Gopnik, Glymour, and their colleagues,

have argued that causal graphical models provide a means of representing the content of

intuitive theories, and that the algorithms developed for learning causal graphical models

might provide a domain-general account of how these theories are learned (e.g., Glymour,

13
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2001; Gopnik & Glymour, 2002; Gopnik et al., 2004). I will argue against this view,

claiming that representing intuitive theories requires going beyond the capacity of causal

graphical models, and that, by exploiting the knowledge contained within these theories,

human causal induction goes beyond generic algorithms for causal learning.

The plan of this chapter is as follows. First, I will briefly summarize how a causal

graphical model is defined, and how such models can be used to make inferences about

observations and the consequences of interventions. I will then use this formalism to state

precisely the computational problem of causal induction, and argue that the standard al-

gorithms that are used to solve this problem are inadequate as an account of human causal

induction, failing to incorporate the kind of prior knowledge discussed in the previous chap-

ter. This raises the question of how such knowledge might be incorporated into algorithms

for learning causal structure, which provides some first clues about how intuitive theories

might be formalized. A detailed consideration of some of the criticisms that have been

leveled at causal graphical models and their relevance to the project at hand is provided in

Appendix A.

2.1 Defining a causal graphical model

A causal graphical model has three components: a set of variables, a causal structure defined

over those variables, and a set of assumptions about the functional form of the relationships

indicated by this structure. I will describe these three components in turn.1

2.1.1 Variables

The first step in defining a causal graphical model is to identify the variables that will be

used to encode events in the domain. The causal graphical model will define a probability

distribution over these variables which can be used to answer questions about what patterns

we might expect to observe, and the consequences of actions on this system. For instance,

in a simplified version of the toxicology example discussed above, we might imagine that

1The various proposals for using graphical models to represent causal relationships differ slightly in their
details. For example, Pearl (2000) assumes that the functions relating variables are deterministic, adding
a stochastic component to the system through the presence of independent exogeneous noise variables.
This makes it easier to address many of the questions one might have about a causal system, such as
counterfactuals, at the cost of some notational complexity. Here, I will take the simpler route of defining
causal graphical models as generic Bayesian networks (c.f. Pearl, 1988) supplemented with a calculus for
interventions.
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we are interested in whether a particular chemical causes expression of a particular gene in

mice. For any given mouse, we know whether that mouse was treated with the chemical,

and whether that mouse expressed the gene.

Many of the causal graphical models I consider in this thesis will be defined on binary

random variables representing the truth of atomic sentences in a simple logical language.2

Like predicate logic, this language will involve predicates, constants, variables, and quanti-

fiers. For example, in our toxicology setting, we might have a single mouse m, a single chem-

ical c, and a single gene g, allowing us to define atomic sentences such as Injected(c, m),

indicating that m was injected with chemical c, and Expressed(g, m), indicating that m ex-

presses gene g. We could then define binary random variables C and E that indicate the

truth of these two predicates. For example, we might say that C assumes the value c+ when

Injected(c, m) is true, and c− when it is false. Treating C and E as random variables, we

might ask questions like “Given that mouse m expresses the gene, what is the probability

that the mouse was treated with the chemical?” which would be answered by computing

P (c+|e+).

In some cases, it will be more efficient to collapse many binary variables into a sin-

gle variables that can take multiple values. For example, if a mouse m was injected with

a chemical c at time t, then we could encode this information with a set of variables

Injected(c, m, T) where T ranges over all possible times, and is only true at time t. Alter-

natively, we could represent this information with a variable InjectionTime(c, m) which has

values corresponding to possible times. If InjectionTime(c, m) = t, then Injected(c, m, T)

is true for T = t and false otherwise. I will indicate whenever variables take on values other

than simple Boolean truth or falsehood.

It is important to discriminate logical statements from their probabilistic counterparts.

Throughout the thesis, I will use typewriter font to indicate logical statements, with

predicates such as Injected(c,m,T) being capitalized, constants such as m being lower-

case, and variables such as T being upper-case. Likewise, I will use italic font to indicate

statements about random variables, with variables such as C being upper-case, and the

values of those variables such as c+ being lower-case.

2The principles behind graphical models can be applied to random variables of any kind. In focusing
on logical statements, I am motivated by the use of graphical models for probabilistic logical reasoning
in artificial intelligence (e.g., Russell & Norvig, 2002), rather than their more general use for representing
structured probability distributions in machine learning and statistics (e.g., Jordan, 1998).
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Graph 1

C

E

Graph 0

C

E
Figure 2.1: Directed graphs involving two variables, C and E. C is a potential cause, and E
the effect of interest. In Graph 0, the two variables are independent, while Graph 1 depicts
a causal relationship.

2.1.2 Causal structure

A causal graphical model uses a directed graph to represent the causal relationships among a

set of variables. Nodes in the graph represent variables, and directed edges represent direct

causal connections between those variables (Glymour, 1998; Glymour & Cooper, 1999;

Pearl, 2000; Spirtes et al. 2001). The direction of the edges is illustrated using arrows,

with “parent” nodes having arrows to their “children.” The graph shown in Figure 1.1

thus represents the causal structure among a set of variables in the fashion used in causal

graphical models. Two simpler examples are the directed graphs denoted Graph 0 and

Graph 1 in Figure 2.1, which I will later use in Chapter 4 when explaining human inferences

from contingency data. Both graphs are defined over two binary variables, C and E,

representing a potential cause and its effect respectively. Each graph represents a hypothesis

about the causal relations that could hold among these variables. In Graph 0, C and E are

independent. In Graph 1, C causes E.

The causal structure used in a causal graphical model has implications for the depen-

dencies that manifest in the probability distribution associated with that model. Any causal

graphical model with variables {X1, . . . , Xn} implies a probability distribution of the form

P (X1, . . . , Xn) =
∏

i P (Xi|Pa(Xi)), where Pa(Xi) is the set of parents of the node associ-

ated with Xi. This factorization of the probability distribution follows from the assumption

that each variable Xi is independent of all of its non-descendants in the graph when condi-

tioned upon its causes, Pa(Xi). This assumption is called the causal Markov condition, and
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the relationship between statistical dependence and causation that it implies forms the basis

of many algorithms for learning causal structure (e.g., Pearl, 2000; Spirtes et al., 1993).

This idea can be illustrated for Graph 0 and Graph 1, from Figure 2.1. In general, we

can decompose any probability distribution into a product of terms for each variable, such

as P (E, C) = P (E|C)P (C). The causal structure represented by Graph 0 indicates that C

and E are independent of one another. As a consequence, we can simplify this expression,

to obtain P (E, C) = P (E)P (C). Under this factorization, the joint probability of E and

C is obtained by multiplying the probability of E by the probability of C. In contrast,

Graph 1 indicates a dependency between the two variables, consistent with the factorization

P (E, C) = P (E|C)P (C). Under this factorization, the joint probability of E and C is

obtained by multiplying the probability of C with a different probability distribution over

E for each value of C.

2.1.3 Parameterization

The graphical structure of a causal graphical model identifies the causal relationships among

variables, but says nothing about the precise nature of these relationships – they could be

deterministic or probabilistic, and multiple causes of an effect could act independently or

interact strongly. This information is captured by the parameterization of a causal graph-

ical model. The parameterization specifies a conditional probability distribution for each

variable, conditioned upon its parents in the graph. For a set of variables X1, . . . , Xn, these

conditional probabilities are P (Xi|Pa(Xi)). By the causal Markov condition, multiplying

these conditional probabilities together provides the joint distribution over all Xi, which

can be used to predict which values those variables are likely to take on.

In some cases, the parameterization of a model is trivial – for example, in Graph 0, we

just need to specify P (E) and P (C). This can be done using a single numerical parameter

w0 for each node, providing the probability that that variable takes a positive value. For

example, we could specify P (E) by P (e+; w0) = w0. However, when a node has parents,

there are many different ways in which the relationship between causes and effects could be

defined. For example, in Graph 1 we need to account for how the cause C influences the

effect E.

The simplest means of parameterizing a variable – what I will call the generic parame-

terization – is to use a separate parameters to define the conditional probability distribution

for a variable conditioned on each state of its parents. For example, in Graph 1, E has one
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parent, C, with two states. We could thus specify the conditional probability P (e+|c) using

two parameters, defining P (e+|c−) = w0 and P (e+|c+) = w1. Since these parameters can

take on any value in [0, 1], we can choose them in a way that allows us to capture any

possible pattern of dependency between cause and effect.

The generic parameterization is extremely flexible, but the number of parameters re-

quired to specify the conditional probability of a variable increases exponentially with the

number of its parents. Other parameterizations specify all of the conditional probability

distributions using a simple function with a small number of parameters. The conditional

probability distribution associated with a node can be any probabilistically sound function

of its parents, including a deterministic function. Different assumptions about the kinds

of mechanisms in a domain naturally lead to different parameterizations, so there will not

be a single parameterization that can be used to characterize all settings in which causal

learning takes place. Here, I will describe four simple parameterizations: noisy-OR, noisy-

AND-NOT, logistic, and linear. I will show how these parameterizations can be applied to

Graph 1.

The noisy-OR parameterization (Pearl, 1988) results from a natural set of assumptions

about the relationship between cause and effect. For Graph 1, these assumptions are that

C is a generative cause, increasing the probability of the effect; that the probability of E

as a result of factors other than C is w0; and that C influences E independently of these

other factors. This gives

P (e+|c; w0, w1) = 1 − (1 − w0)(1 − w1)
c. (2.1)

where w1 is a parameter associated with the strength of C and c+ = 1, c− = 0 for the

purpose of arithmetic operations. This expression gives w0 for the probability of E in

the absence of C, and w0 + w1 − w0w1 for the probability of E in the presence of C. This

parameterization is called a noisy-OR because if w0 and w1 are both 1, Equation 2.1 reduces

to the logical OR function: the effect occurs if and only if either some background factor

or C is present. With w0 and w1 in the range (0, 1) it generalizes this function to allow

probabilistic causal relationships. If E had multiple parents X1, . . . , Xn, we could associate

a separate strength wi with each parent, and the noisy-OR parameterization would give

P (e+|x1, . . . , xn; w0, w1, . . . , wn) = 1 − (1 − w0)
∏

i

(1 − wi)
xi (2.2)
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where again xi = 0 if Xi is absent, and 1 if Xi is present.

A parameterization for preventive causes can be derived from a set of assumptions similar

to those made in the noisy-OR. In the case of Graph 1, these assumptions are that E occurs

in the absence of C with probability w0, and C independently prevents E from occurring

with probability w1. The resulting noisy-AND-NOT generalizes the logical statement that

E will occur if the background factors are present and not C, allowing the influence of these

factors to be probabilistic. The conditional probability can be written as

P (e+|c; w0, w1) = w0(1 − w1)
c, (2.3)

which gives w0 for the probability of E in the absence of C and w0(1 − w1) when C is

present. As with the noisy-OR, both w0 and w1 are constrained to lie in the range [0, 1],

and the function can be generalized to accommodate the influence of multiple parents.

Finally, a linear parameterization of Graph 1 assumes that the probability of E occuring

is a linear function of background factors and C. This corresponds to assuming that the

presence of a cause simply increases the probability of an effect by a constant amount,

regardless of any other causes that might be present. As with the logistic parameterization,

there is no distinction between generative and preventive causes. The result is

P (e+|c; w0, w1) = w0 + w1 · c. (2.4)

This parameterization requires that we constrain w0 + w1 to lie between 0 and 1 to ensure

that Equation 2.4 results in a legal probability distribution. Because of this dependence

between parameters, the linear parameterization is not normally used for causal graphical

models, but I introduce it as it will prove useful in Chapter 4, when explaining the rational

basis of some existing accounts of causal induction.

2.2 Observations and interventions

So far, I have described how causal graphical models can be used to make predictions about

observed data: the causal structure implies a particular factorization of the probability

distribution over a set of variables, and the parameterization specifies the conditional prob-

abilities involved in this factorization. However, causal induction can make use of data other

than those gathered by passive observation. Human learners often know the consequences
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of actions upon a system, whether they be formal experiments or merely exploratory ma-

nipulation.

Predicting the values that variables will take on when a system is observed only requires

knowing the correlations among those variables, and not the causal relationships responsible

for those correlations. In contrast, predicting the consequences of actions upon a system

requires knowing the causal relationships themselves. In the literature on causal graphical

models, actions that fix the values of variables are referred to as interventions. Intervening

on a variable renders all other causes of that variable redundant. Consequently, knowing

that a variable took a particular value as the result of an intervention should provide no

information about the variables that would normally act as its causes. Interventions are

thus dealt with by performing “surgery” on a graph, removing the incoming edges from the

variable that was manipulated (Pearl, 2000). The consequences of an intervention can be

evaluated by performing probabilistic inference using the modified graph, treating it just

like any other graphical model.

I will illustrate the difference between observations and interventions using Graph 1.

Returning to our toxicology example, C indicates the truth of Injected(c,m) – whether

mouse m was injected with chemical c – and E indicates the truth of Expressed(g,m) –

whether mouse m expressed gene g. Assume that half of the mice in the experiment treated

with the chemical, P (c+) = 0.5, and that the gene is likely to be expressed if the mice are

treated, P (e+|c+) = 0.7, but unlikely otherwise P (e+|c−) = 0.1. Upon observing that m

expresses the gene (e+), we might ask how likely it is that m was treated with the chemical

(c+). Answering this question involves computing P (c+|e+), which can be done using the

probability calculus:

P (c+|e+) =
P (e+|c+)P (c+)

P (e+|c+)P (c+) + P (e+|c−)P (c−)

=
0.7 × 0.5

0.7 × 0.5 + 0.1 × 0.5
= 0.875.

Observing that the gene is expressed thus increases the probability that m was treated with

the chemical.

Now imagine that we have access to genetic engineering equipment that allows us to

directly manipulate the gene in question. We can use this equipment to produce gene
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expression (e+) in m, and then ask how likely it is that m was treated with the chemical

(c+). To indicate that e+ took its value as the result of an intervention, I will denote this

probability P (c+|do(e+)), following the notation introduced by Pearl (2000). Under the

procedure outlined above, this probability is evaluated by removing the edges from C to E,

and reasoning with the resulting graph. In this case, C and E are rendered independent, so

the value of E has no influence on the value of C. Consequently, P (c+|do(e+)) = P (c+) =

0.5. If m expresses the gene as the consequence of an intervention, we gain no information

about whether m was treated with the chemical.

Reasoning about interventions requires that the edges in a graphical model reflect the

causal relationships among a set of variables, and not just correlations. Formally, this re-

quirement arises because graph surgery treats the causes and effects of the manipulated

variable differently. Causality is thus treated as a primitive, used in evaluating the conse-

quences of intervention. Recent work in philosophy has pursued this idea from the opposite

direction, starting with intervention as a primitive and using this as the basis for a definition

of causality (Woodward, 2003). The ability to address interventions is the key innovation

that extends the graphical models used to represent structured probability distributions in

artificial intelligence and statistics (e.g., Pearl, 1988) into a framework for reasoning about

causality (e.g., Pearl, 2000).

2.3 Quantification and plates

In my presentation of causal graphical models so far, I have assumed that the random

variables corresponding to the nodes of the model indicate the truth of logical atomic

sentences, such as Injected(c,m). However, it will often be convenient to talk about causal

relationships that hold over all instantiations of a particular logical variable. In the language

of first-order logic, these are relationships that hold when we quantify over a variable (in this

case, applying universal quantification). For example, imagine we had four mice, denoted

mi for i = 1, . . . , 4, and believed that a causal relationship held between Injected(c,M)

and Expressed(g,M) for all M (i.e. M ∈ {m1, . . . , m4}). Using the random variable Ci to

indicate the truth of Injected(c,mi), and Ei to indicate the truth of Expressed(g,mi),

the causal graphical model describing the relationships among these variables will consist

of four copies of exactly the same causal structure, as shown in Figure 2.2 (a).

Causal relationships that hold under quantification introduce redundancies into the
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Figure 2.2: Plate notation for causal graphical models. (a) A causal relationship that holds
over all instantiations of a logical variable produces causal graphical models with redundant
structure. In this case, Ci indicates Injected(c,mi), and Ei indicates Expressed(g,mi)

for mice m1, . . . , m4. (b) Quantification can be expressed efficiently using plates. Here C
indicates Injected(c,M) and E indicates Expressed(g,M), while the plate indicates that
the relationship holds for all mice M.

causal structure among a set of variables and the parameters that are used to define a prob-

ability distribution over those variables. These redundancies can be exploited by developing

an efficient notation for quantification. I will use a variant of plates (Buntine, 1994) for this

purpose. Plate notation augments a graph with a set of boxes (called plates) surrounding

subgraphs, indicating how many times that subgraph should be replicated. This formal-

ism is typically used to capture redundancies in the structure and parameters of graphical

models that result from generating independent samples. Independent sampling is an im-

plicit form of quantification, where the dependencies exhibited in the graphical model are

assumed to hold over all samples.

Figure 2.2 (b) shows how a single graph, together with a plate, can be used to represent a

causal relationship that holds for all mice. The variables C and E indicate Injected(c,M)

and Expressed(g,M) respectively. The plate shows that the relationship between these

variables holds for all instantiations of the logical variable M, using the symbol for universal

quantification, ∀. The causal graphical model shown in Figure 2.2 (a) can be obtained by

substituting m1, . . . , m4 for M. It should be emphasized that the structure depicted in Figure

2.2 (b) is primarily a notational innovation, and that the real underlying causal graphical

model for representing the structure that holds among the variables and their probabilities

is that shown in Figure 2.2 (a). However, using plates in this fashion will make it possible
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for us to efficiently represent causal graphical models for large numbers of variables, and

to understand when parameters are shared across variables. This becomes particularly

important in Chapter 6, where the number of variables under consideration is effectively

infinite.

2.4 The problem of causal induction

Causal graphical models provide us with the tools to take the first step towards a compu-

tational account of human causal induction, in the sense introduced by Marr (1982): they

allow us to give a precise definition of the underlying computational problem. In this the-

sis, I will treat the problem of causal induction as that of identifying the causal graphical

model responsible for generating a dataset D. This problem has been extensively explored

in the literature on causal graphical models in computer science and statistics, where it is

known as the problem of structure learning (e.g., Heckerman, 1998).3 Learning the causal

structure that relates a large number of variables is a difficult computational problem, as

the number of possible structures is a super-exponential function of the number of variables.

Research in computer science and statistics has focussed on two strategies for solving this

problem. Constraint-based methods attempt to identify causal structure on the basis of the

patterns of dependency exhibited by a set of variables, while Bayesian methods evaluate

the probability that a particular structure generated the observed data. I will discuss these

strategies in turn, and consider their adequacy as accounts of human causal induction.

2.4.1 Constraint-based algorithms

Constraint-based algorithms for structure learning (e.g., Pearl, 2000; Spirtes et al., 1993)

proceed in two steps. First, standard statistical tests like Pearson’s χ2 test are used to

identify which variables are dependent and independent. Since the causal Markov condition

implies that different causal structures should result in different patterns of dependency

among variables, the observed dependencies provide constraints on the set of possible causal

structures. The second step of the algorithms identifies this set, reasoning deductively from

3The other key problem in learning causal graphical models is parameter estimation. Structure learning
involves identifying the topology of the causal graph, while parameter estimation involves determining the
parameters of the functional relationships between causes and effects for a given causal structure. Parameter
estimation will make an appearance in Chapter 4, when I consider alternative accounts of human inferences
from contingency data.
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the pattern of dependencies. The result is one or more causal structures that are consistent

with the statistically significant dependencies exhibited by the data.

The use of statistical dependence between variables as the basis for structure learning

means that constraint-based algorithms make very weak commitments as to the nature

of any causal relationship. In particular, these algorithms make no assumptions about

functional form. This may be appropriate in some of the scientific applications that inspired

these methods, where the spirit of frequentist statistics favors minimal assumptions. By

not making any commitments about the consequences of causal relationships other than

statistical dependency, constraint-based algorithms provide a general-purpose tool for causal

induction that can be applied easily across many domains. This generality is part of the

appeal of these algorithms for developmental psychologists seeking to explain the acquisition

of causal knowledge without recourse to domain-specific learning mechanisms (Gopnik &

Glymour, 2002; Gopnik et al., 2004).

Throughout this thesis, I will argue that constraint-based algorithms cannot be used to

explain human causal induction. This argument is based upon the data-driven, bottom-up

approach to causal induction embodied in these algorithms, which results in two major

problems. First, constraint-based algorithms do not account for the ways in which prior

knowledge influences human inferences that I identified in the previous chapter. As these

algorithms are defined, they use only a weak form of prior knowledge – the knowledge that

particular causal relationships do or do not exist (e.g., Spirtes et al., 1993). They do not

use prior knowledge concerning the underlying ontology, the plausibility of relationships, or

their functional form. This insensitivity to prior knowledge has previously been pointed out

by some critics of constraint-based algorithms (Humphreys & Freedman, 1996; Korb & Wal-

lace, 1997). Prior knowledge provides essential constraints on human inferences, making it

possible to infer causal relationships from very small samples. Without it, constraint-based

algorithms require relatively large amounts of data in order to detect a causal relationship.

Second, constraint-based algorithms cannot combine weak sources of evidence, or main-

tain graded degrees of belief. This is a direct consequence of the policy of first conducting

statistical tests, then reasoning deductively from the results. Statistical tests impose an

arbitrary threshold on the evidence that data provide for a causal relationship. Using such

a threshold is a violation of what Marr (1982) termed the “principle of least commitment”:

This principle requires not doing something that may later have to be undone,

and I believe that it applies to all situations in which performance is fluent.
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It states that algorithms that are constructed according to a hypothesize-and-

test strategy should be avoided because there is probably a better method.

My experience has been that if the principle of least commitment has to be

disobeyed, one is either doing something wrong or something very difficult. (p.

106)

Causal induction with a large number of variables (and without constraints from prior

knowledge) is very difficult, and could be used to justify violation of the principle of least

commitment. However, when making inferences about small numbers of variables, it is

unnecessary and creates problems. In particular, thresholding evidence makes it hard to

combine multiple weak sources of evidence for a causal relationship. The binarization of

evidence is carried forward by deductively reasoning from the observed patterns of depen-

dency. Such a process means that a particular causal structure can only be identified as

consistent or inconsistent with the data, admitting no graded degrees of belief that might

be updated through the acquistion of further evidence.

2.4.2 Bayesian structure learning

The Bayesian approach to structure learning (Cooper & Herskovits, 1992; see Heckerman,

1998) treats causal induction as a special case of the more general statistical problem of

identifying the statistical model most likely to have generated an observed dataset. Bayesian

inference provides a solution to this problem. The heart of this solution is Bayes’ rule,

which can be used to evaluate the probability that a hypothetical model h was responsible

for generating data D. The posterior distribution, P (h|D), is evaluated by combining prior

beliefs about the probability that h might generate any dataset with the probability of D
under the model h, typically referred to as the likelihood. Bayes’ rule stipulates how these

probabilities should be combined, giving

P (h|D) =
P (D|h)P (h)

∑

h′∈H P (D|h′)P (h′)
(2.5)

where H is the hypothesis space, the set of all models that could possibly have produced D.

As with any Bayesian inference, Bayesian structure learning requires specifying a prior

probability and a likelihood for every hypothesis within a precisely delimited hypothesis

space. In typical applications of this method, H consists of all directed graphs defined over

the available variables. I will index these hypotheses as Graph i, since our primary concern
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is with causal structure. The data D consist of the values that those variables assume as

the result of observation and intervention. Standard Bayesian structure learning algorithms

evaluate P (D|Graph i) by assuming the generic parameterization, defining a prior over the

parameters, and then integrating over the specific values of those parameters (e.g., Cooper

& Herskovits, 1992). This makes it possible to compute the probability of the data given

a particular graphical structure without committing to a particular choice of parameter

values. The prior over graph structures, P (Graph i), is typically either uniform (giving

equal probability to all graphs), or gives lower probability to more complex structures.

Algorithms that use these principles differ in whether they then proceed by searching the

space of structures to find that with the highest posterior probability (Friedman, 1997), or

evaluate particular causal relationships by integrating over the posterior distribution over

graphs (Friedman & Koller, 2000).

While Bayesian structure learning can deal with weak evidence and graded degrees of

belief, the standard assumptions about priors, likelihoods, and hypothesis spaces mean that

this approach is just as limited in its treatment of prior knowledge as the constraint-based

algorithms described above. However, the Bayesian approach can be extended to incorpo-

rate the kinds of prior knowledge that influence causal induction. Different assumptions

about the functional form of causal relationships can be captured by including models with

different parameterizations in the hypothesis space, and the plausibility of causal relation-

ships can be used in defining the prior probability of different graph structures. Recent

work in computer science has begun to explore methods that use more complex ontologies,

with each type of entities being characterized by a particular pattern of causal relationships

with a particular functional form (e.g., Segal, Pe’er, Regev, Koller, & Friedman, 2003).

This work is motivated by problems in bioinformatics that, as in many of the settings for

human causal induction, require learning complex structures from limited data (e.g., Segal,

Shapira, Regev, Pe’er, Botstein, Koller, & Friedman, 2003).

2.5 Beyond causal graphical models

Formulating the problem of causal induction as a Bayesian decision as to which causal

graphical model generated a dataset provides a precise specification of how prior knowledge

guides this inference. Knowledge about the ontology, plausibility, and functional form

should define the prior, likelihood, and hypothesis space for Bayesian inference. However,
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expressing this knowledge requires going beyond the representational capacities of causal

graphical models. While this knowledge can be instantiated in a causal graphical model, it

generalizes over a set of such models, and thus cannot be expressed in any one model.

A motivating intuition for this distinction, and for many of the ideas in the remainder

of the thesis, can be obtained by considering an analogy between language and causality.

Language comprehension and causal learning both center on the same fundamental problem

of inductive inference: inferring the structure most likely to have generated some data. In

language, the data take the form of a spoken or written sentence, and the structure to

be recovered is a syntactic structure, such as a parse tree. In causal learning, the data

concern the states of variables in a causal system, and the structure to be recovered is a

causal graphical model. Both inductive problems are made particularly challenging by two

salient features: the data severely underconstrain the underlying structure, and the set of

structures that could have generated that data is effectively infinite.

To explain how syntactic structures can be inferred from sentences, linguists posit a

generative grammar as a separate level of linguistic knowledge more abstract than any spe-

cific syntactic structure. The grammar generates a strongly constrained space of syntactic

structures that could result in sentences in the particular language. The constraints sup-

plied by the grammar are sufficient to allow the identification of a relatively small number

of syntactic structures for any particular sentence. These syntactic structures are identified

by parsing a sentence with respect to the grammar. Probabilistic grammars (see Charniak,

1993; Jurafsky & Martin, 2000; Manning & Shutze, 1999) augment the deterministic rules

of traditional grammars with probabilities. This approach allows parsing to be formulated

as a problem of Bayesian inference, with the grammar defining the hypothesis space of parse

trees, together with prior probabilities and likelihoods for each of these structures.

Just as a grammar cannot be expressed in a single parse tree, the prior knowledge that

constrains causal learning cannot be expressed in a single causal graphical model. This is

because of an inherent limitation in the expressive capacity of graphical models. Causal

graphical models are formally equivalent to a probabilistic form of propositional logic (e.g.,

Russell & Norvig, 2002). A causal graphical model can be used to encode any probabilistic

logical rule that refers to the properties of specific entities in the domain. An example of

such a rule might be that presence of chemical c causes expression of gene g in mouse m with

probability 0.8. The addition of plates, as discussed in Section 2.3, introduces a limited form

of quantification and makes it possible to define a causal relationship that holds over all
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entities. For example, we could use causal graphical models with plates to represent about

the relationship between c and g for all mice. However, causal graphical models cannot

encode rules that state conditions on causality that generalize over entities, such as the rule

that a causal relationship between any chemical and any gene exists with probability 0.8.

More generally, causal graphical models cannot capture the fact that there are different

types of entities, or the way that the types of entities involved in a potential relationship

influence our expectations about the plausibility and functional form of that relationship.

Such notions require going beyond causal graphical models, and considering richer proba-

bilistic logics. The development of probabilistic predicate logic remains an open problem

in artificial intelligence research (Friedman, Getoor, Koller, & Pfeffer, 1999; Kersting &

DeRaedt, 2000; Koller & Pfeffer, 1997; Milch, Marthi, & Russell, 2004; Muggleton, 1997).

In the next chapter, I consider how we can use some of the ideas behind this research to

develop a different level of representation for causal knowledge: a set of principles that

can be used to guide inferences about the causal structure that was most likely to have

generated a dataset. This level of representation is that of intuitive theories.



Chapter 3

Theory-based causal induction

I have argued that the problem of causal induction can be formulated as a Bayesian decision

in which the hypotheses are causal graphical models. This requires specifying a hypothesis

space, and a prior and likelihood for every hypothesis in that space. In this chapter, I

will argue that the problems of specifying these components of Bayesian inference and of

explaining how intuitive theories guide causal induction can both be solved by thinking of

theories as hypothesis space generators. I will explain what this means, introduce a simple

formalism for defining theories that can play this role, and demonstrate this formalism by

developing a simple theory applicable to the toxicology example introduced in Chapter 1.

3.1 Theories as hypothesis space generators

The problem of specifying a hypothesis space and a prior and likelihood for each hypothesis

in that space can be solved by defining a probabilistic procedure for generating causal

graphical models. Such a procedure needs to specify probability distributions from which

the variables, structure, and parameterization of causal graphical models are drawn. The

hypothesis space is the set of causal graphical models that can be generated by sampling

from these distributions, the prior is the probability with which a given model is generated

by this process, and the likelihood is determined by the parameterization of that model.

By limiting which causal structures and parameterizations can be generated, it is possible

to impose strong constraints on the hypotheses considered when reasoning about a causal

system.

The central claim of this thesis is that intuitive theories play exactly this role, generating

29
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hypothesis spaces for causal induction. The commitments and consequences of this claim

can be understood by extending the analogy between language comprehension and causal

induction introduced in the previous section, where I suggested that the prior knowledge

that guides causal induction is not just specified at the same abstract level of representa-

tion with respect to a causal graphical models as a grammar is to a parse tree. Extending

the analogy, a theory plays the same role in solving the problem of causal induction that

a grammar plays in language comprehension: like a grammar, a theory generates the hy-

potheses used in induction.1 A schematic illustration of the correspondence between these

two problems is shown in Figure 3.1. Under this view, the solution to the inductive problem

of causal learning has the same character as identifying the syntactic structure of sentences:

just as grammars generate a space of possible phrase structures, theories generate a space

of possible causal graphical models. Causal learning is thus a problem of “parsing” the

states of the variables in a system with respect to a causal theory. If the theory provides

strong enough constraints, such parsing can be done swiftly and easily, picking out the

causal structure that is most likely to have generated the data.

3.1.1 Formalizing intuitive theories

The first step in developing this account is to identify the basic elements of intuitive theories

– the equivalents of terminals, non-terminals, and rewrite rules for a context-free grammar

– and explain how these are used to generate causal graphical models. When cognitive

scientists appeal to an intuitive theory to explain the inferences that people make in a given

domain, they typically mean a structured representation with causal content, similar in

spirit to a scientific theory (e.g., Carey, 1985a). As discussed above, accounts in philosophy

of science and cognitive development are more precise about the structure and content

of such theories, seeing them as constructed from an ontology and causal laws (Carey,

1985b; Gopnik & Meltzoff, 1997; Wellman, 1990; Wellman & Gelman, 1992). Providing a

formal treatment of causal theories that captures their richness and complexity, as well as

1This equation of theories and grammars is foregrounded in Chomsky’s early writing on language:

The grammar of a language can be viewed as a theory of the structure of this language. Any
scientific theory is based on a certain finite set of observations and, by establishing general
laws stated in terms of certain hypothetical constructs, it attempts to account for these ob-
servations. . . Similarly, a grammar is based on a finite number of observed sentences. . . and it
“projects” this set to an infinite set of grammatical sentences by establishing general “laws”
. . . [stated in terms of] phonemes, words, phrases, and so on. (Chomsky, 1956, p. 113)
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(a) Grammar

Syntactic structure
(parse tree)

Sentence

Causal theory

Data

Causal structure
(graphical model)

(b)

Figure 3.1: Three levels of representation in (a) language comprehension and (b) causal
induction. Each level generates the level below, and language comprehension and causal
induction both involve inferring the middle level based upon data below and constraints
from above.

the breadth of inferences that they are supposed to support, is a task that goes beyond

the scope of this thesis. I will formalize just the aspects of intuitive theories relevant to

generating hypothesis spaces for causal induction.

The intuitive theories that I present in this thesis will have three components, corre-

sponding to the three aspect of prior knowledge that influence causal induction identified in

Chapter 1 and the three elements of the definition of a causal graphical model introduced

in Chapter 2. These three components are an ontology, a set of principles that identify

plausible relations, and a statement of the functional form of those relations. These three

components of a theory each generate one part of a causal graphical model, being the

variables, the causal structure, and the parameterization respectively.

The first component of a theory, the ontology, identifies the types of entities that exist

in a domain,2 the number of entities of each type (or a distribution over this number),

and the predicates that can be used to describe these entities. In the toxicology example,

there are three types of entities: Chemical, Gene, and Mouse. Any entity in the domain

must belong to one of these three types. The number of entities of each type can either

be stipulated, or treated as a random variable drawn from a specific distribution. For

example, I might state that the number of Chemicals, NC , the number of Genes, NG, and

2The term “type” is used here in the technical sense assoiated with a typed or many-sorted logic (see
Enderton, 1972). Types restrict quantifiers and the application of predicates, with each predicate only being
applicable to entities of particular types.
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the number of Mice, NM are drawn independently from distributions PC , PG, and PM

respectively, but leave these distributions undefined – in many applications, NC , NG and

NM will be apparent, and we need not be concerned about generating them. The predicates

defined on these types state which properties and relations can take arguments of particular

types, and what values those predicates can take on. In the toxicology case, these would

include Injected(Chemical, Mouse), indicating that a particular chemical was injected into

a particular mouse, and Expressed(Gene, Mouse), indicating that a particular gene was

expressed by a particular mouse. Both of these predicates are Boolean, being either true or

false. This ontology is summarized in Figure 3.2.

The ontology required for this example is relatively simple, but the kind of knowl-

edge that people have in other situations may be much more complex. For example, an

ontology could be hierarchical, with objects belonging to types at multiple levels and pred-

icates applying based upon the type at each of those levels. A theory that captured the

causal structure of our original toxicology example would have such a hierarchical ontology,

breaking entities first into Chemical and Gene, and then further dividing Chemical into

PeroxisomeProliferator and EnzymeInducer and Gene into the subtypes influenced by

these kinds of chemical. The number of entities that are of these subtypes could be de-

termined by probabilistically allocating the known set of chemicals and genes into the two

types. This procedure can express the fact that it might be more likely that a chemical is

a PeroxisomeProliferator than an EnzymeInducer.

The second component of an intuitive theory is a set of rules that determine which causal

relationships are plausible. These rules can be based upon the types of the entities involved,

or the predicates that apply to them. In the cases I consider, the rules will be based purely

on types.3 In the toxicology example, we know that the structure of the problem is such

that injections do not cause other injections, and nor does gene expression. It might be

possible that the expression of one gene influences the expression of another, but I will

assume that this is not the case for the moment. The only relationships with which we

will concern ourselves are those between chemicals and genes. Figure 3.2 states a rule by

3Defining the rules based purely on type results in simpler theories. More generally, we could allow
predicates to play a role in determining whether causal relationships are plausible. In fact, this is done
implicitly even when only type is used, since a typed logic can be reduced to standard first-order logic by
introducing predicates that indicate type (see Enderton, 1972). Pursuing this strategy requires distinguishing
between predicates that participate in causal relationships and predicates that are just used to determine
the plausibility of those relationships. The former are used to generate the variables of the causal graphical
models, while the latter define the prior probability of each model (see Tenenbaum & Griffiths, in prep, for
an example of this).
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Ontology:

Types Number Predicates Values
Chemical NC ∼ PC Injected(Chemical, Mouse) Boolean: {T, F}
Gene NG ∼ PG Expressed(Gene, Mouse) Boolean: {T, F}
Mouse NM ∼ PM

Plausible relations:
Injected(C, M) → Expressed(G, M)
True for all M with probability p for each C, G pair

Functional form:

Injected(C, M) ∼ Bernoulli(·)
Expressed(G, M) ∼ Bernoulli(ν) for ν from a noisy-OR:

Cause Strength
(Background) w0 ∼ Uniform(0, 1)
Injected(C, M) wi ∼ Uniform(0, 1)

Figure 3.2: Theory for causal induction from contingency data in a medical setting.

which the plausibility of such relationships might be expressed, assigning a probability p to

the existence of a causal relationship between a particular chemical and a particular gene,

regardless of the mouse involved. All other causal relationships have probability 0.

The final component of an intuitive theory is a statement of the functional form that

causal relationships are expected to possess. This requires specifying a parameterization (or

distribution over parameterizations) for each predicate identified in the ontology. For the

toxicology example, we need to define the probability that a particular mouse receives an

injection of a particular chemical. This probability will not influence any of our subsequent

analyses, and thus is not specified: the theory indicate that this is a Bernoulli event, being

true with some probability, but does not give the probability. In contrast, Expressed(G,M)

is identified as a Bernoulli event with parameter ν, where ν is computed using the noisy-

OR parameterization (Equation 2.2), allowing each cause – in this case Injected(C, M) for

some C – has an independent opportunity to influence the effect with probability wi. The

parameters wi are all assumed to be drawn from a uniform distribution, reflecting a lack of

expectations about the strengths of the causes.

3.1.2 Generating a hypothesis space

The process by which a causal graphical model is generated from a theory is as follows:
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1. Generate variables. Sample the number of entities of each type from the dis-

tribution specified in the Ontology. Generate the complete set of grounded

predicates for these entities. This is the set of variables that form the nodes

of the graph.

2. Generate structure. Sample links between nodes using the probabilistic

procedure stated in the Plausible relations component of the theory.

3. Generate parameterization. For each node, sample a parameterization as

specified in the Functional form component of the theory.

This generative process defines a hypothesis space, together with a prior probability and,

by specifying the parameterization, a likelihood for each model in that space.

I will illustrate how this generative process works by using the theory given in Equation

3.2. I will assume that the number of chemicals, genes, and mice involved in a particu-

lar experiment is known, and implicitly condition on this information. For example, we

might have a single chemical c, a single gene g, and NM mice m1, . . . , mNM
. The set of

grounded predicates is constructed by substituting all possible entities for the arguments

of each predicate in the ontology. In our case, this set consists of NM statements indicat-

ing whether Injected(c,mi) holds of mouse mi, and NM statements indicating whether

Expressed(g,mi) holds of mouse mi. We then have to consider possible causal struc-

tures on these 2NM variables. Since the constraints on plausible relations are such that

if Injected(c,mi) causes Expressed(g,mi) for some mouse mi, then it does so for all

mice, we can use plate notation (Section 2.3) to efficiently summarize the causal struc-

tures in the hypothesis space, representing the relationship between Injected(c,M) and

Expressed(g,M), quantifying over all mice with a logical variable M. The constraints on

plausible relations imply that the only possible causal relationship in this graphical model

is that from Injected(c,mi) to Expressed(g,mi), and that this relationship holds with

probability p. The hypothesis space H thus consists of two causal graphical models: one in

which Injected(c,M) causes Expressed(G,M), which has prior probability p, and one in

which Injected(C,M) does not cause Expressed(G,M), which has prior probability 1 − p.

These are Graph 1 and Graph 0, shown at the top of Figure 3.3, taking C to stand for

Injected(C,M), E to stand for Expressed(G,M), and using plates to quantify over M.

The same procedure can be used to generate a hypothesis space of causal graphical

models for other numbers of entities. For example, with two chemicals, c1 and c2, and two

genes, g1 and g2, the hypothesis space contains sixteen causal graphical models, with the
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Figure 3.3: Hypothesis spaces generated by the theory shown in Figure 3.1. The top of
the figure shows the hypothesis space for one chemical and one gene, which includes only
two causal structures. With two chemicals and two genes, the hypothesis space includes
sixteen causal structures, as shown in the lower portion of the figure. In the graphs, C
corresponds to Injected(c,M) for Chemical c and E corresponds to Expressed(g,M) for
Gene g. C1, C2, E1, and E2 should be interpreted similarly. M is a logical variable, and the
plates indicate that these relationships hold for all mice M.
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prior probabilities determined by the number of causal relationships expressed in the graph.

This hypothesis space is shown in the lower portion of Figure 3.3. The same theory can be

used to define a hypothesis space for five chemicals and ten genes, or fifty chemicals and

a thousand genes – the theory provides abstract principles that can be used to construct

a hypothesis space for any set of objects, just as a grammar can be used to construct all

possible parses of a sentence.

3.2 Top-down and bottom-up information

The theory-based causal induction framework combines the formalization of theories de-

veloped in the previous section with the principles of Bayesian structure learning. This

framework provides a precise account of how top-down and bottom-up information are

combined in causal learning. A theory T supplies a hypothesis space of causal graphical

models HT , each having a prior probability P (Graph i|T ). Each graph has a parameter-

ization, defining a likelihood, P (D|Graph i, T ). These probabilities can be combined via

Bayes’ rule (Equation 2.5) to compute a posterior probability for all of the models in the

hypothesis space, P (Graph i|D, T ). These posterior probabilities indicate how likely it is

that each graphical structure was responsible for generating the data D. The posterior

probability of Graph i given data D and theory T is

P (Graph i|D, T ) =
P (D|Graph i, T )P (Graph i|T )

P (D|T )
(3.1)

where P (D|T ) =
∑|HT |

i=1 P (D|Graph i, T )P (Graph i|T ) and |HT | is the size of the hypothesis

space.

Equation 3.1 indicates how the top-down influence of prior knowledge is combined with

the bottom-up influence of data to identify a particular causal structure. The top-down

influence is introduced by the prior, P (Graph i|T ), while the bottom-up influence is intro-

duced by the likelihood, P (D|Graph i, T ). The posterior distribution over causal structures

is proportional to the product of these two terms, making it tempting to believe that they

exert equal influence on the result. This “additive combination” view of the interaction

between prior knowledge and data is fairly widespread in the causal induction literature

(e.g., Alloy & Tabachnik, 1984; Koslowski, 1996), but it misses some important subtletles

of Equation 3.1.
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The theory T does not simply add evidence in favor of a particular causal structure: it

determines what counts as data, how that data is interpreted, and what other hypotheses

are considered. By generating the variables of the causal graphical models, the theory

establishes what properties of the world can have bearing on possible causal structures.

D consists of the values that these variables take on. Furthermore, P (D|Graph i, T ) is

determined by the theory T as the causal structure of the graph, due to the dependence

of the parameterization upon the theory. Different assumptions about the functional form

of causal relationships will justify different conclusions from the same data. Finally, the

normalizing constant P (D|T ) depends upon the other hypotheses generated by T . The

posterior probability of any particular graph will depend upon the number of other causal

structures generated by T that could explain D. These three factors are all neglected by

conceiving of causal induction as the result of an additive combination of top-down and

bottom-up information.

3.3 Descriptive and explanatory goals

Just as a grammar generates the set of syntactic structures considered in parsing a sentence,

a theory generates the set of causal models considered in causal induction. Pursuing this

analogy with linguistics suggests two goals to be pursued in studying human induction: a

“descriptive” goal of characterizing the theories used in different settings, and an “explana-

tory” goal of accounting for their origins (c.f. Chomsky, 1965). I will pursue the descriptive

goal in Chapters 4 to 6, using the theory-based framework developed in this chapter to iden-

tify the assumptions that are necessary to explain people’s inferences about different causal

systems. Chapter 4 analyses the case of causal learning from contingency data, discussing

experiments that use a cover story very similar to the toxicology example, and showing

that people make assumptions about functional form even in this abstract setting. I then

examine people’s inferences across a variety of different causal systems: Chapter 5 concerns

simple physical systems that can be modeled in discrete time, such as detectors and other

machines, while Chapter 6 focuses on systems that operate in continuous time, such as par-

ticle emissions and explosions. Considering this broad range of systems makes it possible

to address several important issues: learning from small samples, use of observations and

interventions, inferences about hidden causes, reasoning about dynamical systems, and the

effects of domain on causal induction.
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Just as examining the properties of different languages provides insights into their com-

mon grammatical structures, examining the kind of knowledge necessary to explain people’s

inferences about the different systems discussed in Chapter 4 to 6 reveals commonalities in

the way that this knowledge is organized, and provides hints as to how it might be acquired.

In Chapters 7 to 9 I return to the explanatory goal, considering how theories might be ac-

quired. Chapter 7 argues that coincidences play a key role in the process of theory change,

Chapter 8 discusses theory acquisition more broadly, and Chapter 9 connects these ideas

back to the key issues with which the thesis began. However, as with language acquisition,

these questions are deep and difficult, and I will only scratch their surface here.

In each of the following chapters, I will use specific formal theories like that shown in

Figure 3.2 to develop computational models of people’s inferences. These theories should

not be interpreted as an attempt to definitively state the knowledge that people have about

a particular a domain, or as claims about mental representations. What is important about

these theories is the set of constraints that they imply for causal structures. There are many

ways of specifying these theories that differ in scope and terminology but imply the same

constraints, and the theories that I present are intended to describe these constraints as

concisely as possible. These theories represent working assumptions about the knowledge

necessary to explain people’s inferences in particular settings. Making such assumptions

is necessary in order to demonstrate the utility of the central idea that motivates this

framework: that the interaction between prior knowledge and statistical inference in causal

induction can be understood by conceiving of theories as hypothesis space generators.



Chapter 4

Contingency data

The contagion spread rapidly and before its progress could be arrested, sixteen

persons were affected of which two died. Of these sixteen, eight were under my

care. On this occasion I used for the first time the affusion of cold water, in the

manner described by Dr. Wright. It was first tried in two cases. . . The effects

corresponded exactly with those mentioned by him to have occurred in his own

case and thus encouraged the remedy was employed in five other cases. It was

repeated daily, and of these seven patients, the whole recovered.

James Currie (1798/1960, p. 430)

The most basic problem of causal induction is learning that a relationship exists between

a single cause and effect. Psychologists have extensively investigated how people infer causal

relationships from contingency data, which indicate the frequency with which cause and

effect co-occur. As the epigraph illustrates, people are quite capable of inferring causal

relationships from such data. Its author, Dr. James Currie, was an eighteenth-century

ship’s surgeon who later went into practice in Liverpool. After having heard a Dr. William

Wright give an account of the efficacy of being doused with cold water in treating an

extended fever, Currie conducted his own experiment, with results described above. He

was sufficiently encouraged that he went on to use the treatment with hundreds of other

patients, publishing a detailed treatise on the matter (Currie, 1798/1960). Washing the

skin of the patient is still used to ease fevers, although modern medicine cautions against

using water cold enough to induce shivering.

39
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A number of mathematical models have been proposed to explain how people use con-

tingency data to evaluate causal relationships (e.g., Anderson, 1990; Anderson & Sheu,

1995; Allan, 1980; Cheng, 1997; Jenkins & Ward, 1965; López, Cobos, Caño, & Shanks,

1998; Cheng & Novick, 1990; 1992; Shanks, 1995b). These models tend to downplay the

role of prior knowledge, assuming that such knowledge serves to provide a set of candidate

causes, but contingency data are used to evaluate those causes. Indeed, Cheng (1997) goes

so far as to suggest that “the assumption that causal induction and the influence of domain-

specific prior causal knowledge are separable processes is justified by numerous experiments

in which the influence of such knowledge can be largely ignored” (p. 370).

I will provide an account of human causal induction from contingency data within the

theory-based framework developed in the previous chapter. Most experiments using contin-

gency data select candidate causes and effects for which causal relationships are plausible.

This uniformity of plausibility underlies claims about the separability of causal induction

and prior knowledge, and means that the aspect of causal theories that determines the

plausibility of relationships will not be as relevant here as in other settings discussed in

later chapters. However, as the theory-based framework emphasizes, prior knowledge is

not restricted to plausibility: it also determines assumptions about functional form. This

framework thus makes two claims about causal learning from contingency data: that vari-

ation in the assumed functional form should produce variation in human judgments, and

that causal inferences can be understood as statistical inferences. In this chapter, I will

test these claims by using the framework to define a new model of causal judgments, called

“causal support”. In the process, I will also attempt to clarify the assumptions behind

previous rational models, such as ∆P (Allan, 1980; Jenkins & Ward, 1965; López et al.,

1998) and causal power (Cheng, 1997),.

Causal support predicts several phenomena that are problematic for other rational mod-

els. My presentation will be organized around these phenomena. The first phenomenon I

will describe is the interaction between covariation, measured by ∆P , and the base-rate

probability of the effect in the absence of the cause in determining human judgments. This

interaction manifests in two curious phenomena, the “frequency illusion” – a decrease in

causal judgments as the base-rate decreases when ∆P = 0 (Allan & Jenkins, 1983; Buehner,

Cheng, & Clifford, 2003; Shanks, López, Darby, & Dickinson, 1996) – and non-monotonic

effects of changes in base-rate at other values of ∆P (Lober & Shanks, 2000). I will also

discuss effects of sample size (White, 1998; 2002; 2003b) and inferences from incomplete
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Table 4.1: Contingency Table Representation used in Causal Induction
Effect Present (e+) Effect Absent (e−)

Cause Present (c+) N(e+c+) N(e−c+)
Cause Absent (c−) N(e+c−) N(e−c−)

Note: N(·) denotes the frequency of a particular event.

contingency tables. No other rational model of can explain all of these phenomena, or fit

as wide a range of datasets as causal support.

The plan of the chapter is as follows. First I will outline the problem of causal induction

from contingency data in more detail, describing the experimental paradigms that are the

focus of my investigation, the two leading rational models, ∆P and causal power, and some

of the data that has been gathered in support of them. Then, I will use the theory-based

framework described in the previous chapter to analyze this problem, and to derive causal

support. The body of the chapter discusses the phenomena predicted by causal support

but not by other models, explaining the statistical origins of these predictions.

4.1 Causal induction from contingency data

Much psychological research on causal induction has focused upon the problem of learning

a single causal relationship from contingency data: given a candidate cause, C, and a

candidate effect, E, and information about the frequency with which the effect occurs in

the presence and absence of the cause, represented by the numbers N(e+, c+), N(e−, c−)

and so forth in Table 4.1, people are asked to assess the extent to which C causes E. In the

toxicology example introduced in Chapter 1, C might be injecting a chemical into a mouse,

and E the expression of a particular gene. For this case, N(e+, c+) would be the number

of injected mice expressing the gene, while N(e−, c−) would be the number of uninjected

mice not expressing the gene.

This contingency information is usually presented to participants in one of three modes.

Early experiments on causal induction would either explicitly provide participants with the

numbers contained in the contingency table (e.g., Jenkins & Ward, 1965), which I will refer

to as a “summary” format, or present individual cases one by one, with the appropriate

frequencies (e.g., Ward & Jenkins, 1965), which I will refer to as an “online” format. Some

more recent experiments use a mode of presentation between these two extremes, showing
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a list of all individual cases simultaneously (e.g., Buehner, Cheng, & Clifford, 2003; White,

2003b), which I will refer to as a “list” format.

Experiments also differ in the questions that are asked of the participants. Participants

can be asked to rate the strength of the causal relationship, the probability of a causal

relationship, or their confidence that a causal relationship exists. Understanding the effects

of question wording is an ongoing task (e.g., White, 2003a), but one variable that has

been shown to have a strong effect is asking counterfactual questions, such as “What is the

probability that a mouse not expressing the gene before being injected will express it after

being injected with the chemical?” (Buehner et al., 2003; Collins & Shanks, submitted).

Causal induction tasks also vary in their treatment of the valence of the potential cause,

and the nature of the rating scale used for responses. Causes can be either “generative,”

increasing the probability of an outcome (as in our mouse gene example), or “preventive,”

reducing its probability (as in the case of Dr. Currie’s cold water treatment). Some experi-

ments use exclusively generative or exclusively preventive causes and ask for judgments on

a nonnegative scale (e.g., 0 to 100), while others mix generative and preventive causes and

ask for judgments on a scale that has both positive and negative ends (e.g., -100 to 100).

Given the many ways in which experiments on causal judgment can differ, it is important

to identify the scope of the present analysis. I will discuss experiments that use all three

modes of presentation, as each mode captures an aspect of causal induction that is important

for the development of rational models: the summary format removes memory demands and

allows a deliberative inference, the online format taps intuitions about causality that are

engaged by direct interaction with data, and the list format falls between these extremes.

I will focus on experiments that require participants to make judgments about potential

causes of a single kind, generative or predictive. Most of the critical datasets in the current

debate about rational models of causal induction are of this form (e.g., Buehner & Cheng,

1997; Lober & Shanks, 2000).

4.1.1 Rational models

Recent work has focused on connecting the judgments people make in causal induction tasks

to some rational standard, following the same approach as that taken in this thesis. I will

describe two leading rational models of causal induction which are at the center of a debate

about modeling causal judgments: ∆P and causal power.
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∆P and associative strength

One common approach to modeling judgments about causal relationships is to combine the

frequencies from a contingency table in the form

∆P =
N(e+, c+)

N(e+, c+) + N(e−, c+)
− N(e+, c−)

N(e+, c−) + N(e−, c−)
= P (e+|c+) − P (e+|c−), (4.1)

where P (e+|c+) is the empirical conditional probability of the effect given the presence of

the cause, estimated from the contingency table counts N(·). ∆P thus reflects the change

in the probability of the effect occuring as a consequence of the occurence of the cause.

This measure was first suggested by Jenkins and Ward (1965), subsequently explored by

Allan (1980; 1993; Allan & Jenkins, 1983), and has appeared in various forms in both

psychology and philosophy (Cheng & Holyoak, 1995; Cheng & Novick, 1990; 1992; Melz,

Cheng, Holyoak & Waldman, 1993; Salmon, 1980). One argument for the appropriateness

of ∆P as a normative model uses the fact that it is the asymptotic value of the weight given

to the cause C when the causal induction task is modeled with a linear associator trained

using the Rescorla-Wagner (Rescorla & Wagner, 1972) learning rule (Cheng, 1997; Cheng

& Holyoak, 1995; Chapman & Robbins, 1990; Danks, 2003; Wasserman, Elek, Chatlosh &

Baker, 1993).

The Power PC theory and causal power

Cheng (1997) rejected ∆P as a measure of causal strength because it is a measure of

covariation, not causality. According to Cheng (1997; Novick & Cheng, 2004), human

judgments reflect a set of assumptions about causality that differ from those of purely

“covariational” measures such as ∆P and conventional statistics. Cheng’s (1997) Power PC

theory attempts to make these assumptions explicit, providing an axiomatic characterization

of causality and proposing that human causal judgments correspond to “causal power,” the

probability that C produces E in the absence of all other causes. Causal power for a

generative cause can be estimated from contingency data, with Cheng (1997) giving the

expression:

power =
∆P

1 − P (e+|c−)
. (4.2)

Causal power takes ∆P as a component, but predicts that ∆P will have a greater effect

when P (e+|c−) is large. Causal power can also be evaluated for preventive causes, following
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from a similar set of assumptions about the nature of such causes. The causal power for a

preventive cause is:

power =
−∆P

P (e+|c−)
, (4.3)

For preventive causes, the effect of P (e+|c+) on causal power is reversed, with ∆P having

a greater influence when P (e+|c+) is small.

The measure of causal power in Equation 4.2 can be derived from a counterfactual

treatment of “sufficient cause” (Pearl, 2000). Causal power corresponds to the probability

that, for a case in which C was not present and E did not occur, E would occur if C

was introduced. This probability depends upon ∆P , corresponding to the raw increase

in occurrences of E, but has to be normalized by the proportion of the cases in which C

could actually have influenced E. If some of the cases already show the effect, then C had

no opportunity to influence those cases and they should not be taken into account when

evaluating the strength of C. The requirement of normalization introduces P (e−|c−) =

1 − P (e+|c−) in the denominator.

To illustrate the difference between causal power and ∆P , consider the problem of

establishing whether injecting chemicals into mice results in gene expression. Two groups

of 60 mice are used in two experiments, evaluating the effect of different chemicals on

different genes. In each experiment, one group is injected with the chemical, and the other

group receives no injection. In the first experiment, 30 of the uninjected mice express the

gene, P (e+|c−) = 0.5, and 36 of the injected mice express it, P (e+|c+) = 0.6. In the second

experiment, 54 of the uninjected mice express the gene, P (e+|c−) = 0.9, and all 60 of the

injected mice express it, P (e+|c+) = 1. In each case ∆P = 0.1, but the second set of results

seem to provide more evidence for a relationship between the chemical and gene expression.

In particular, if we imagine that the frequency of gene expression among the uninjected

mice would be reproduced exactly in the other group of mice prior to injection, it seems

that the first chemical produces gene expression in only six of the thirty mice who would

not have otherwise expressed the gene, while all of the mice not expressing the gene in the

second experiment have their fates altered by the injection. This difference is reflected in

causal power, which is 0.2 in the first case and 1 in the second.
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4.1.2 The debate over ∆P and causal power

∆P and causal power make different predictions about the strength of causal relationships,

and several experiments have been conducted with the aim of determining which model

gives a better account of human data (e.g., Buehner & Cheng, 1997; Collins & Shanks, sub-

mitted; Lober & Shanks, 2000; Perales & Shanks, 2003; Shanks, 2002; Vallee Tourangeau,

Murphy, Drew, & Baker, 1998). Each model captures some of the trends identified in these

experiments, but there are several results that are predicted by only one of the models, as

well as phenomena that are predicted by neither. These negative results are almost equally

distributed between the two models, and suggest that there may be some basic factor miss-

ing from both. The problem can be illustrated by considering two sets of experiments: those

conducted by Buehner and Cheng (1997) and Lober and Shanks (2000).

The experiments conducted by Buehner and Cheng (1997; Buehner et al., 2003) explored

how judgments of the strength of a causal relationship vary when ∆P is held constant. This

was done using an experimental design adapted from Wasserman et al. (1993), giving 15

sets of contingencies expressing all possible combinations of P (e+|c−) and ∆P in increments

of 0.25. Experiments were conducted with both generative causes, for which C potentially

increases the frequency of E as in the cases described above, and preventive causes, for which

C potentially decreases the frequency of E, and with both online and summary formats.

For the moment, I will focus on the online study with generative causes (Buehner & Cheng,

1997, Experiment 1B), where a total of 16 trials gave the contingency information. The

results of this experiment showed that at constant values of ∆P , people made judgments

that were sensitive to the value of P (e+|c−). Furthermore, this sensitivity was consistent

with the role of P (e+|c−) in causal power.

However, as was pointed out by Lober and Shanks (2000), the results also proved prob-

lematic for the Power PC theory. The design used by Buehner and Cheng (1997) pro-

vides several situations in which sets of contingencies give the same value of causal power.

The data are shown in Figure 4.1, together with the values of ∆P and causal power.

∆P and causal power gave r scores of 0.889 and 0.881 respectively, with scaling parame-

ters γ = 0.98, 1.05.1 As can be seen from the figure, both ∆P and causal power predict

1Throughout this chapter, in each case where I have fit a computational model to empirical data, I have
used a scaling transformation to account for the possibility of non-linearities in the rating scale used by
participants. This is not typical in the literature, but is necessary to separate the quantitative predictions
from a dependency on the linearity of the judgment scale – an issue that arises in any numerical judgment
task. I use the transformation y = sign(x)abs(x)γ , where y are the transformed predictions, x the raw
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important trends in the data, but since these trends are orthogonal, neither model provides

a full account of human performance. The only sets of contingencies for which the two

models agree are those where ∆P is zero. For these cases, both models predict negligible

judgments of the strength of the causal relationship. In contrast to these predictions, people

give judgments that seem to decrease systematically as P (e+|c−) decreases. Similar effects

with ∆P = 0 have been observed in other studies (e.g., Allan & Jenkins, 1983; Shanks et

al., 1996), where the phenomenon is referred to as the “frequency illusion”.

In a further test of the two theories, Lober and Shanks (2000) conducted a series of

experiments in which either causal power or ∆P was held constant while the other var-

ied. These experiments used both online (Experiments 1-3) and summary (Experiments

4-6) formats. The results showed systematic variation in judgments of the strength of the

causal relationship at constant values of causal power, in a fashion consistent with ∆P . The

results of Experiments 4-6 are shown in Figure 4.2, together with the values of ∆P and

causal power. The models gave r scores of 0.980 and 0.581 respectively, with γ = 0.8, 1.1.

While ∆P gave a good fit to these data, the human judgments for contingencies with

{P (e+|c+), P (e+, c−)} of {30/30, 18/30}, {24/30, 12/30}, {12/30, 0/30} are not consistent

with ∆P : they show a non-monotonic trend, with smaller judgments for {24/30, 12/30}
than for either of the extreme cases. The quadratic trend over these three sets of contin-

gencies was statistically significant, but Lober and Shanks (2000) stated that “. . . because

the effect was non-linear, it probably should not be given undue weight” (p. 209). For

the purposes of Lober and Shanks, this effect was not important because it provided no

basis for discrimination between ∆P and causal power: neither of these theories can pre-

dict a non-monotonic change in causal judgments as a function of the base-rate probability

P (e+|c−).

The results of Buehner and Cheng (1997) and Lober and Shanks (2000) illustrate that

neither ∆P nor causal power provides a full account of people’s judgments in causal in-

duction tasks. These are not isolated results: ∆P and causal power cannot explain several

other phenomena of human causal induction. One of these phenomena is the effect of sample

size: both ∆P and causal power are defined using the conditional probabilities P (e|c), and

are thus insensitive to the number of observations expressing those probabilities. However,

human judgments change as the number of observations contributing to a contingency table

predictions, and γ a scaling parameter selected to maximize the linear correlation between the transformed
predictions and the data. This power law transformation accommodates a range of non-linearities.
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Figure 4.1: Predictions of rational models compared with the performance of human par-
ticipants from Buehner and Cheng (1997, Experiment 1B). Numbers along the top of the
figure show stimulus contingencies, error bars indicate one standard error.
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Figure 4.2: Predictions of rational models compared with the performance of participants
from Lober and Shanks (2000, Experiments 4-6). Numbers along the top of the figure show
stimulus contingencies.
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Figure 4.3: Hypothesis space for causal induction from contingency data. C corresponds
to Injected(c,M) for Chemical c and E corresponds to Expressed(g,M) for Gene g. The
plates indicate that these relationships hold for all mice M.

varies (White, 1998; 2002; 2003b). Another is inferences from incomplete data: people can

assess causal relationships in circumstances where there is not enough information to com-

pute the conditional probabilities of the effect in the presence and the absence of the cause.

In the early stages of both everyday and scientific inferences, we might be presented with an

incomplete contingency table. Neither ∆P nor causal power can explain the judgments that

people make from such data. In the remainder of the chapter, I will use the theory-based

framework to define a new model of causal induction from contingency data, and to provide

insight into the problems of ∆P and causal power.

4.2 Theory-based causal induction

The experiments conducted by Buehner and Cheng (1997) and Lober and Shanks (2000)

used cover stories with content similar to our toxicology example, asking people to evaluate

causal relationships between chemicals and genes. The theory given in Figure 3.2 can be

used to generate a hypothesis space of causal models expressing the different kinds of struc-

ture that might explain the contingency data yielded by the fictitious experiments described

in these cover stories. We have a single chemical and a single gene, so the hypothesis space

H contains the two models Graph 0 and Graph 1 shown at the top of Figure 3.3. For ease

of reference, these models are reproduced in Figure 4.3. According to the theory, these

models should use the Noisy-OR parameterization, with each cause independently having

the chance to influence the effect.
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Under this hypothesis space, the probability that a causal relationship exists is the

probability that Graph 1 was responsible for generating the data, D, being the frequencies

with which cause and effect co-occurred. We could compute the posterior probability of this

causal structure by applying Bayes’ rule, as in Equation 3.1. Alternatively, we could choose

to evaluate the evidence that D provides for this structure using the log likelihood ratio,

also known as the “Bayes factor” (Kass & Raftery, 1995). I will use this measure to define

“causal support,” the evidence a data set D provides in favor of Graph 1 over Graph 0:

support = log
P (D|Graph 1)

P (D|Graph 0)
. (4.4)

To evaluate causal support, it is necessary to compute P (D|Graph 1) and P (D|Graph 0).

Using a procedure described in Appendix B, it is possible to compute these probabilities

without committing to particular values of the parameters w0 and w1 by integrating over

all possible values these parameters could assume.

As illustrated in Figure 4.4, the major determinant of causal support is the extent to

which the posterior distribution over w1 places its mass away from zero. The contingency

data for the top three cases shown in the figure all result in the same estimate of causal

power (approximately the peak of the posterior distribution on w1), but increasing the

number of observations contributing to these contingencies decreases uncertainty about the

value of w1. It thus becomes more apparent that w1 has a value greater than zero, and

causal support increases. However, higher certainty does not always result in an increase

in causal support, as shown by the next three cases in the figure. Causal power is zero for

all three cases, and once again the posterior distribution shows higher certainty when the

number of observations is large. Greater confidence that w1 should be zero now results in a

decrease in causal support, although the effect is weaker than in the previous case. The last

three cases illustrate how causal support can differ from causal power. The contingencies

{30/30, 18/30} suggest a high value for w1, with relatively high certainty, and consequently

strong causal support; {24/30, 12/30} suggest a lower value of w1, with less certainty, and

less causal support; and {12/30, 0/30} produces an even lower value of w1, but the higher

certainty that this value is greater than zero results in more causal support.



CHAPTER 4. CONTINGENCY DATA 51

M
ar

gi
na

l p
os

te
rio

r 
pr

ob
ab

ili
ty

0 0.5 1
 w

1
 

2/4
0/4

10/20
 0/20

25/50
 0/50

0/4
0/4

 0/20
 0/20

 0/50
 0/50

30/30
18/30

24/30
12/30

12/30
 0/30

Support

Figure 4.4: Marginal posterior distributions on w1 and values of causal support for six
different sets of contingencies. The first three sets of contingencies result in the same
estimates of ∆P and causal power, but different values of causal support. The change in
causal support is due to the increase in sample size, which reduces uncertainty about the
value of w1. As it becomes clear that w1 takes on a value other than zero, the evidence
for Graph 1 increases, indicated by the increase in causal support. The second set of three
contingencies shows that increasing sample size does not always result in increased causal
support, with greater certainty that w1 is zero producing a mild decrease in causal support.
The third set of three contingencies illustrates how causal support and causal power can
differ. While the peak of the distribution over w1, which will be close to the value of causal
power, decreases across the three examples, causal support changes in a non-monotonic
fashion.
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4.3 Alternative accounts

We can gain insight into the critical features of this account of causal induction from con-

tingency data by comparing its predictions to those of other models. The theory-based

account assumes that people approach causal induction as a decision between different

causal structures, and that their intuitive theory of the interactions between chemicals and

genes involves a functional form equivalent to the noisy-OR. By exploring the consequences

of modifying these assumptions, we can evaluate what role they play in explaining people’s

inferences. I will describe two classes of models that each result from modifying one of these

assumptions. The first class makes assumptions about functional form, but does not treat

causal induction as a problem of structure learning. The two models in this class are the

psychological models of causal induction from contingency data introduced above – ∆P and

causal power. The second class treats causal induction as structure learning, but does not

make assumptions about functional form, and includes the χ2 test used in constraint-based

algorithms.

4.3.1 Functional form without structure learning

My discussion of learning causal graphical models in Chapter 2 focused on the problem of

structure learning, which in this case amounts to asking whether or not a causal relation-

ship exists. However, there is a second problem that arises when learning such models, the

problem of parameter estimation. This involves assuming that a relationship exists, and

evaluating its strength. There are several approaches to parameter estimation in graphical

models (Heckerman, 1998). The simplest approach is maximum-likelihood estimation. For

a particular graphical structure and parameterization, the likelihood of a set of parame-

ters for data D is the probability of D under the distribution specified by that structure,

parameterization, and choice of parameter values. Given Graph 1 with a noisy-OR parame-

terization, maximum-likelihood parameter estimation would involve choosing the values for

w0, w1 that maximize P (D|w0, w1, Graph 1). A Bayesian alternative is maximum a poste-

riori parameter estimation, in which a prior is defined on w0 and w1, and parameter values

are chosen to maximize the product of this prior and the likelihood.

The two rational models at the heart of the current theoretical debate about elemental

causal induction address the same component of the underlying computational problem in

fundamentally similar ways. Both ∆P and causal power are maximum-likelihood estimates
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of the causal strength parameter w1 in Graph 1, but under different parameterizations

(Tenenbaum & Griffiths, 2001). As shown in Appendix B, ∆P corresponds to the linear

parameterization (Equation 2.4), whereas causal power for generative causes corresponds

to the noisy-OR parameterization (Equation 2.1) and for preventive causes corresponds to

the noisy-AND-NOT parameterization (Equation 2.3). Glymour (1998) also showed that

causal power corresponds to the strength parameter in a noisy-OR. Since they are estimates

of the parameters of a fixed graphical structure, ∆P and causal power both measure the

strength of a causal relationship, based upon the assumption that the relationship exists.

As point estimates of a parameter, ∆P and causal power share several properties.

Firstly, they do not answer the question of whether or not a causal relationship exists.

Large values of ∆P or causal power are likely to be associated with genuine causal relation-

ships, but small values are non-diagnostic. Shanks (1995a, p. 260) notes this, pointing out

that while ∆P for the effect of smoking on lung cancer is small, around 0.00083, “no one

would deny that the relationship between smoking and lung cancer is an important one”.

This relates to a second property of both ∆P and causal power: these measures contain

no information about uncertainty in the estimates involved. This uncertainty is crucial

to deciding whether a causal relationship actually exists. Even a small effect can provide

strong evidence for a causal relationship, provided its value is estimated with high certainty.

A major factor influencing certainty in a parameter estimate is the number of observations

contributing to the estimate, highlighting a third property of both ∆P and causal power:

neither is affected by the size of the sample from which their values are computed. One

of the reasons we are able to conclude that smoking causes lung cancer, despite its rela-

tively low strength, is that thousands of datapoints have contributed to this estimate of the

strength of the cause, and we are quite sure that it is greater than zero.

Identifying both ∆P and causal power as maximum-likelihood parameter estimates also

helps to illustrate how these measures differ: they make different assumptions about the

functional form of a causal relationship. The linear relationship assumed by ∆P seems

less consistent with the intuitions people express about causality than the noisy-OR, an

important insight which is embodied in Cheng’s (1997) Power PC theory. Cheng’s (1997)

distinction between “causal” and “covariational” measures turns on this fact: she views

the noisy-OR parameterization as resulting from the correct set of assumptions about the

nature of causality, and it is the use of this parameterization that distinguishes the Power PC

theory from covariation-based accounts. Under the theory-based account, the appropriate
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parameterization for the relationship between a cause and its effects will depend upon

an individual’s prior knowledge: in some settings, other parameterizations may be more

appropriate than the noisy-OR.

4.3.2 Structure learning without functional form

The first step of constraint-based algorithms for learning causal structure is to evaluate the

dependencies among a set of variables. This is typically done using the standard frequentist

analysis of contingency tables, Pearson’s (1904/1948) χ2 test for independence. The use

of the χ2 test as a model for human causal judgment was suggested in the psychological

literature (e.g., Allan, 1980), but was rejected on the grounds that it neglects the kind of

asymmetry that is inherent in causal relationships, providing information solely about the

existence of statistical dependency between the variables (Allan, 1980; López et al., 1998;

Shanks, 1995b). χ2 also makes no commitment about the functional form of the relationship

between cause and effect: it simply detects any kind of statistical dependency between C

and E.

4.3.3 Comparing the models

These three models – ∆P , causal power, and χ2 – can be used to examine which of the

assumptions behind the theory-based account are relevant to the explanation of partic-

ular phenomena in causal induction. In the remainder of the chapter, I will show that

causal support can provide an explanation for phenomena that are problematic for existing

psychological models of causal induction, and cannot be accounted for by using standard

statistical tools for assessing causal relationships. I will consider four such phenomena in

turn: the interaction between ∆P and P (e+|c−), non-monotonic effects of P (e+|c−), sample

size effects, and inferences from incomplete contingency tables.

4.4 Interaction between ∆P and P (e+|c−)

In section 4.1.2 I discussed results from Experiment 1B of Buehner and Cheng (1997; later

published in Buehner et al., 2003), which are shown in Figure 4.1. This experiment used an

online format, and produced trends that were independently problematic for both ∆P and

causal power, as well as a trend that neither model could predict: people’s judgments at



CHAPTER 4. CONTINGENCY DATA 55

∆P = 0 decrease as the base-rate probability of the effect, P (e+|c−), decreases. The fun-

damental problem in explaining the results of Buehner and Cheng (1997) is accounting for

the interaction between ∆P and the base-rate probability in producing human judgments.

∆P predicts no interaction, and causal power predicts the simple relationship given in

Equation 4.2, but neither of these predictions matches human judgments. I will show that

causal support is able to correctly predict this interaction, demonstrating that the model

can capture the trends found by Buehner and Cheng (1997), and examine why it makes

this prediction.

Figure 4.1 shows the data from Buehner and Cheng (1997, Experiment 1B), together

with predictions of four models: ∆P , causal power, causal support, and χ2. As noted in

section 4.1.2, both ∆P and causal power capture some trends in the data, but miss others,

resulting in correlations of r = 0.889 and r = 0.881. Causal support provides the best

quantitative account of this dataset, r = 0.968, γ = 0.668, and accounts for all of the major

trends in human judgments, including those at ∆P = 0. χ2 gives a correlation of r = 0.889,

γ = 0.596.

Causal support correctly predicts the interaction between ∆P and P (e+|c−) in influenc-

ing people’s judgments. In particular, it is the only model that predicts human judgments

at ∆P = 0. The explanation for these predictions is not that there is decreasing evidence

for a causal relationship as P (e+|c−) decreases, but rather that there is no evidence for

or against a causal relationship when P (e+|c−) = 1, and increasing evidence against a

causal relationship as P (e+|c−) decreases. This account depends on the assumption that

the causal relationship – if it exists – is generative (increasing the probability of the effect,

rather than preventing it). At one extreme, when {P (e+|c+), P (e+|c−)} = {8/8, 8/8}, all

mice expressed the gene irrespective of treatment, and it is clear that there is no evidence

for a causal relationship. But there can also be no evidence against a (generative) causal

relationship, because of a complete “ceiling” effect: it is impossible for the cause to increase

the probability of E occuring above its baseline value when P (e+|c−) = 1. This uncertainty

in causal judgment when P (e+|c−) = 1 and ∆P = 0 is predicted by both causal support,

which is essentially 0, and also (as Cheng, 1997, points out) by causal power, which is

undefined there.

Only causal support, however, predicts the gradient of judgments as P (e+|c−) decreases.

Causal support becomes increasingly negative as the ceiling effect weakens and the obser-

vation that ∆P = 0 provides increasing evidence against a generative causal relationship.
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At the other extreme, when P (e+|c−) = 0/8, no untreated mice expressed the gene, and

there are eight opportunities for a causal relationship to manifest itself in the treated mice

if such a relationship in fact exists. The fact that the effect does not appear in any treated

mice, P (e+|c+) = 0/8, suggests that the drug does not cause gene expression. The interme-

diate cases provide intermediate evidence against a causal relationship. The contingencies

{2/8, 2/8} offer six chances for the treatment to have an effect, and the fact that it never

does so is slightly weaker evidence against a relationship than in the {0/8, 0/8} case, but

more compelling than for {6/8, 6/8}, where the cause only has two chances to manifest

itself and the observation that ∆P = 0 could easily be a coincidence. This gradient of

uncertainty shapes the Bayesian structural inference underlying causal support, but it does

not impact the maximum-likelihood parameter estimates underlying causal power or ∆P .

Figure 4.5 reveals why causal support is sensitive to the change in P (e+|c−), showing

the posterior distribution on w1 for each set of contingencies. Greater certainty in the value

of w1 is reflected in a more peaked distribution, and causal support becomes larger as it

becomes more apparent that w1 is greater than zero. The top five plots show the cases where

∆P = 0. Despite the fact that ∆P is the same in these five cases, the posterior distributions

on w1 look quite different. Four of the distributions have a maximum at w1 = 0, consistent

with the estimate of causal power for these contingencies, but they differ in the certainty

of the estimate, reflected in the breadth of the posterior about this point.2 As P (e+|c−)

increases, fewer observations contribute to the estimate of w1, and the posterior becomes

more diffuse, being almost uniform for P (e+|c−) = 1.

This explanation depends upon two aspects of this theory-based account: the general

assumption that causal induction is a statistical inference comparing causal structures,

and the specific assumption that the appropriate functional form is the noisy-OR. The

importance of these assumptions is supported by the failure of causal power, an estimate of

the strength of a causal relationship under the noisy-OR, and the generic Bayesian structure-

learning model. One prediction of this account is that people should alter their judgments

in circumstances where a different functional form is appropriate. An opportunity to test

this prediction comes from preventive causes. Since the noisy-OR only allows causes to

2The distribution for w1 when P (e+|c+) = P (e+|c−) = 1 is mostly flat but has a very slight peak at
w1 = 1, despite causal power being undefined for this case. This is because there is also uncertainty in the
value of w0. If w0 actually takes on any value less than 1, and the large number of occurrences of the effect
in the absence of the cause is just a coincidence, then the large number of occurrences of the effect in the
presence of the cause still needs to be explained, and the best explanation is that w1 is high.
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Figure 4.5: Marginal posterior distributions on w1 and values of causal support for the
contingencies used in Buehner and Cheng (1997, Experiment 1B).
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increase the probability of their effects, a different parameterization is required to capture

the properties of causes which decrease the probability of their effects. Buehner and Cheng

(1997, Experiment 1A) used a design similar to that already described for generative causes

to assess people’s judgments about preventive causes. The results of this experiment are

shown in Figure 4.6. From the figure, it can be seen that the trend at ∆P = 0 is reversed

for preventive causes: a decrease in P (e+|c−) results in an increase in people’s judgments.

Modeling this data requires making an assumption about the functional form of pre-

ventive causes. A simple theory of this kind would have the same content as the theory

for generative causes shown in Figure 3.2, except for the assumptions about functional

form, replacing the noisy-OR with the noisy-AND-NOT parameterization (Equation 2.3.

Under a theory using the noisy-AND-NOT, the evidence for Graph 1 can still be evalu-

ated via Equation 4.4, but the different parameterization results in different probabilities

for P (D|Graph 1) and P (D|Graph 0). First, it should be noted that comparing structures

with the noisy-AND-NOT parameterization provides a poor account of human judgments

for generative causes, being strongly anti-correlated with human judgments for generative

causes. However, the noisy-AND-NOT model gives a good account of human judgments for

preventive causes, with r = 0.922, γ = 0.537, while the noisy-OR model produces a negative

correlation. The explanation for the predictions of the noisy-AND-NOT model is similar

to the generative case, although now the “ceiling effect” is a “floor effect”: as P (e+|c−)

increases there is more opportunity for a non-zero value of w1 to be demonstrated.

The alternative models discussed above can also be applied to this preventive setting.

Under a linear parameterization, the appropriate measure of associative strength is -∆P .

Causal power for inhibitory causes is given in Equation 4.3. Glymour (1998) pointed out

that this definition of causal power corresponds to w1 under a noisy-AND-NOT parameter-

ization, and the same argument as for the noisy-OR shows it to be a maximum-likelihood

estimate of this parameter. χ2 is insensitive to the distinction between generative and pre-

ventive causes, and can be applied just as in the generative case. Comparing these models

to the data shows that causal power performs similarly to causal support with the noisy-OR

parameterization, r = 0.912, γ = 1.278, while ∆P gives r = 0.800, γ = 0.943 and χ2 gives

r = 0.790, γ = 0.566. The predictions of these models are shown in Figure 4.6.

Inferences about generative causes are best captured using a noisy-OR parameterization,

and inferences about preventive causes are best captured by the noisy-AND-NOT. This

suggests that people make different assumptions about the functional form of generative
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Figure 4.6: Predictions of rational models compared with the performance of human par-
ticipants from Buehner and Cheng (1997, Experiment 1A). Numbers along the top of the
figure show stimulus contingencies, error bars indicate one standard error.
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and preventive causes, a fact that is consistent with the inclusion of functional form in the

intuitive theories used in the theory-based framework. A further question raised by these

results is whether there are any circumstances under which people’s judgments will be best

captured by other parameterizations. In particular, standard Bayesian structure learning

algorithms use what I called the “generic” parameterization in Chapter 2, defining the

probability of the effect in the presence and absence of the cause by separate parameters,

with P (e+|c−) = w0 and P (e+|c+) = w1. The same parameterization is assumed by

Anderson’s (1990; Anderson & Sheu, 1995) rational model of causal induction (Griffiths

& Tenenbaum, in press). This parameterization makes no assumptions about the nature

of the causal relationship between C and E, postulating simply that the two variables are

dependent.

The generic parameterization makes no assumptions about the nature of the relationship

between cause and effect. Bayesian structure learning with this parameterization amounts

to assessing whether there is any difference in the probability with which the effect occurs

in the presence and absence of the cause. Consequently, we should expect that explicitly

asking people to assess whether there is a difference in the probability with which the effect

occurs under two different conditions will produce responses consistent with the generic

parameterization. This hypothesis is tested in Experiment 4.1, which also aimed to replicate

the results of Buehner and Cheng (1997) with generative and preventive causes.

4.4.1 Experiment 4.1: The effect of functional form

Method

Participants. Participants were 187 Stanford University undergraduates. There were

73 participants in the generative condition, 58 in the difference condition, and 67 in the

preventive condition.

Stimuli. The three conditions used the same contingencies, presented in slightly different

fashion. Participants were asked to evaluate a set of contingencies as either evidence for

a generative causal relationship between a chemical and a gene, evidence for a preventive

causal relationship between a chemical and a gene, or evidence for a difference in the

probability of gene expression between two species of mice. The generative condition used

the stimuli from Buehner and Cheng (1997, Experiment 1B), as given in Figure 4.1, the

preventive condition used the stimuli from Buehner and Cheng (1997, Experiment 1A), as
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given in Figure 4.6. These stimuli differ only in whether P (e+|c+) is greater than P (e+|c−)

or vice versa. The difference condition used the same contingencies, randomizing whether

the probability of the effect was higher for the first species or the second.

Procedure. The stimuli were presented in a one-page survey, which outlined the medical

cover-story and then asked people to evaluate the evidence provided by the contingencies,

stating that each set of contingencies indicated the results of a laboratory study. It was

emphasized that each study concerned a different chemical (or pair of species) and a different

gene. In the generative condition, participants were given the following instructions:

For each study, write down a number between 0 and 100 representing the degree

to which the chemical causes the gene to be expressed. A rating of 0 indicates

that the chemical DOES NOT CAUSE the gene to be expressed at all, and a

rating of 100 indicates that the chemical DOES CAUSE the gene to be expressed

every time. Use intermediate ratings to indicate degrees of causation between

these extremes.

In the preventive condition, the instructions read:

For each study, write down a number between 0 and 100 representing the degree

to which the chemical prevents a virus being caught. A rating of 0 indicates

that the chemical DOES NOT PREVENT the virus at all, and a rating of

100 indicates that the chemical DOES PREVENT the virus every time. Use

intermediate ratings to indicate degrees of prevention between these extremes.

Finally, the difference condition gave the instructions:

For each study, write down a number between 0 and 100 representing how likely

you think it is that the two species differ in their probability of expressing that

gene. A rating of 0 indicates that the two species DEFINITELY have THE

SAME probability of expressing the gene, while a rating of 100 indicates that

the two species DEFINITELY have DIFFERENT probabilities of expressing the

gene. Use intermediate ratings to indicate degrees of likelihood between these

extremes.

Participants completed the survey as part of a booklet of unrelated surveys.
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Table 4.2: Rank-Order Correlations for Different Rational Models

Buehner & Cheng (1997) Experiment 4.1
Model Generative Preventive Generative Difference Preventive

∆P 0.883 0.769 0.968 0.968 0.946
Power 0.942 0.884 0.949 N/A 0.971
χ2 0.880 0.761 0.966 0.958 0.940

Support:
Noisy-OR 0.961 -0.814 0.971 0.850 -0.721
Generic 0.876 0.760 0.957 0.975 0.930
Noisy-AND-NOT -0.868 0.893 -0.732 -0.336 0.971

Note: Boldface indicates highest correlation in each column.

Results and Discussion

People’s judgments in the generative and preventive conditions replicated the results of

Buehner and Cheng (1997), having a correlation of r = 0.993 and r = 0.989 with Experi-

ments 1B and 1A respectively. The correlations of the six models with the three different

conditions are shown in Table 4.2. As some of the models were negatively correlated with

the data, the practice of finding the optimal non-linear scale transformation could not be

applied here, since it would attempt to reduce negative correlations to zero correlations.

Consequently, I report the rank-order correlation for each model. For comparison, the table

also reports rank-order correlations for the experiments of Buehner and Cheng (1997).

Human judgments for the five stimuli for which ∆P = 0 are shown in Figure 4.7.

∆P , causal power, and χ2 all predict that there should be no variation in responses across

these stimuli. Contrary to these predictions, the effect of P (e+|c−) on judgments was

statistically significant in all three conditions – generative (F (4, 288) = 5.32, MSE =

216.92, p < 0.001), preventive (F (4, 264) = 2.63, MSE = 313.25, p < 0.05), and differ-

ence (F (4, 228) = 2.70, MSE = 359.19, p = 0.031). There was also a statistically significant

interaction between P (e+|c−) and condition (F (8, 780) = 3.57, MSE = 291.11, p < 0.001).

As can be seen from the figure, this variation was exactly as should be expected if people

are performing Bayesian structure learning with the appropriate parameterization. Chang-

ing the context in which causal induction is performed thus seems to affect the functional

form that people assume, a phenomenon that is completely consistent with the theory-based

account.
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Figure 4.7: Effect of assumptions about functional form on causal induction. The top row
shows people’s judgments for a set of stimuli for which ∆P = 0, under three different
kinds of instructions, as described in the text. The bottom row shows the predictions of
the theory-based account under three different assumptions about the functional form of a
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4.5 Non-monotonic effects of P (e+|c−)

Accounting for the interaction between ∆P and the base-rate probability, P (e+|c−), is

fundamental to explaining the results of Buehner and Cheng (1997). It is also important in

explaining other phenomena of causal induction. The second dataset discussed in Section

4.1.2 was Experiments 4-6 from Lober and Shanks (2000), shown in Figure 4.2. ∆P accounts

for these data quite well, reflected in the high correlation coefficient, r = 0.980, γ = 0.797,

while causal power does poorly, r = 0.581, γ = 1.157. However, neither of these models

can predict the non-monotonic effect of P (e+|c−) seen with the {P (e+|c+), P (e+, c−)} pairs

{30/30, 18/30}, {24/30, 12/30}, {12/30, 0/30}. A similar, but weaker, trend can be seen in

the online data of Buehner and Cheng (1997, Experiment 1B), shown in Figure 4.1, for the

contingencies {8/8, 4/8},{6/8, 2/8},{4/8, 0/8}. These non-monotonic trends cannot even

be predicted by models that form linear combinations of the entries in a contingency table,

such as Anderson and Sheu (1995) and Schustack and Sternberg (1981), despite their many

free parameters and great flexibility.

Causal support with the noisy-OR parameterization gives the best quantitative fit to

this dataset, r = 0.994, γ = 0.445, with χ2 performing similarly, r = 0.993, γ = 0.502. Both
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causal support and χ2 predict non-monotonic trends, as shown in Figure 4.2. The intuitive

reasons for these predictions were mentioned when discussing Figure 4.4, which uses exactly

the same set of contingencies: while {24/30, 12/30} suggests a higher value of causal power

than {12/30, 0/30}, such a difference in contingencies is more likely to arise by chance. As

with the explanation of predictions for ∆P = 0 given in Section 5, the high certainty in the

value of w1 for {12/30, 0/30} results partly from the low value of P (e+|c−).

The non-monotonic trend observed in Experiments 4-6 of Lober and Shanks (2000) did

not appear in their Experiments 1-3, despite the use of the same contingencies, as shown in

Figure 4.8. The only difference between these two sets of experiments was the presentation

format, with an online format being used in Experiments 1-3, and a summary format in

Experiments 4-6. This presents a challenge for the explanation based on causal support

given above. However, I will argue that this discrepancy can be resolved through a finer-

grained analysis of these experiments.

Catena, Maldonando, and Cándido (1998) and Collins and Shanks (2002) both found

that people’s judgments in online experiments are influenced by response frequency. Specif-

ically, people seem to make judgments that are based upon the information presented since

their last judgment, meaning that “primacy” or “recency” effects can be produced by us-

ing different response schedules (Collins & Shanks, 2002). Lober and Shanks (2000) used

a procedure in which participants made judgments after blocks of trials, with 6 blocks of

length 10 in Experiment 1, two blocks of length 18 and one of length 20 in Experiment

2, and 3 blocks of length 20 in Experiment 3. The actual trials presented in each block

were selected at random. Thus, while the overall contingencies might match those used in

Experiments 4-6, the contingencies contributing to any individual judgment varied. This

may account for the difference between the results of the two experiments. In particular,

the smaller sample sizes contributing to the contingencies may affect people’s judgments.

To test this hypothesis, I used the records of the individual trials seen by the participants

in these experiments to establish the contingencies each participant saw in each block, and

evaluated the performance of different models in predicting the judgments of individual

participants for each block from these contingencies.3 The results of these analyses are

given in Table 4.3. The correlations are lower than those reported elsewhere in the paper

3The raw data from Lober and Shanks (2000) was supplied by Klaus Melcher. The models compared
in this section were fit using the same scaling parameter for all participants within the same experiment.
Causal power was not computed for this comparison, as the presence of extreme contingencies in several
cases resulted in undefined values of causal power, interfering with correlations and averaging.
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Figure 4.8: Predictions of rational models compared with the performance of participants
from Lober and Shanks (2000, Experiments 1-3). Numbers along the top of the figure show
stimulus contingencies, but the results are constructed by averaging over the blocks of trials
seen by individual subjects, in which contingencies varied.
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Table 4.3: Correlations of Rational Models with Lober and Shanks (2000)
∆P Support χ2

Experiment 1 0.354 0.350 0.354
Experiment 2 0.462 0.465 0.471
Experiment 3 0.336 0.382 0.303
Overall means 0.695 0.895 0.829

Note: Boldface indicates highest correlation in each row.

because they concern the responses of individual participants rather than average scores.

While all models did equally well in predicting the results of Experiments 1 and 2, causal

support gave a better account of the results of Experiment 3, with a correlation of r = 0.382

as compared to r = 0.336 for ∆P , and r = 0.303 for χ2. The model predictions, averaged

across blocks and participants in the same fashion as the data, are shown in Figure 4.8.

The mean values of causal support do not show any predicted non-monotonicity, in accord

with the data. As shown in Table 4.3, the mean causal support correlates better with the

mean human judgments than the mean predictions of any other model, with r = 0.895 for

causal support, r = 0.695 for ∆P , and r = 0.829 for χ2.

There are two reasons why causal support does not predict a non-monotonic trend for

Experiments 1-3: smaller samples, and variation in observed contingencies. The effect

of sample size is simple: causal support predicts a non-monotonic trend for contingencies

derived from 30 trials in each condition, but this trend is almost completely gone when there

are only 10 trials in each condition. Small samples provide weaker evidence that the strength

of the cause is different from zero in all conditions, with {12/30, 0/30} and {24/30, 12/30}
giving equivalently weak support for a causal relationship. The effect of variation in observed

contingencies is more complex. Since both ∆P and causal power are estimated from the

conditional probabilities P (e|c), and the empirical probabilities give unbiased estimates of

the true probabilities, averaging across many sets of contingencies generated according to

those probabilities gives mean values that approximate the true ∆P and causal power.

Causal support is a more complex function of observed contingencies, and averaging causal

support across a set of samples produces different results from computing causal support

from the average contingencies. In particular, variation in the contingencies within blocks

results in some blocks providing very weak evidence for a causal relationship (for example,

in the {12/30, 0/30} condition, one participant saw a block in which the cause was present
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on eight trials, but the effect occurred on only one of these trials). Such results have the

greatest effect in the {12/30, 0/30} condition, and the mean causal support in this condition

consequently ends up slightly lower than causal support estimated from mean contingencies.

Although a non-monotonic effect of P (e+|c−) appears in both Lober and Shanks (2000,

Experiments 4-6) and Buehner and Cheng (1997), it has not been the principal target

of any experiments. Since no existing model of elemental causal induction can predict

this phenomenon, confirming its existence would provide strong evidence in favor of causal

support. Experiment 4.2 was designed to explore this non-monotonic effect further.

4.5.1 Experiment 4.2: Testing for non-monotonicities

Method

Participants. 108 Stanford undergraduates participated for course credit.

Stimuli. The contingencies used in the experiment are shown in Figure 4.9. They

included three sets of three contingencies at fixed values of ∆P but different values of

P (e+|c−), and several distractors. The sets of contingencies with fixed ∆P used ∆P = 0.40,

∆P = 0.07 and ∆P = 0.02. ∆P predicts no effect of P (e+|c−) within these sets, so any

effect provides evidence against this model. Causal power predicts a monotonic increase

in people’s judgments as P (e+|c−) increases, and causal support predicts a non-monotonic

trend in the first two sets of contingencies, and a monotonic increase with P (e+|c−) in

the third. Finding non-monotonic effects in the first two sets of contingencies would thus

provide evidence for causal support over causal power.

Procedure. The experiment was conducted in survey form. The instructions placed

the problem of causal induction in a medical context:

Imagine that you are working in a laboratory and you want to find out whether

certain chemicals cause certain genes to be expressed in mice. Below, you can

see laboratory records for a number of studies. In each study, a sample of mice

were injected with a certain chemical and later examined to see if they expressed

a particular gene. Each study investigated the effects of a different chemical on

a different gene, so the results from different studies bear no relation to each

other.

Of course, these genes may sometimes be expressed in animals not injected with

a chemical substance. Thus, a sample of mice who were not injected with any
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chemical were also checked to see if they expressed the same genes as the injected

mice. Also, some chemicals may have a large effect on gene expression, some

may have a small effect, and others, no effect.

Participants were then asked for ratings on a total of 14 different contingency structures.

The instructions for producing the ratings were:

For each study, write down a number between 0 and 20, where 0 indicates

that the chemical DOES NOT CAUSE the gene to be expressed at all, and 20

indicates that the chemical DOES CAUSE the gene to be expressed every time.

Each participant completed the survey as part of a booklet of unrelated experiments.

Results and Discussion

The results are shown in Figure 4.9. As predicted, there was a statistically significant effect

of P (e+|c−) in all three sets of contingencies with fixed ∆P . For ∆P = 0.40, F (2, 214) =

6.61, MSE = 17.43, p < 0.005, for ∆P = 0.07, F (2, 214) = 3.82, MSE = 26.93, p < 0.05,

for ∆P = 0.02, F (2, 214) = 6.06, MSE = 11.27, p < 0.005. Since a quadratic trend

analysis would only test deviation from linearity, and not non-monotonicity, the effect of

P (e+|c−) in each of these sets of contingencies was evaluated by testing each pair of means

with neighboring values of P (e+|c−). The response for {40/100, 0/100} was significantly

greater than that for {70/100, 30/100}, t(107) = 3.00, p < 0.005, and {70/100, 30/100}
was significantly less than {100/100, 60/100}, t(107) = 3.81, p < 0.001, indicating a non-

monotonic trend at ∆P = 0.40. The response for {7/100, 0/100} was significantly greater

than that for {53/100, 46/100}, t(107) = 2.13, p < 0.05, and {53/100, 46/100} was signif-

icantly less than {100/100, 93/100}, t(107) = 2.70, p < 0.01, indicating a non-monotonic

trend at ∆P = 0.07. At ∆P = 0.02, {2/100, 0/100} was greater than {51/100, 49/100},
t(107) = 4.05, p < 0.001, but there was no significant difference between {51/100, 49/100}
and {100/100, 98/100}, t(107) = 0.55, p = 0.58, providing no evidence for non-monotonicity.

The results of this experiment suggest that the non-monotonicitic trend seen by Lober

and Shanks (2000) is a robust aspect of human judgments, even though it may be a small

effect. Such trends can be used to assess models of causal induction. Causal support, χ2,

and ∆P gave similarly high correlations with the experimental results, with r = 0.952,

γ = 0.604, r = 0.965, γ = 0.446, and r = 0.943, γ = 0.568, respectively. Causal power

performed far worse, with r = 0.660, γ = 0.305. The statistically significant effects of
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Figure 4.9: Predictions of rational models compared with results of Experiment 4.2. Num-
bers along the top of the figure show stimulus contingencies. These numbers give the number
of times the effect was present out of 100 trials, for all except the last column, where the
cause was present on 7 trials and absent on 193. The first three groups of contingencies are
organized to display non-monotonicities in judgments, the last group contains distractor
stimuli. Error bars indicate one standard error.
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P (e+|c−) in the three sets of contingencies with fixed ∆P are contrary to the predictions

of ∆P . Only causal support and χ2 predicted the observed non-monotonic trends.

4.6 Sample size effects

In explaining the results of Lober and Shanks (2000, Experiments 1-3), I touched upon the

issue of sample size. Sample size is an important factor that affects structure learning but

not parameter estimation: larger samples provide better grounds for assessing the evidence

for a causal relationship, but do not affect parameter estimation. Both ∆P and causal

power are computed using the conditional probabilities P (e|c), rather than the number of

observations contributing to these probabilities. Consequently, they predict no variation in

judgments as the number of trials on which the cause was present or absent is varied. In

contrast, both causal support and χ2 are sensitive to sample size.

There are two dimensions along which sample size might be varied: the ratio of the

number of trials on which the cause is present or absent (N(c+) and N(c−)), and the

total number of trials (N). Variation of the ratio of N(c+) to N(c−) has been explored

extensively by White (1998; 2002; 2003b). These experiments revealed several effects of

sample size, inconsistent with the predictions of ∆P and causal power, and were taken to

support White’s (2002) proportion of Confirming Instances (pCI) model, which differs from

∆P only when N(c+) 6= N(c−). All four models – ∆P , causal power, causal support, and

χ2 – were applied to the results of these experiments, producing the correlations shown in

Table 4.4. For several of these experiments, ∆P was constant for all stimuli, resulting in

an undefined correlation between ∆P and human judgments, denoted N/A. I also present

the results of the five models on Experiment 1 of Anderson and Sheu (1995), in which

the entries in single cells of the contingency table were varied systematically, resulting in

some sample size variation as well as other effects. The observed effects of sample size

were broadly consistent with causal support, which gave either the best or close to the best

account of all twelve datasets. There was no systematic relationship between the format in

which contingency information was presented and the performance of the models, although

causal support gave the best correlations with the three online datasets.

Variation of the total number of trials producing a set of contingencies, N , has been

studied less extensively. White (2003b, Experiment 4) conducted an experiment in which

this quanitity was varied, and found no statistically significant effect on human ratings.
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Table 4.4: Correlations of Rational Models with Sample Size Experiments
Paper Experiment Format ∆P Power Support χ2

White (1998) 3 (seeds) summary(16) 0.907 0.929 0.924 0.865
(contentless) summary(16) 0.922 0.867 0.935 0.885

White (2002) 1 list(8) 0.956 0.765 0.938 0.936
2 list(12) 0.772 0.852 0.916 0.830
3 list(6) N/A 0.760 0.837 0.146

White (2003b) 1 list(8) 0.200 0.389 0.854 0.791
2 online(8) 0.070 0.409 0.812 0.640
3 summary(8) 0.392 0.383 0.677 0.586
4 list(8) N/A 0.037 0.679 0.729
5 list(8) N/A 0.373 0.803 0.631
6 online(4) N/A N/A 0.676 N/A

Anderson &
Sheu (1995) 1 online(80) 0.884 0.816 0.894 0.329

Note: Boldface indicates highest correlation in each row. Number in parentheses in
Format column indicates number of stimuli.

As shown in Figure 4.4, causal support makes clear predictions about the effect of N

on the evidence for a causal relationship, and the demonstration of such an effect would

provide evidence for the involvement of structure learning in human causal induction. One

possible explanation for the lack of a sample size effect in White’s (2003b) experiment is

the use of ratings as a dependent measure: the effect of sample size might be concealed by

allowing people the possibility of giving equal ratings to different stimuli. Consequently, it

makes sense to explore this phenomenon further using a more sensitive response measure:

Experiment 4.3 was designed to examine whether sample size affects people’s assessment of

causal relationships, using a rank ordering task.

4.6.1 Experiment 4.3: Sample size effects with ranking

Method

Participants. Participants were 20 members of the MIT community who took part in

the experiment in exchange for candy.

Stimuli. Nine stimuli were used, each composed of different contingency data. The

two critical sets of contingencies were a set for which ∆P = 0, consisting of {0/4, 0/4},
{0/20, 0/20}, and {0/50, 0/50}, and a set for which ∆P = 0.5, {2/4, 0/4}, {10/20, 0/20},
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and {25/50, 0/50}. ∆P , pCI, and causal power are constant for these sets of stimuli, and

any ordering should thus be equally likely. χ2 predicts an increase in judgments with sample

size for the ∆P = 0.5 set, but is constant for the ∆P = 0 set. Causal support predicts

sample size should result in an increase in judgments with ∆P = 0.5, and a decrease with

∆P = 0, as shown in Figure 4.4. The experiment also included three distractors, to conceal

our manipulation: {3/4, 1/4}, {12/20, 8/20}, and {50/50, 0/50}.
Procedure. Participants read a description of an imaginary laboratory scenario, similar

to that used in Experiment 1, and were shown nine cards that expressed the stimulus

information described above. They were given the following instructions:

Each of the cards in front of you summarizes the results of a different study.

Look these summaries over carefully, and then place them in order from the

study from which it seems LEAST LIKELY that the chemical causes the gene

to be expressed, to the study in which it seems MOST LIKELY that the chemical

causes the gene to be expressed.

The wording of the question in terms of likelihood followed the procedure reported by White

(2003b). If participants asked whether cards could be ranked equally, they were told that

they could order them randomly.

Results and Discussion

Analysis of the orderings produced by the participants showed that 17 out of 20 ordered the

stimuli with ∆P = 0.5 by increasing sample size (binomial test, p < 0.001), while 16 out of

20 ordered the stimuli with ∆P = 0 by decreasing sample size (binomial test, p < 0.001).

We computed rank-order correlations with the responses of individual participants for each

of the five models. The rank-order correlations with the four models were computed for

each participant, averaging these correlations to result in scores for each model.4 Causal

support and χ2 performed equivalently, ρ = 0.948 and ρ = 0.945 respectively, followed by

∆P , ρ = 0.905, and causal power, ρ = 0.859. Causal support gave the highest correlation

with the responses of eleven participants, causal power and χ2 with four participants each,

and ∆P with only one participant.

4Correlations were averaged using the Fisher z transformation. These results include only 19 of the 20
participants, since causal support perfectly predicted the ordering given by one participant, resulting in an
infinite z score. The reported mean correlation is thus an underestimate for causal support. While the other
models do not predict an ordering for the two critical sets, they do predict an ordering among the full set of
nine stimuli, hence ρ > 0.
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The results indicate that people are sensitive to sample size when making causal judg-

ments. Specifically, increasing sample size increases judgments when effects are large, but

decreases judgments for zero effects. Only causal support can explain this pattern of results.

Sensitivity to sample size is a property of structure learning, not parameter estimation, and

thus provides evidence that people approach problems of causal induction as structure

learning problems.

4.7 Inferences from incomplete contingency tables

One theme of this thesis is the claim that everyday causal induction has several commonal-

ities with the reasoning of early scientists. Among these commonalities is the need to make

inferences from limited data. In many settings where people infer causal relationships,

they do not have all of the information that is typically provided in causal induction tasks.

Specifically, without a carefully designed experiment, we often do not know the frequency of

the effect in the absence of the cause, leaving some of the cells in a contingency table empty.

While the epigraph to this chapter indicates the attention that James Currie paid to the

number of patients who recovered both with and without treatment, such reporting was the

exception rather than the rule prior to the development of modern experimentation. Many

early medical texts, such as Edward Jenner’s (1798) famous treatise on the smallpox vac-

cine, consist of a description of a number of cases in which the treatment proved successful,

providing only N(e+, c+). In order to make an inference from such data, his readers had to

use their expectations about the frequency of infections in the absence of treatment.

∆P and causal power are both undefined when there are no trials on which the cause

was absent, since P (e+|c−) cannot be computed. This is a problem, as people readily make

causal judgments under such circumstances. For example, suppose that a doctor claims to

have invented a treatment that will cure a rare illness, Hopkins-Francis syndrome. He tells

you that he has given this treatment to one patient with Hopkins-Francis syndrome, and

after one month, all the patient’s symptoms are gone. How much evidence does this provide

for the treatment’s effectiveness? It may provide some evidence, but not strong evidence,

since we do not know how many patients would recover spontaneously in this interval.

A few months later, the doctor tells you that he has now given the treatment to three

patients, and after one month all of their symptoms are gone. These data provide stronger

evidence, but not that much stronger. The evidence is strengthened once more when, a
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few months later, the doctor tells you that he has given the treatment to twenty patients,

and after one month all of their symptoms are gone. Finally, the doctor tells you that he

has also seen twenty patients over the same time period who received a placebo instead

of the new treatment, and all people in this group still had symptoms after a month of

observation. Moreover, the people who received the treatment or the placebo were chosen

at random. Now this provides very strong evidence for the treatment’s effectiveness.

We can identify five stages in the accumulation of evidence in this example. The

first stage is the baseline, with no information, and the contingencies {0/0, 0/0}. After

a single observation, we have {1/1, 0/0}. Two more observations provide {3/3, 0/0}, and

17 more successful treatments give {20/20, 0/0}. Finally, the control condition provides

{20/20, 0/20}. ∆P and causal power can only be computed for this last case, where they

both indicate strong evidence for a causal relationship, ∆P = power = 1.00. They are

undefined for the other contingency tables, and thus cannot capture the weak but grow-

ing evidence these tables provide. Causal support is 0 for {0/0, 0/0}, reflecting the lack

of evidence for or against a causal relationship (negative values of causal support indicate

evidence for Graph 0, while positive values indicate evidence for Graph 1). Causal support

then gradually increases as the observations accumulate, taking values of 0.41, 0.73, and

1.29, before jumping dramatically to 23.32 for when the control condition is added. Unlike

∆P or causal power, causal support thus predicts our intuitive ordering of the strength

of evidence provided by these five stimuli. In Experiment 4.4, I examined whether this

ordering matched the judgments of naive participants.

4.7.1 Experiment 4.4: Incomplete contingency tables

Method

Participants. Participants were 20 members of the MIT community who took part in

the experiment in exchange for candy.

Stimuli. The five stimuli described above were used: {0/0, 0/0}, {1/1, 0/0}, {3/3, 0/0},
{20/20, 0/0}, and {20/20, 0/20}.

Procedure. The procedure was identical to that of Experiment 2, with the stimuli

being presented on cards and participants being asked to provide an ordering.
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Results and Discussion

Analysis of the orderings produced by the participants showed that 15 out of 20 perfectly

reproduced the ordering predicted by causal support (binomial test, p < 0.001). The other

five participants still showed some conformity to the predictions of causal support, with a

mean correlation of ρ = 0.51. ∆P and causal power are undefined for all but one of these

stimuli, preventing the computation of any correlations.

Causal support is the only model we have considered that is capable of capturing people’s

inferences from incomplete contingency tables. The ability to infer causal relationships

from limited data is an extremely important part of causal induction in both everyday and

scientific settings. Even today, many medical treatments are initially tested with small

samples and incomplete contingency tables. Many doctors say they do not believe in a

drug’s effectiveness until it passes large-scale studies with appropriate controls, in part

because standard statistical practice does not provide a rigorous way to evaluate treatment

effectiveness with such limited data. However, the researchers who are actually coming up

with and testing new treatments need to have some way of evaluating which treatments

are promising and which are not, or they would never make any progress. Causal support

provides an account of the rational basis of these intuitions.

4.8 Summary

Learning a single causal relationship from contingency data is arguably the most basic

form of causal learning, and is certainly that which has inspired the most psychological

research. The results discussed in this chapter suggest that causal theories play a subtle

but important role in guiding causal induction from contingency data. Models developed

using the theory-based framework outperform leading psychological models – ∆P and causal

power – as well as models based upon standard algorithms for causal learning developed in

computer science and statistics. The success of these models can be traced to two factors:

the use of a causal theory that postulates the correct functional form, and the formulation

of causal induction as structure learning. Varying the context of causal learning alters

the functional form that people assume, resulting in variations in behavior that can be

explained within this framework. Construing causal induction as a problem of structure

learning leads to an explanation for several phenomena that are problematic for other

models, including non-monotonic effects of P (e+|c−) on human judgments, effects of sample
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size, and inferences from incomplete contingency tables. This approach explains not only

lay people’s fundamental intuitions about cause and effect, but also the intuitions that drove

discovery for early scientists, such as Dr. James Currie of the epigraph, and that continue

to be important in the early stages of much contemporary scientific research.



Chapter 5

Discrete physical systems

Learning a single relationship from contingency data is the simplest case of causal induction.

However, it does not provide the opportunity to demonstrate all of the contributions of the

theory-based approach, as the effects of prior knowledge are relatively weak in most settings

where such learning is performed. By studying inferences about other kinds of systems, we

can see how this knowledge varies, and how it can provide strong constraints on causal

induction. In this chapter, I will focus on physical systems that operate in discrete time.

People have strong expectations about causality in physical systems, making it possible to

draw inferences from small samples, and to identify complex hidden structure.

The human ability to infer causal relationships from small samples is at odds with both

covariation-based accounts of causal induction, and standard algorithms for causal learning.

Hume (1748) emphasized the importance of large samples in inferring causal relationships,

stating that “Even after one instance or experiment, where we have observed a particular

event to follow upon another, we are not entitled to form a general rule, or foretell what

will happen in like cases; it being justly esteemed an unpardonable temerity to judge the

whole course of nature from one single experiment, however accurate or certain” (p. 50).

For Hume, causal induction required “many uniform instances” (1748, p. 52). Similarly,

the statistical tests that scientists use to evaluate causal claims, and which are at the heart

of constraint-based algorithms, require large samples to achieve significance.

Inferring hidden causal structure presents a similar challenge for computational models

of causal induction. Everyday reasoning draws on notions that go far beyond the observable

world, just as modern science draws upon theoretical constructs beyond the limits of mea-

surement. The richness of our intuitive theories is a direct result of our ability to identify

77
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hidden causal structure. The central role of hidden causes in intuitive theories makes the

question of how people infer hidden causal structure fundamental to understanding human

reasoning. Psychological research has shown that people can infer the existence of hidden

causes from otherwise unexplained events (Ahn & Luhmann, 2003), and determine hid-

den causal structure from very little data (Kushnir et al., 2003). However, most existing

algorithms for identifying hidden structure require strong evidence – such as a pattern of

dependencies among variables that cannot be explained by any set of causal relationships

among those variables – and large samples.

In the remainder of the chapter, I will discuss the inferences of children and adults

about two kinds of physical systems: detectors and machines. In each case, I will use the

theory-based account to explain how it is possible for people to learn so much from so little,

and argue that this cannot be explained by other models.

5.1 Detectors

Gopnik and Sobel (2000) introduced a novel paradigm for investigating causal inference in

children, in which participants are shown a number of blocks, along with a machine – the

“blicket detector.” The blicket detector “activates” – lights up and makes noise – whenever

a “blicket” is placed on it. Some of the blocks are blickets, others are not, but their outward

appearance is no guide. Participants observe a series of trials, on each of which one or more

blocks are placed on the detector and the detector activates or not. They are then asked

which blocks have the power to activate the machine.

Gopnik and Sobel have demonstrated various conditions under which children success-

fully infer the causal status of blocks from just one or a few observations (Gopnik et al.,

2001; Sobel et al., in press). Two experiments of this kind are summarized in Table 5.1. In

these experiments, children saw two blocks, a and b, placed on the detector either together

or separately across a series of trials. On each trial the blicket detector either became active

or remained silent. I will encode the placement of a and b on the detector with variables

A and B respectively, and the response of the detector with the variable E. After seeing a

series of trials, children were asked whether each object was a blicket. Table 5.1 gives the

proportion of 4-year-olds who identified a and b as blickets after several different sequences

of trials.
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Table 5.1: Probability of Identifying Blocks as Blickets for 4-year-old Children
Condition Stimuli a b

one cause e+|a+b− 0.91 0.16
e−|a−b+

2e+|a+b+

two cause 3e+|a+b− 0.97 0.78
2e+|a−b+

e−|a−b+

indirect screening-off 2e+|a+b+ 0.00 1.00
e−|a+b−

backwards blocking 2e+|a+b+ 1.00 0.34
e+|a+b−

association e+|a+b− 0.94 1.00
2e+|a−b+

Note: The one cause and two cause conditions are from Gopnik, Sobel, Schulz, and Glymour (2001,

Experiment 1), indirect screening-off, backwards blocking, and association conditions are from Sobel,

Tenenbaum, and Gopnik (in press, Experiment 2).

5.1.1 Theory-based causal induction

The inferences that both adults and children draw about blickets and blicket detectors will

be explained with reference to a simple causal theory. Such a theory should reflect people’s

intuitive expectations about how machines (and detectors) work, and be informed by the

instructions provided in the experiment. In the experiments I will discuss (Gopnik et al.,

2001, Experiment 1; Sobel et al., in press, Experiment 2), children were introduced to the

blicket detector by being told that it was a “blicket machine,” and that “blickets make

the machine go,” and saw blocks that activated the machine being identified as blickets,

and blocks that did not activate the machine being identified as non-blickets. A theory

expressing this information is sketched in Figure 5.1.

As discussed in previous chapters, this theory has three parts: an ontology, a set of

plausible relations, and the functional form of those relations. The ontology identifies the

kinds of entities in our domain, which are divided into two types: Block and Detector.

The number of entities of each type, NB and ND are specified by distributions PB and PD.

This ontology is hierarchical, with Block being divided into Blicket and NonBlicket. The

probability that a Block is a Blicket is set by a parameter p. The ontology also identifies
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Ontology:

Types Number Predicates Values

Block NB ∼ PB Contact(Block,Detector,Trial) Boolean: {T, F}
Blicket p Active(Detector,Trial) Boolean: {T, F}
NonBlicket 1 − p

Detector ND ∼ PD

Trial NT ∼ PT

Plausible relations:
Contact(B, D, T) → Active(D, T)
Relation holds over all T for any D if B is a Blicket

Functional form:

Contact(B, D, T) ∼ Bernoulli(·)
Active(D, T) ∼ Bernoulli(ν) for ν from a noisy-OR:

Cause Strength
(Background) w0 = 0

Contact(B,D,T) wi = 1

Figure 5.1: Theory for causal induction with deterministic blicket detectors.

a set of predicates that apply to these entities: Contact(b,d,t) indicates that Block b is

on Detector d in Trial t, and Active(d,t) indicates that Detector d is active on Trial

t.

The plausible relations state that only blickets can cause detectors to activate, and

every blicket can activate every detector. The functional form gives the probabilities of

different kinds of events, stating how causal relationships influence these probabilities. The

theory indicates that contact between a block and a detector is a relatively rare event.

While the specific probabilities given here will not have any impact on our analysis, they

could be used to make predictions about other kinds of experiments. The critical piece

of information supplied by the functional form concerns how activation of a detector is

affected by its causes. The theory indicates that the probability of activation follows a

noisy-OR distribution (Equation 2.1). wi is the “causal power” of blicket i (c.f. Cheng,

1997) – the probability that blicket i will cause the detector to activate. w0 represents the

probability that the detector will activate without any blickets being placed upon it. The

causal theory shown in Figure 5.1 makes two important assumptions through the setting

of the wi parameters. First, the detector cannot activate unless a blicket is in contact with

it (wi = 0). Second, the probability with which a blicket will activate the detector, is
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2

B

E E

P(Graph 0) = (1−p) P(Graph 1) = p(1−p) P(Graph 2) = p(1−p) P(Graph 3) = p
2

A AB B

E E

A AB

∀Τ ∀Τ ∀Τ∀Τ

Figure 5.2: Causal structures generated by the theory for the blicket detector with two
blocks, a and b, and one detector, d. A and B indicate the truth value of Contact(a,d,T)
and Contact(b,d,T) for Block a and b and Detector d, while E indicates the truth value
of Active(d,T). The plates indicate that these causal relationships hold for all trials T.

wi = 1.00. These two assumptions make this the deterministic detector theory, embodying

a simple “activation law” (Sobel et al., in press): only blickets can activate the blicket

detector, and they always do so.

In tasks involving the blicket detector, participants usually know the number of blocks,

NB, the number of detectors, ND, and the number of trials, NT . However, they usually do

not know which blocks are blickets. The question of whether a block is a blicket comes down

to whether that block causes the blicket detector to activate, since only blickets can cause

activation of the detector. This question can be addressed via a Bayesian inference over

causal networks: the posterior probability that a block is a blicket is simply the posterior

probability that there is a causal relationship between placing that block on a detector and

the activation of the detector.

The deterministic detector theory generates a hypothesis space, H of causal networks

for any events involving blocks and detectors. Assuming that we know that we have two

blocks, a, and b, and a single detector, d, H would consist of four graph structures, as

shown in Figure 5.2. I will use the variables A and B to indicate Contact(a,d,T) and

Contact(b,d,T) respectively, and E to indicate Active(d,T), all for the same trial, indi-

cated by the logical variable T. The prior probabilities of these models, P (Graph i), are set

by the causal theory. The likelihood of a set of trials under these models can be evaluated

using the probabilities given by the noisy-OR. The posterior probability distribution over

this set of causal models can be evaluated for each set of trials shown in Table 5.1, denoting

the set of trials D and applying Bayes’ rule. The probability that a particular block is a
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blicket can be evaluated by summing the posterior probability of the models in which such

a causal relationship exists. For example, to evaluate the probability that A causes E, we

would add P (Graph 2|D) and P (Graph 3|D).

The predictions of this account are given in Table 5.2. These predictions provide a strong

qualitative correspondence with the judgments of the children in the experiments. The most

interesting case is that of backwards blocking, where the Bayesian model predicts that the

probability that a causal relationship exists between B and E after the series of trials is

p, the prior probability that such a relationship exists. The analysis of this experiment is

as follows. After the e+|a+b+ trials (which I will denote D1), at least one block must be a

blicket: the consistent hypotheses are Graphs 1, 2, and 3. After the e+|a+b− trial (with the

accumulated data being denoted D2), only Graphs 2 and 3 remain consistent. The nonzero

posterior probabilities are then given as follows (all others are zero): P (Graph 2|D1) =

P (Graph 1|D1) = p(1−p)
p2+2p(1−p)

, P (Graph 3|D1) = p2

p2+2p(1−p)
, P (Graph 2|D2) = p(1−p)

p2+p(1−p)
=

1 − p, and P (Graph 3|D2) = p2

p2+p(1−p)
= p. Consequently, the probability that A causes E

is 1, and that B causes E is p.

However, this deterministic detector theory cannot explain all of the inferences that

children make about blickets. In particular, it cannot explain the two cause condition in

Experiment 1 of Gopnik et al. (2004). This condition was used as a control for the one cause

condition, demonstrating that children drew quite different inferences about the causal

relationships among a set of objects when the same associative relations (the frequency

with which cause and effect co-occurred) were maintained, but the structure of the trials

manifesting those relations was modified. This control experiment involved showing children

a block (b) which activated the detector on two out of three occasions. Such an event cannot

be explained by our deterministic theory, under which a block either causes a detector to

activate all the time, or never. A set of trials in which a block activates a detector on

two out of three occasions has zero probability under all causal models. Consequently, the

posterior distribution is undefined for this case, indicated by the question marks in Table

5.2.

The problem raised by the two cause condition can be addressed by relaxing one of the

assumptions of the deterministic detector theory. If we allow blickets to activate detectors

only some of the time, then inconsistent patterns of activation like that exhibited by block

b are possible. We can make this change by altering
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Table 5.2: Predictions of Probabilistic Theory and Alternative Models
Deterministic Probabilistic Generic Noisy-OR

Condition a b a b a b a b

one cause 1.00 0.00 0.99 0.07 0.54 0.27 0.65 0.25
two cause ? ? 1.00 0.81 0.32 0.32 0.52 0.28

indirect screening-off 0.00 1.00 0.13 0.90 0.33 0.50 0.29 0.56
backwards blocking 1.00 p 0.93 0.41 0.33 0.25 0.49 0.40

association 1.00 1.00 0.82 0.98 0.27 0.27 0.38 0.43

Cause Strength

(Background) w0 = 0

Contact(B, D, T) wi = 1

to reflect the possibility of errors

Cause Strength

(Background) w0 = ǫ

Contact(B, D, T) wi = 1 − ǫ

where ǫ is a parameter of the theory reflecting the error rate of the detector. This prob-

abilistic detector theory gives the same predictions as the deterministic detector theory in

the limit as ǫ → 0, but also predicts that both a and b are blickets with probability 1.00 in

the two cause condition. Different values of ǫ give different predictions. The predictions of

this theory with ǫ = 0.1 and p = 1/3 are shown in Table 5.2. This model captures some of

the finer details of children’s judgments that are not captured by the deterministic detector,

such as the fact that b is judged less likely to be a blicket than a in the two cause condition.

5.1.2 Alternative accounts

As before, considering alternative accounts of these data provides insight into the assump-

tions that allow the theory-based approach to succeed. I will compare this account with

three alternatives: constraint-based algorithms, Bayesian structure learning with the generic

parameterization, and a Bayesian model in which the noisy-OR parameters w0 and w1 can

take any value between 0 and 1, as was used in the account of causal induction from contin-

gency data in Chapter 4. All of these alternatives approach human inferences as a decision

between causal structures, but differ from the theory-based account in their assumptions

about the functional form of the relationship between cause and effect. Examining these
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alternative accounts reveals that the strong expectations about functional form embodied

in our deterministic and probabilistic theories are necessary to explain how children can

infer causal relationships with high certainty from small samples.

Constraint-based algorithms

Gopnik et al. (2004) argue that children’s inferences about blicket detectors can be explained

by standard constraint-based algorithms for learning causal graphical models. They point

out that, given appropriate information about the dependencies between the variables A,

B, and E, these algorithms will infer the appropriate causal structure – for example, that

a is a blicket in the one cause condition. However, there are two significant problems with

this account: inferring the dependencies, and using probabilistic prior knowledge.

The first step in applying a constraint-based algorithm is to identify the statistical de-

pendencies that hold among a set of variables. Typically, this is done using frequentist tests

such as the χ2 test for independence. These tests impose no constraints on the functional

form of the relationships between variables, and deciding that two variables are dependent

requires imposing some criterion of statistical significance on the results of the tests. This

raises a problem: the inferences that children make in these experiments are the result of

only a handful of observations – far fewer than would be required to produce statistically

significant results. Gopnik et al. (2004) address this issue by suggesting that ‘the sample

size is given a large fictitious multiplier’ (p. 21). Introducing such fictitious multipliers is

hazardous – if they are applied indiscriminately, we should expect human causal induc-

tion to result in a great many false alarms. Such a suggestion seems inconsistent with the

accuracy exhibited by human inferences in both this and the other settings I consider here.

Allowing the sample size to be multiplied by some fictitious amount is a post-hoc solution

to a fundamental problem raised by using standard statistical tests to evaluate all causal

relationships. Under our account, the reason why small samples are so compelling in the

case of the blicket detector is that children have strong expectations about the functional

form of the relationship between placing blickets on the detector and the detector activating

– namely that “blickets make the machine go,” and that the machine does not go in the

absence of blickets. The χ2 test makes far weaker assumptions about functional form, and

thus requires more information to identify a relationship. Fictitious multipliers thus act as

a proxy for the prior knowledge that children are exploiting when making their inferences.

A second problem with explaining these results using constraint-based algorithms is that
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these algorithms cannot exploit probabilistic prior knowledge. While particular structures

can be ruled out on the basis of prior knowledge, it is difficult to see how the knowledge that

the probability that a block is a blicket is p can be used by these algorithms. The theory-

based account predicts that such knowledge should be useful in the backwards blocking

condition, where the probability that b is a blicket (under the deterministic theory) is

p. In the next section, I will describe some experiments that reveal the importance of

these priors in people’s inferences. Furthermore, by reasoning deductively from a pattern of

dependencies, constraint-based algorithms cannot maintain degrees of uncertainty: a causal

structure is either consistent or inconsistent with the data. Both the backwards blocking

conditions and the experiment with ambiguous evidence discussed above illustrate that

people exhibit graded degrees of belief in the existence of a causal relationship.

Bayesian structure learning with the generic parameterization

Standard Bayesian structure-learning algorithms assume that the relationship between A,

B, and E can be expressed using the generic parameterization, using a separate parameter

to define the probability of E for each combination of values of A and B. This approach

faces the same problem as constraint-based algorithms in attempting to explain children’s

inferences: it makes weak assumptions about functional form, and consequently requires

large samples to identify the existence of a causal relationship. This is illustrated in Table

5.2, which shows the predictions obtained by applying Bayesian structure learning using the

generic parameterization (with a uniform distribution over parameters) to the stimuli given

in Table 5.1. The assumptions used to generate the predictions are exactly those of the

theory in Figure 5.1 (with p = 1/3), except for the functional form. The predictions often

deviate from human judgments – for example, in the two causes condition, a and b have

a probability of being blickets that is scarcely different from the prior, because there is no

strong evidence that contact between a and b and the blicket detector affects the probability

with which the detector activates. In the cases where predictions move in the same direction

as children’s inferences, the probability that any block will be identified as a blicket remains

close to the prior probability in all cases. Both of these issues are consequences of using

the generic parameterization: if identifying a causal relationship requires determining that

two variables are dependent, small samples can only produce small changes in beliefs about

causal relationships.
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Relaxing the noisy-OR parameters

As a final comparison, we can try to explain these inferences by applying the theory de-

veloped for chemicals and genes in the previous section (Figure 3.2) to blicket detectors.

This theory assumes that the functional form is a noisy-OR, but that the noisy-OR param-

eters (including the baseline probability w0) are drawn from a uniform distribution on [0, 1].

Thus, like the deterministic and probabilistic detector theories outlined above, blickets can

only increase the probability that the detector activates, but unlike those theories, blickets

can vary dramatically in their strengths, and the detector can activate in the absence of

any blickets. These are also the assumptions Cheng (1997) makes in deriving causal power.

The predictions under this “Noisy-OR” theory are shown in Table 5.2. The assumption of

generativity is not sufficient to explain children’s inferences: just assuming a noisy-OR does

not place sufficiently strong constraints on the functional form of the relationship between

blickets and the activation of blicket detectors. The model gives predictions that are slightly

more consistent with human judgments than the generic parameterization, but small sam-

ples still do not produce dramatic changes in the extent to which a block is believed to be

a blicket.

5.1.3 Priors and ambiguous evidence

The theory-based account explains how children can infer causal relationships from small

amounts of data, positing strong constraints on the relationships considered plausible and

the functional form of those relationships. It also makes two further predictions about

human performance on these tasks which discriminate it from alternative accounts such

as constraint-based algorithms. The first prediction is that prior beliefs, in the form of

expectations about the probability that a block is a blicket, the parameter p in the theory,

should influence people’s judgments. Specifically, in the backwards blocking condition, the

posterior probability that b is a blicket is just p. The second prediction is that people should

be able to maintain graded degrees of belief in the face of ambiguous evidence. Again, the

backwards blocking experiment provides one example of this, but the theory-based account

predicts that people should be able to infer that a block is a blicket despite never obtaining

definitive evidence, such as seeing it light up the detector all on its own. A series of studies

have been conducted that test these predictions with both adults and children (Sobel et al.,

in press; Tenenbaum, Sobel, & Gopnik, submitted). I will summarize the results of these
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experiments, and show how they can be explained by the theory-based account. I will focus

on the adult experiments, which provide data about the beliefs of the participants after

each trial, but the same qualitative effects hold with 4-year-old children.

Tenenbaum et al. (submitted, Experiment 1) explored the extent to which people’s

judgments were affected by prior probabilities by conducting an analogue of the backwards

blocking condition of Sobel et al. (in press, Experiment 1), but varying the probability

of a causal relationship. The experiment was done with adults, using a “super-pencil”

detector which functioned exactly like a blicket detector, but identified whether golf pencils

contained a special kind of lead. Participants were randomly assigned to two conditions,

which determined how they were introduced to the detector. In both conditions, participants

saw 12 pencils placed on the detector, one after the other. In the rare condition, only two

of these pencils caused the detector to activate. In the common condition, the detector

activated for 10 of the 12 pencils. The two conditions were designed to establish different

prior beliefs about the probability that a causal relationship existed.

The experiment had three stages. First, participants were shown two new pencils, a and

b, and asked to rate the probability that they were super-pencils. They then saw a and b

placed on the detector together, and the detector activating, and were again asked to rate

the probability that they were super-pencils. Finally, just a was placed on the detector, and

the detector activated. Once again, participants rated the probability that a and b were

super-pencils. The mean ratings in the rare and common conditions are shown in Figure 5.3

(a) and (b) respectively. Manipulating the frequency with which pencils were identified as

super-pencils had the expected effect on people’s baseline judgments, indicating a difference

in prior beliefs. It also affected the judgments that people made after each trial. As shown

in the figure, the pattern of judgments is perfectly predicted by Bayesian inference guided

by the deterministic detector theory (or the probabilistic detector theory with ω = 1 − ǫ

as ǫ → 0): the probability of a and b being super-pencils should increase after the first

trial, and then the second trial should provide unequivocal evidence that a is a super-pencil

while the probability that b is a super-pencil should return to the prior p. The model

predictions shown in the figure were obtained by setting p to the baseline probability given

by the participants. Similar results were obtained with 4-year-old children by Sobel et al.

(in press, Experiment 3).

This experiment illustrates that people’s causal inferences are affected by their prior

beliefs in exactly the way the theory-based account predicts. Tenenbaum et al. (submitted,
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Figure 5.3: Adult judgments with “super-pencils,” an analogue of the blicket detector task,
from Tenenbaum, Sobel, & Gopnik (submitted). (a) and (b) show inferences from the same
set of trials, but with different prior probabilities for super-pencils, being rare and common
respectively. (c) Inferences from ambiguous evidence.

Experiment 2) also showed that people could make inferences from ambiguous evidence

in a fashion consistent with a theory-based Bayesian inference. This experiment was also

conducted with super-pencils, and people saw the detector activated by 2 out of 12 pencils

before beginning the critical trials. They were shown three new pencils, a, b, and c, and

were asked to rate the probability that these pencils were super-pencils. They then saw

a and b placed on the detector together, causing the detector to activate, and gave new

ratings. Finally, they saw a and c placed on the detector together, causing the detector to

activate, and were asked to rate the probability that each of the pencils was a super-pencil.

The mean ratings are shown in Figure 5.3 (c).

In this experiment, people received no unambiguous clues that a particular pencil was a

super-pencil: there were no trials on which a single pencil caused the detector to activate.

Nonetheless, people were able to infer that a was quite likely to be a super-pencil, while b

and c were less likely to be super-pencils, but more likely than they had been at the start of

the experiment. Similar results were obtained with 4-year-old children (Tenenbaum et al.,

submitted, Experiment 3). The hypothesis space generated by the deterministic detector

theory with three blocks and one detector is shown in Figure 5.4. The predictions of a

Bayesian model using this theory are shown in Figure 5.3 (c), setting p to the baseline

probability given by the participants. The hypothesis space H generated by the theory

consists of eight causal graphical models, indicating all possible sets of causal relationships
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Figure 5.4: Causal structures generated by the theory for the blicket detector with three
blocks, a, b, and c, and one detector, d. A and B and C indicate whether contact between
the appropriate block and the detector occurred on a particular trial, while E indicates
whether the detector activated. The plates indicate that these causal relationships hold for
all trials T.

between the three blocks and the detector. Using this hypothesis space, the model predicts

four quantitatively different levels of belief for different pencils at different points in the

experiment: the baseline probability, the probability that a and b are super-pencils after the

first trial, the probability that a is a super-pencil after the second trial, and the probability

that b and c are super-pencils after the second trial. People also show these four levels of

graded belief in the existence of a causal relationship.

5.1.4 Learning the right theory

I have outlined two different theories for the blicket detector – the deterministic detector

theory, and the probabilistic detector theory. In some cases, such as the one cause and

two causes conditions, it seems that the probabilistic detector theory provides a better

characterization of children’s inferences. However, the instructions the children received

suggested that the deterministic theory might be more appropriate. This raises an important
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question: how might a learner choose between different theories? This question returns to

one of the most interesting aspects of the tale of Halley’s comet: that the return of the comet

provided an indication of the validity of Newton’s theory, the theory which had made it

possible for Halley to recognize the causal structure responsible for his observations.

The process of selecting between theories on the basis of evidence can be modeled

naturally within the theory-based causal induction framework. Indeed, this is one of the

great strengths of the framework: it begins to indicate how intuitive theories might be

learned from data. In the case of the blicket detector, the problem is quite constrained,

being a matter of choosing between the deterministic and the probabilistic theory. This

decision can be made by using Bayes’ rule, treating theories T as hypotheses

P (T |D) =
P (D|T )P (T )

P (D)
, (5.1)

where P (D) =
∑

T P (D|T )P (T ). The critical probabilities in this expression are of the

form P (D|T ), being the probability of a dataset D under a theory T . These probabilities

can be computed by summing over all causal graphical models generated by T , being the

members of the hypothesis space HT . Thus we have

P (D|T ) =

|HT |
∑

i=1

P (D|Graph i)P (Graph i|T )

which can be computed using just probabilities defined above: the probability of the data

under a particular causal graphical model, and the prior probability of such a model under

the theory. Other probabilities, such as the probability of a particular causal structure, or

that an object is a blicket, can be evaluated by summing over theories T .

Figure 5.5 illustrates how this process of selecting a causal theory can operate concur-

rently with inferring the causal properties of the entities in a domain. The figure shows

the posterior distribution over the two theories – deterministic and probabilistic – and the

probability that blocks a and b are blickets as data D accumulates. In this case, the data

are the trials used in the two cause condition. The prior gives a probability of 0.99 to the

deterministic theory, and 0.01 to the probabilistic theory, p is set to 0.3, and ǫ is set to

0.1. The first three datapoints are all e+|a+b−, being events in which a is placed on the

detector and the detector activates. This is sufficient to identify a as a blicket under either

theory, and weakly favors the deterministic theory. The fourth datapoint is e−|a−b+, with
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Figure 5.5: Choosing between two theories. The bar graphs along the top of the figure
show the probabilities of the two theories, with “Det” indicating the deterministic detector
theory, and “Prob” indicating the probabilistic detector theory. The bar graphs along the
bottom show the probabilities that the blocks a and b are blickets. The probabilities after
successive trials are shown from left to right.

b placed on the detector and the detector not activating. Under the deterministic theory,

b is definitely not a blicket. Under the probabilistic theory, there remains a small chance

that b is a blicket, and since the probabilistic theory is still viable, the probability that b

is a blicket is non-zero. The fifth datapoint is e+|a−b+, the activation of the detector when

b is placed upon it. The fourth and fifth datapoints are mutually contradictory under the

deterministic theory, and have a probability of zero. This event can only be explained by

the probabilistic theory, in which b is definitely a blicket, and consequently the posterior

probability of the probabilistic theory and of b being a blicket both become 1.00. By the

end of the trials in the two cause condition, one should be firmly convinced that blicket

detectors are probabilistic.

The selection of an appropriate causal theory based upon evidence provides a possible

explanation for why children in the one cause and two cause conditions produced responses

consistent with the probabilistic detector theory, while children in the other conditions acted

in a fashion more consistent with the deterministic detector theory. Under the deterministic

theory, children in the one cause condition should never say that b is a blicket, but children

did so on 16% of trials. Since the one cause and two cause conditions were presented within-

subjects, one possibility is that some of the children saw the two cause trials, inferred that

the probabilistic detector theory was appropriate, and then used this theory when they

subsequently experienced the one cause condition. Examination of the data of Gopnik et

al. (2001) provides tentative support for this conclusion: all of the children who identified b
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as a blicket in the one cause condition had seen the two cause condition beforehand.1 The

possibility that children changed their expectations about how blicket detectors operate in

the course of the experiment deserves further investigation.

5.2 Machines

The blicket detector illustrates how people make inferences about a specific kind of physical

system, which has predictable properties: a detector. Other kinds of machines follow more

generic forms of mechanical causation. In this section, I will provide a case study in the

learning of hidden causes, examining how people infer the causal structure that underlies

the behavior of a a simple machine – the stick-ball machine (Gopnik et al., 2004; Kushnir et

al., 2003). First, I will introduce this apparatus, and summarize the results of experiments

that used the stick-ball machine to investigate whether children and adults could combine

evidence from observations interventions, and if they could infer hidden causes (Gopnik et

al., 2004; Kushnir et al., 2003). I will then present a causal theory that can be used to

explain these inferences. As with the blicket detector, using this theory makes it possible to

identify causal structure from only a small amount of data (observations or interventions).

The theory extends my previous analyses by allowing for the possibility of hidden causal

structure.

The stick-ball machine, also known as the puppet machine, is a physical system con-

sisting of a number of colored balls mounted on sticks which can move up and down on a

box (see Figure 5.6). The mechanical apparatus moving the balls is concealed by the box,

keeping the actual causal relationship unknown. The balls can either move on their own,

or be moved by the experimenter. Different patterns of observations and interventions lead

people to believe in different underlying causal structures. Studying which structures are

inferred for different stimuli provides the opportunity to understand how people make such

inferences.

Gopnik et al. (2004) described a series of experiments using the stick-ball machine to

assess causal induction in children. Table 5.3 summarizes the results of these experiments.

In all cases, children were familiarized with the machine, and told that “special” balls caused

other balls to move. I will discuss conditions in which children saw two balls, a and b, move

in various patterns, using the variables A and B to indicate the motion of a and b on a

1I thank David Sobel for making these data available.
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a b

Figure 5.6: A two-ball stick-ball machine (Kushnir et al., 2003).

Table 5.3: Modal Inferences by Children and Bayes for Two-Ball Machines
Expt Condition Stimuli Children Bayes
1,2,3 common effects 5a+b+, a−|do(b+) a is special a is special

2 association a+|do(b+), a−|do(b+) b is special b is special
3 common cause 5a+b+, a−|do(b+), b−|do(a+) hidden cause hidden cause

Note: Experiment numbers and conditions refer to Gopnik et al. (2004).

given trial. In the common effects condition of Experiments 1-3, children saw a and b move

together several times, 5a+b+, then saw the experimenter intervene to move b without a

moving, a−|do(b+). Most children inferred that a was special, and causing b to move. In

the association condition of Experiment 2, it was established that this inference made use

of the difference between observations and interventions, with children seeing 5a+|do(b+)

followed by a−|do(b+). These stimuli differed from the common effects stimuli only in

the use of intervention on the a+|do(b+) trials, but produced quite different responses,

with the majority of children favoring the hypothesis that b was special, and causing a to

move. In the common cause condition of Experiment 3, children saw 5a+b+, followed by

two interventions: a−|do(b+), and b−|do(a+). They were asked why the balls were moving

together, and the majority of the children referred to an unobserved variable as the cause

of these events.2

2One condition (Experiment 1, common cause) is not included in the table. This condition examined
inferences involving a three-ball machine, being a version of the common cause condition of Experiment 3
in which the common cause was observable. For three balls a, b, and c, the stimuli consisted of several
a+b+c+ trials, followed by b−c−|do(a+) and a−b−|do(c+). Children inferred that the motion of both a and
c was caused by the motion of b. This inference can be explained by the theory-based account, under the
assumption that α < ω, but I will not discuss it in detail here.
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common cause separate causesb causes aa causes b

Figure 5.7: Schematic diagrams indicating possible causal structures for the stick-ball ma-
chine (after Kushnir, Gopnik, Schulz, & Danks, 2003).

The experiments reported by Gopnik et al. (2004) suggest that children discriminate

between observations and interventions when assessing causal relationships, and that they

are capable of recognizing the presence of hidden causes. Kushnir et al. (2003) conducted

two experiments that extend these results to adults. In both experiments, participants

were familiarized with the machine, told that if one ball caused the other to move it did

so “almost always,” and saw the two balls move together four times. There were three

test conditions in Experiment 1, seen by all participants. In the common unobserved cause

condition, participants saw 4a+b+, then four trials in which the experimenter intervened,

twice moving a with no effect on b, 2b−|do(a+), and twice moving b with no effect on

a, 2a−|do(b+). In the independent unobserved cause condition, participants saw 2a+b−,

2a−b+, a+b+, 2a−|do(b+), and 2b−|do(a+). In the one observed cause condition, participants

saw 4b+|do(a+) and 2b−|do(a+). Experiment 2 replicated the common unobserved cause

condition, and compared this with a pointing control condition in which interventions were

replaced with observations where the experimenter pointed at the moving ball (4a+b+,

2a−b+, 2a+b−). On each trial, participants identified the causal structure they thought

responsible by indicating images similar to those shown in Figure 5.2. The results of both

experiments are shown in Table 5.4. In each condition, the majority of people indicated

a single structure – common cause in the common unobserved cause condition, separate

causes in the independent unobserved causes condition, a causes b in the one observed cause

condition, and separate causes in the pointing control.
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Table 5.4: Probability of Choosing Different Causal Structures in Kushnir et al. (2003)
Condition a causes b b causes a common cause separate causes

common unobserved cause 0.00 (0.12) 0.01 (0.12) 0.65 (0.71) 0.34 (0.05)
independent unobserved causes 0.00 (0.00) 0.00 (0.00) 0.04 (0.01) 0.96 (0.99)

one observed cause 0.65 (0.67) 0.06 (0.00) 0.08 (0.00) 0.21 (0.33)
pointing control 0.00 (0.04) 0.04 (0.04) 0.17 (0.16) 0.79 (0.76)

Note: Numbers in parentheses are predictions of Bayesian model. Boldface indicates majority.

5.2.1 Theory-based causal induction

Explaining the inferences of children and adults about the stick-ball machine requires ad-

dressing three challenges: accounting for the difference between observations and interven-

tions, explaining how it is possible to identify hidden causes, and justifying the fact that

so little data is required to identify relatively complex causal structures. These three chal-

lenges can be addressed by a theory-based account, using a causal theory like that shown

in Figure 5.8.

The theory shown in Figure 5.8 differs from the theories considered in previous sections

in incorporating a type of entity that is unobserved – the HiddenCause. The number of

entities of this type is unbounded, representing the fact that there could be arbitrarily many

such hidden causes. This is possible because hidden causes not connected to balls have no

influence on the probability with which events involving those balls occur. The way that

hidden causes are connected to balls, and to each other, is also unaffected by the fact that

the number of such causes is unbounded.

In the case of a physical system like the stick-ball machine, specifying the plausible rela-

tions among a set of variables involves identifying the possible physical structures that could

be responsible for the motion of the elements of the system. The ontology divides the com-

ponents of these physical structures into two types: components of the type HiddenCause

are the “prime movers” in the system, the source of the force that is ultimately responsible

for any observed motion, while components of the type Ball are passive elements, which

can transfer force but not generate it. A graph structure defined on the predicates Moves

and Active applied to these components indicates how force flows through the system. The

parameters p and q determine how likely it is that force is able to flow from one ball to

another, and from a hidden cause to a ball.

The process by which the hidden cause connected to a ball is selected deserves some

further explanation. If it is decided that a ball is connected to a hidden cause, then the
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Ontology:

Types Number Predicates Values
Ball NB ∼ PB Moves(Ball,Trial) Boolean: {T, F}
HiddenCause NH = ∞ Active(HiddenCause,Trial) Boolean: {T, F}
Trial NT ∼ PT

Plausible relations:

Moves(B1, T) → Moves(B2, T)
True for all T with probability p for each B1 6= B2 pair

Active(H, T) → Moves(B, T)
Each B has an edge from some H with probability q. If such an edge exists, then the particular
H is chosen based upon the number of existing edges:

P (Active(H, T) → Moves(B, T)) ∝
{

MH,i MH,i > 0
s H is new

where MH,i is the number of edges from H when the edges are chosen for the ith ball.

Functional form:

Active(H, T) ∼ Bernoulli(α)
Moves(B1, T) ∼ Bernoulli(ν) for ν from a noisy-OR:

Cause Strength
(Background) w0 = 0
Moves(B2, T) wi = ω
Active(H, T) wi = ω

Figure 5.8: Theory for causal induction with the stick-ball machine.



CHAPTER 5. DISCRETE PHYSICAL SYSTEMS 97

particular hidden cause is selected by sampling from a distribution in which each hidden

cause h that is connected to at least one ball is chosen with probability proportional to the

number of other balls to which h is connected, and a new hidden cause is chosen with prob-

ability proportional to a constant s. This procedure allows balls to share the same hidden

causes, or to have independent hidden causes, and does not impose an upper bound on the

number of hidden causes that appear in a physical system. The sampling scheme is that

of the Chinese restaurant process (Aldous, 1985; Pitman, 2002), which is commonly used

in non-parametric Bayesian models (e.g., Blei, Griffiths, Jordan, & Tenenbaum, 2004) and

is formally equivalent to the system involving a “coupling probability” used in Anderson’s

(1990) rational model of categorization. The distribution that results from this process is

exchangeable, meaning that the order in which the hidden causes are chosen does not affect

the probability of a particular configuration of connections. When s is small, the scheme

favors structures in which many balls have the same hidden cause. When s is large, it is

more likely that balls will have independent hidden causes.3

The set of all structures defined on two balls that is generated by the theory is shown

in Figure 5.9. This set includes all simple causal structures one might identify as possible

descriptions of a physical system like the stick-ball machine. Graph 0 is a system in which

balls are disconnected from hidden causes and from one another, and thus will never move.

Graph 1 is a system in which moving a causes b to move, but neither a nor b will move

on their own. Graphs 3, 7, 11, 15, and 19 all indicate a bidirectional causal relationship

between A and B. Causal graphical models do not usually allow such relationships, being

restricted to acyclic directed graphs. I discuss how these relationships are dealt with in

Appendix C.

The functional form identified by the causal theory summarizes a set of expectations

about the interactions between physical objects. It states that no object moves without

a cause, and objects are likely to move when caused to do so. These two principles are

simplified versions of Newton’s first and second laws of motion: that an object in a uniform

state of motion will remain that way unless influenced by an external force, and that the ap-

plication of force results in acceleration. Such a functional form results in strong constraints

upon the kind of data that one might expect to see under different causal structures. For

3The theory that I have chosen to use here allows a maximum of one hidden cause per ball. This simplifies
the mathematical description of the theory, and results in a smaller hypothesis space. Similar theories can
be defined that allow multiple causes per ball, using different non-parametric Bayesian priors (e.g., Griffiths
& Ghahramani, in prep).
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Figure 5.9: Hypothesis space for a two-ball stick-ball machine. A and B indicate
Moves(a,T) and Moves(b,T) for Ball a and b respectively, while Hi indicates Active(hi,T)

for the HiddenCause hi. The plates indicate that these causal relationships hold for all trials
T.
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Table 5.5: Graph Structures and Probabilities of Events for Two-Ball Machine
Event

Graph a+b+ a+b− a−b+ a−b− a+|do(b+) b+|do(a+)
0 0 0 0 1 0 0
1 0 0 0 1 0 ω

2 0 0 0 1 ω 0
3 0 0 0 1 ω ω

4 0 αω 0 1 − αω αω 0

5 αω2 αω(1 − ω) 0 1 − αω αω ω

6 0 αω 0 1 − αω ω 0

7 αω2 αω(1 − ω) 0 1 − αω ω ω

8 0 0 αω 1 − αω 0 αω

9 αω2 0 αω(1 − ω) 1 − αω ω αω

10 0 0 αω 1 − αω 0 ω

11 αω2 0 αω(1 − ω) 1 − αω ω ω

12 αω2 αω(1 − ω) αω(1 − ω) 1 − 2αω + αω2 αω αω

13 αω2(2 − ω) αω(1 − ω)2 αω(1 − ω) 1 − 2αω + αω2 αω ω + αω − αω2

14 αω2(2 − ω) αω(1 − ω) αω(1 − ω)2 1 − 2αω + αω2 ω + αω − αω2 αω

15 αω2(3 − 2ω) αω(1 − ω)2 αω(1 − ω)2 1 − 2αω + αω2 ω + αω − αω2 ω + αω − αω2

16 (αω)2 αω(1 − αω) αω(1 − αω) (1 − αω)2 αω αω

17 αω2(1 + α − αω) αω(1 − ω)(1 − αω) αω(1 − αω) (1 − αω)2 αω ω + αω − αω2

18 αω2(1 + α − αω) αω(1 − αω) αω(1 − ω)(1 − αω) (1 − αω)2 ω + αω − αω2 αω

19 αω(2 + α − 2αω) αω(1 − ω)(1 − αω) αω(1 − ω)(1 − αω) (1 − αω)2 ω + αω − αω2 ω + αω − αω2

example, any dataset in which either ball moves without being intervened upon provides

evidence against the causal structure shown in Graph 0. The probabilities of all events

involving two balls under all causal structures for a two-ball machine are shown in Table

5.5.

Using this theory, we can compute a posterior distribution over Graphs 0 through 19

for any data D, applying Equation 3.1. This posterior distribution can be connected to the

results discussed by Gopnik et al. (2004) and Kushnir et al. (2003) by defining an appropriate

mapping between the causal structures generated by the theory and the responses possible in

the experiment. For the experiments described by Gopnik et al. (2004), possible responses

were that a was special, b was special, and (in Experiment 3) that a hidden cause was

involved. I computed the probability that a was special by summing over all graphs in which

there is a link from A to B, did likewise for b being special, and equated the probability of

a hidden cause with the probability of Graph 12. For the experiments described by Kushnir

et al. (2003), there were four responses, corresponding to the structures shown in Figure

5.2. The probability of “a causes b” was evaluated by summing over Graphs 1, 5, 9, and

17, and likewise with the complementary structures for “b causes a.” The “common cause”

and “separate causes” structures were equated with Graphs 12 and 16.

The theory shown in Figure 5.8 has five parameters: p, q, s, α, and ω. ω was set

empirically, via a small experiment. Ten participants were shown a computer simulation

of the stick-ball machine, and reproduced the familiarization trials used by Kushnir et al.

(2003): participants were told that when a causes b to move, it makes it move “almost
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always,” and were shown that a moved b on four of six trials. They were then asked how

often they expected a would move b. The mean and median response was that a would

move b on 75% of trials, so ω = 0.75 was used. p was also fixed at 0.01, since any small

value should be sufficient, and the remaining parameters were optimized to provide the

best fit to the results of Kushnir et al., 2003). Table 5.4 shows the predictions of the model

with q = 0.035, s = 4, and α = 0.36, although a range of parameter values show the

same qualitative trends. The model captures the major trends in the data, predicting the

majority response in each condition, and gives a correlation of r = 0.96. The values of the

parameters indicate that it is more likely that a ball will have the power to move on its own

than that it will be connected to another ball (q > p), that balls are relatively unlikely to

move (α is low), and that balls are quite likely to have independent causes (s > 1). With

these parameter settings, the model also predicted the pattern of responses shown in Table

5.3 for the stimuli used by Gopnik et al. (2004).

5.2.2 Alternative accounts

Most computational accounts of causal induction that have been developed by psychologists

do not make the distinction between observations and interventions, or consider learning

about hidden causes. Consequently, the main alternative accounts come from computer

science and statistics. Gopnik et al. (2004) and Kushnir et al. (2003) suggest that their

results can be explained by constraint-based algorithms such as that proposed by Spirtes

et al. (1993). These algorithms certainly do better than existing psychological models, as

they are capable of using information derived from both observations and interventions, as

well as identifying hidden causes. However, they cannot explain the data discussed in this

section.

Explaining the inferences that people make about stick-balls in terms of these algo-

rithms faces the same objections as arose with blicket detectors: small samples, and graded

degrees of belief. The experiments described above illustrate that children and adults can

identify the causal structure that holds among a set of variables based on only a handful

of observations, far fewer than might be required to obtain statistically significant results

from standard statistical tests of dependency. The data that people use to make causal

inferences are not sufficient to infer that two variables are dependent. For example, in the

association condition of Gopnik et al. (2004) and the one observed cause condition of Kush-

nir et al. (2003), all of the stimuli involve intervention on B, and suggest that A will occur
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with high probability under such circumstances. These data are insufficient to justify the

inference that A and B are dependent: it might just be that A occurs with high probability

in general. The inference that B causes A requires an expectation that A is unlikely to

occur on its own, and that if B causes A, then A is likely to occur when B does.

The data of Kushnir et al. (2003) also illustrate that people can maintain graded degrees

of belief about causal structures. For example, the stimuli in the independent unobserved

causes and pointing control conditions both seem to suggest that separate causes are re-

sponsible, but this impression is much stronger for the former than the latter, something

that is reflected in people’s judgments. Since constraint-based algorithms simply identify

causal structures that are consistent with patterns of dependency, they cannot capture the

subtle variation in degrees of belief that are exhibited by human subjects.

5.3 Summary

The theory-based approach explains how it is possible for people to infer complex causal

relationships from small amounts of data: a causal theory that provides strong constraints

on causal structures and on the functional form of causal relationship significantly reduces

the amount of data that is required to identify such relationships. This principle explains

how Halley was able to infer the existence of a comet with an elliptical orbit from just three

observations, and how children can rapidly identify blickets and infer the properties of stick-

balls. The models presented in this chapter provide an account of human judgments in terms

of domain-general statistical inference informed by domain-specific causal knowledge. Such

inferences do not result from an additive combination of prior knowledge and covariational

evidence, but a complex interaction between the two: intuitive theories determine what

counts as data, how that data is interpreted, and which other hypotheses are entertained.

Without these assumptions, the models fail: neither conventional statistics nor standard

algorithms for causal induction can explain human judgments.



Chapter 6

Continuous physical systems

In the preceding chapters, I presented analyses of how people infer causal structures of in-

creasing complexity, from a single causal relationship to hidden common causes. However,

all of these analyses concern settings in which events can be described as discrete trials.

While systems that operate in discrete time intervals are mathematically tractable, pro-

ducing data similar to the contingency tables that are supplied to standard algorithms for

learning causal structure, most of our learning about the physical world concerns systems

that operate in continuous time. Even the blicket detector and the stick-ball machine are

perhaps better characterized as involving events that occur in continuous time, rather than

on discrete trials.

Events that occur in continuous time present a number of important challenges to theo-

ries of causal induction. First, contingency tables can no longer be used to characterize the

relationship between cause and effect, since they indicate the frequency with which cause

and effect co-occur over a discrete set of trials. In the absence of discrete trials, differ-

ent kinds of data need to be used, such as the rate at which events occur in the presence

and absence of a cause. Consequently, none of the standard models of causal induction

discussed in Chapter 4 can be applied to events that occur in continuous time – a serious

shortcoming. Second, events that occur in continuous time can exhibit complex dynam-

ics, with causal relationships having characteristic temporal signatures. Different kinds of

causal relationships manifest on different timescales: a collision between two billiard balls

has instantaneous consequences, while one might develop symptoms days after contract-

ing a disease. This added dimension of temporal dependence makes causal inference more

complicated.

102
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While these complexities might seem to make causal induction with events that occur

in continuous time more difficult, there is also an important way in which it is easier:

each observation can provide much more information as to the underlying causal structure.

Different causal structures will produce expectations not just about the probabilities of

different events, but the times at which they occur. The temporal pattern exhibited by a

set of observations can rule out certain causal structures, providing overwhelming evidence

as to the process that produced them. I will exploit this principle later in the chapter,

showing that people can infer a hidden common cause from a single observation, given

appropriate expectations about the relationship between time and causality.

Providing a satisfying account of people’s inferences about physical systems requires

extending the framework discussed in the previous chapters to address events that occur in

continuous time. In such cases, causal relationships can manifest themselves in a variety of

ways, through the rate at which events occur or their timing. The first task undertaken in

this chapter is extending the causal graphical model formalism to allow for continuous time.

I will then use the results of this analysis to examine human inferences about two physical

systems: particle emissions and explosions. The first system, particle emissions, provides

the opportunity to examine causal induction from rates, the continuous analogue of causal

induction from contingency data, and introduces some of the innovations required to model

events in continuous time. The second system, explosions, provides a simple setting in

which to explore the role of dynamics in causal induction (c.f. Michotte, 1963).

6.1 Causal graphical models for continuous time

The causal graphical model formalism introduced in Chapter 2 was based upon the assump-

tion that variables indicate events which have a finite, discrete number of opportunities to

occur. In many of the preceding analyses, these discrete opportunities were trials, and

causal relationships were quantified over all such trials. Under these assumptions, an arrow

between two nodes in a graph indicates that the probability of a particular event occur-

ring on any trial depends upon the occurrence of another event. There are two hurdles to

overcome in extending this formalism to events that take place in continuous time – one

conceptual, and one technical. The conceptual hurdle is conceiving of causal graphical mod-

els as representing causal relationships quantified over an unbounded number of instants in

time. An arrow between two nodes in such a model thus indicates that whether an event
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occurs at a particular instant in time depends upon the occurrence of another event. The

technical hurdle is making this intuition precise, and developing a means of parameterizing

causal graphical models of this kind. Overcoming this technical challenge will be the major

task of this section.

6.1.1 From Bernoulli to Poisson

If we imagine each unit of time being broken up into a series of NT trials, each picking

out an interval of size ∆T , a causal graphical model can be used to specify the probability

that a particular event occurs on any given trial. Extending causal graphical models to

continuous time requires considering the limit of this system as NT→∞ (and ∆T→0). The

key intuition behind what will happen as we take this limit (holding the mean number of

events that occur in a single unit of time constant) can be obtained by studying Figure 6.1.

The graphs in the figure are organized into two columns. The left column shows that the

probability that an event occurs on a particular trial goes to zero as time is ever more finely

divided and NT increases towards ∞. The right column shows that the rate at which events

occur, defined as the probability that an event occurs on a particular trial divided by the

duration of that trial, ∆T , remains constant. The rate can be used to evaluate how many

events will occur in an interval, and to compare different probabilistic models defined over

events in continuous time.

The relationship between the rate at which events occur and the probability of the

number of events in a time interval can be illustrated by first considering a situation in

which the probability of an event is constant over all trials. If we define the probability

that an event occurs to be α, then the rate at which events occur as λ = α
∆T = αNT .

Parameterized in terms of λ, the probability that N events occur in one unit of time (i.e.

NT trials) follows a binomial distribution,

P (N) =
NT !

N !(NT − N)!

(

λ

NT

)N (

1 − λ

NT

)NT−N

.

Taking NT→∞, we obtain

P (N) = e−λ (λ)N

N !

which is a Poisson(λ) distribution. Applying a similar argument to the distribution of the

waiting time between events, it can be shown that the limit of a series of Bernoulli events,
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Figure 6.1: The probability of an event on a given trial (left column), and the rate at
which events occur (right column) as a unit of time is partitioned into ever-finer intervals.
The rows indicate an increase in NT , the number of intervals per unit time, with NT =
10, 20, 50, 100,∞.

in which an event occurs with a fixed probability on each of NT discrete trials, is a Poisson

process with a constant rate λ for all times T. Poisson processes have been extensively

studied in statistics, and allow us to compute probability distributions for a variety of

quantities of interest, such as the number of events that will occur in a particular interval

or the amount of time that will pass between successive events. The properties of Poisson

processes that will be used in this chapter are shown in Figure 6.2.

The first of the properties shown in Figure 6.2 provides the basic result that will allow us

to define causal graphical models for continuous time. When we move from discrete trials to

continuous time, Bernoulli events become Poisson processes, and the probabilities of those

events become the rate function for the Poisson process. Parameterizing causal graphical

models in a way that is applicable to continuous time will thus require defining a function

that gives the rate for each variable at any infinitesimal moment in time t. The simplest

way to do this is to define a homogeneous Poisson process, having a constant rate λ for all

times T. This is equivalent to an event having a constant probability over all trials. Such an

assumption may be appropriate for variables that do not participate in causal relationships,

but clearly cannot capture relationships between variables.

In discrete time, C causing E manifests as a change in the probability of E occurring on
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1. A Poisson process with rate λ is the limit of a series of NT Bernoulli trials in
which an event occurs on each trial with probability λ

NT

as NT→∞.

2. The time between events in a Poisson process with rate λ follows an Exponential(λ)
distribution.

3. The sum of two Poisson processes with rates λ1 and λ2 is a Poisson process with
rate λ1 + λ2.

4. If a Poisson process is the sum of two Poisson processes with rates λ1 and λ2, then
the probability that a particular event generated by that process originated from
the first of its component processes is λ1

λ1+λ2
.

Figure 6.2: Important properties of Poisson processes.

any trial when C is present. In continuous time, such a relationship manifests as a change

in the rate at which E occurs when C is present. Arrows between variables in a causal

graphical model for continuous time thus indicate that the rate of one variable is a function

of the other variable. The rate of the resulting Poisson process will not be constant, making

it non-homogeneous: the rate λ(T) depends upon the state of other variables and changes

with T. While this dependency could take any form, it is convenient to use a form that is

based upon the same assumptions as the noisy-OR parameterization for discrete events.

6.1.2 A continuous equivalent of the noisy-OR

One way to derive the noisy-OR is as a deterministic OR function of a set of events that

each occur with constant probability. In the continuous limit, this becomes a deterministic

OR function of a set of Poisson processes. Since two Poisson processes never produce events

in the same infinitesimal interval, the OR of a set of Poisson processes is simply the sum of

those processes. By the third property of Poisson processes shown in Figure 6.2, this is a

Poisson process with rate equal to the sum of its component processes.

This result suggests that we might define the continuous equivalent of the noisy-OR for

a variable E with parents X1, . . . , Xn to be a Poisson process with rate

λ(T) = λ0 +
n

∑

i=1

λixi (6.1)

where xi = 1 if the sentence represented by Xi is true at time T, and xi = 0 otherwise. This

is a simple and intuitive extension of the discrete case. However, it is inaccurate if any of

the Xi are true for a finite set of instants in time rather than a set of continuous intervals.
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A more correct statement of the parameterization would be

λ(T) = λ0 +
∑

i

λi

∫

T′∈Ti

δ(T, T′) dT′ (6.2)

where δ(·, ·) is the Dirac delta function, contributing a spike of infinite height when its argu-

ments agree (e.g., Boas, 1983), and Ti is the set of times at which the sentence represented

by Xi is true. The integral is a convolution of the delta function with each point in Ti. If Ti

consists of a finite set of points, the Xi contributes a set of delta functions, each multiplied

by λi, to λ(T) – a discontinuous spike at each moment when that cause is present. If the

points form a set of continuous intervals, then the contribution resembles that shown in

Equation 6.1, adding λi to λ(T) for each interval where the sentence represented by Xi is

true.1

The material presented in this section provide us with the tools we need to examine

causal induction in dynamic systems. We can define causal graphical models that apply

to continuous time by specifying how the rate of Poisson processes depends upon other

variables, and do so by a simple method that is equivalent to the noisy-OR. In the remainder

of the chapter, I will use these tools to examine how people learn causal relationships from

the rates and times at which events occur, looking at inferences about particle emissions

and explosions.

6.2 Particle emissions

Several studies of causal induction have examined how people learn about causal relation-

ships from rate data (Anderson & Sheu, 1995; Wasserman, 1990). Rates are closely related

to contingencies, being the number of times the effect occurs in a continuous interval rather

than the number of times the effect occurs on a set of discrete trials. Despite this close

relationship, the models of contingency data described in Chapter 4, such as ∆P and causal

power, cannot be applied to rate data, leading researchers to investigate other models.

Anderson and Sheu (1995, Experiment 2) conducted an experiment in which participants

learned whether clicking on a flute icon caused a change in the rate of musical notes produced

1The appearance of the delta function in Equation 6.2 produces the equivalence to the noisy-OR, but it
may be useful to explore other convolution kernels when specifying rate functions, replacing δ(·) with some
other function of T and T

′. In particular, φσ(T, T′), the Gaussian probability density function with mean T
′

and standard deviation σ, is easy to work with and approaches δ(T, T′) as σ→0.
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by the flute. They found that their results were poorly predicted by the difference in rates,

defined as

∆R = N(c+) − N(c−) (6.3)

where N(c+) is the number of times the effect occurred in the interval when the cause, in

this case clicking on the flute, was present, and N(c−) is the number of times the effect

occurred when the cause was absent. Anderson and Sheu (1995) found that performance

could be better predicted by “grating contrast,” which they defined as

contrast =
N(c+) − N(c−)

N(c+) + N(c−)
(6.4)

and justified by its use as a measure of contrast in psychophysical research. They gave no

theoretical motivation for using this measure.

In this section, I will develop a theory-based account of causal induction from rate data,

and describe alternative accounts that clarify the relationship of ∆R and grating contrast

to models of causal induction from contingency data. These accounts will all be evaluated

against human data. Unfortunately, the data from experiments exploring causal induction

from rates (Anderson & Sheu, 1995; Wasserman, 1990) cannot be modeled without detailed

information about the performance of individual participants. These experiments used a

procedure in which participants interacted with objects, and then observed whether there

was an alteration in the rate of the effect after their interaction. The models described in

this section cannot be applied to this data without a record of the number of periods of

interaction and non-interaction. To address this issue I conducted a simple experiment in

which participants were provided with information about the rate at which particles were

emitted by a chemical compound in the presence and absence of an electric field. The

stimuli for this experiment were chosen to test the predictions of the ∆R model.

6.2.1 Experiment 6.1: Causal induction from rates

Method

Participants. 82 Stanford University undergraduates took part in the study.

Stimuli. A questionnaire presented a summary of nine experiments involving dif-

ferent chemical compounds and electrical fields, giving the number of particle emissions
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inside and outside the electrical field. The number of particle emissions in each exam-

ple was selected to give three critical sets of rates (expressed as {N(c+), N(c−)} pairs):

{52, 2}, {60, 10}, {100, 50}, for which ∆R = 50, {12, 2}, {20, 10}, {60, 50} for which ∆R =

10, and {4, 2}, {12, 10}, {52, 50}, for which ∆R = 2.

Procedure. The instructions outlined a hypothetical laboratory scenario:

Imagine that you are working in a laboratory and you want to find out

whether electrical fields influence the radioactive decay of certain chemical com-

pounds. Below, you can see laboratory records for a number of studies. In each

study, a sample of some particular compound was placed inside a particular kind

of electrical field for one minute, and the rate of radioactive decay was measured

(in number of particles emitted per minute). Each study investigated the effects

of a different kind of field on a different kind of chemical compound, so the

results from different studies bear no relation to each other.

Of course, the chemical compounds can emit particles even when not in an

electrical field, and they do so at different rates. Some compounds naturally

decay at a fast rate, while others naturally decay at a slow rate. Thus, the

decay rate of each compound was also measured for one minute in the absence

of any electrical field. For each study below, you can see how many particles

were emitted during one minute inside the electrical field, and during one minute

outside of the electrical field. What you must decide is whether the electrical

field increases the rate of particle emissions for each chemical compound.

Participants were instructed to provide ratings in response to a question like that of Ex-

periment 2. Ratings were made on a scale from 0 (the field definitely does not cause the

compound to decay) to 100 (the field definitely does cause the compound to decay). Each

participant completed the survey as part of a booklet of unrelated experiments.

Results and Discussion

The results are shown in Figure 6.3, together with the model predictions. There was a

statistically significant effect of N(c−) at ∆R = 50 (F (2, 162) = 12.17, MSE = 257.27, p <

0.001), ∆R = 10 (F (2, 162) = 42.07, MSE = 468.50, p < 0.001), and ∆R = 2 (F (2, 162) =

29.87, MSE = 321.76, p < 0.001). Grating contrast fits the data slightly better than ∆R,

giving r = 0.924, γ = 0.43, while ∆R gives, r = 0.899, γ = 0.05. Since ∆R predicts that



CHAPTER 6. CONTINUOUS PHYSICAL SYSTEMS 110

0

50

100

100
50

60
10

52
2

60
50

20
10

12
2

52
50

12
10

4
2

N (c+)
N (c−)

Humans

0

50

100
∆ R

0

50

100
Power (N  = 150)T

0

50

100
Contrast

0

50

100
Support

0

50

100
χ2

r

Figure 6.3: Predictions of rational models compared with results of Experiment 6.1. Num-
bers along the top of the figure show stimulus rates, error bars indicate one standard error.
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Ontology:

Types Number Predicates Values
Compound NC ∼ PC Charged(Field,Time) Boolean: {T, F}
Field NF ∼ PG Emission(Compound,Time) Boolean: {T, F}
Time NT = R

+

Plausible relations:

Charged(F, T) → Emission(C, T)
True for all T with probability p for each F, C pair

Functional form:

Charged(F, T) ∼ PoissonProcess(·)
Emission(C, T) ∼ PoissonProcess(λ(T)) for λ(T) from a continuous noisy-OR:

Cause Strength Times
(Background) λ0 ∼ Power(1)
Charged(F,T) λi|λ0 ∼ Gamma(1, λ0) {T|Charged(F, T)}

Figure 6.4: Theory for causal induction from particle emissions.

responses within each of the critical sets should be constant, the statistically significant

effect of N(c−) is inconsistent with this model.

6.2.2 Theory-based causal induction

A theory of particle emissions is shown in Figure 6.4. The theory identifies Compound and

Field types, where a field can be Charged and a compound can produce an Emission.

Time replaces Trial as the dimension along which these events occur, and takes values

in the positive real numbers, R
+. The rate of emissions λ(T) is specified by a continuous

noisy-OR, as given in Equation 6.2, with parameters λ0 and λi for each cause i (in this case,

for each different Field). The prior on λ0 is a power-law prior, being P (λ0) ∝ 1
λ0

. This

is an “uninformative” prior (Jeffreys, ?), intended to avoid setting a natural scale on the

rate of particle emissions. This lack of a natural scale is carried over into the prior on λi

through its definition in terms of λ0. The theory also specifies Ti, the set of times at which

cause i affects λ(T).

With one Field, f, and one Compound, c, the hypothesis space generated by this theory

is shown in Figure 6.5. The hypothesis space consists of two causal graphical models: using

C to indicate Charged(f,t) and E to indicate Emission(c,t), Graph 0 shows C and E

independent, and Graph 1 shows C causing E. Structurally, these are the same hypotheses

as those considered in the account of causal induction from contingency data in Chapter
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Figure 6.5: Hypothesis space generated by theory of particle emissions with one Field f

and one Compound c. C and E indicate Charged(f,T) and Emission(c,T) respectively.
The plates indicate that these causal relationships hold for all times T.

4. The plates shown for these graphical models now quantify over continuous time rather

than discrete trials.

In causal induction from rates, our data consist of the number of times the effect occurred

in a period of time when the cause was present, and a period of time when the cause was

absent. In the experiment, there was a single field and a single compound for each pair of

such numbers. The hypotheses to be compared are thus the two causal structures shown in

Figure 6.5. From the discussion above, it should be clear that probability of the data under

these hypotheses are given by the Poisson distribution, with rate parameter λ0 for Graph

0 and λ0 + fλ1 for Graph 1. We can thus compute “causal support,” as in Chapter 4, to

evaluate the evidence a data set D provides in favor of Graph 1 over Graph 0:

support = log
P (D|Graph 1)

P (D|Graph 0)
.

The probabilities P (D|Graph 1) and P (D|Graph 0) are computed using the Poisson distri-

bution, integrating over λ0 and λ1. These integrals are performed numerically.

Causal support, computed with the Poisson parameterization, gives a good fit to the

data shown in Figure 6.3, with r = 0.978, γ = 0.35. As can be seen from the figure, causal

support predicts the trend displayed by the stimuli for which ∆R = 0, decreasing as N(c−)

increases. These predictions reflect the fact that the certainty in the value of λ1 decreases
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as N(c−) increases: if the effect occurs at a high rate in the absence of the cause, it becomes

more difficult to determine if an increase in the number of times the effect is observed when

the cause is present actually reflects a causal relationship. The effect of N(c−) is thus a sign

that people are attempting to determine the causal structure underlying their observations.

6.2.3 Alternative accounts

The analysis of causal induction from rate data in terms of Poisson distributions can be

used to motivate some alternative models, which are the equivalents of the models of causal

induction from contingency data discussed in Chapter 4. Considering these models helps to

clarify the assumptions behind some previously proposed accounts of causal induction from

rate data – ∆R and grating contrast – as well as revealing what features of the theory-based

account are responsible for its success.

Parameter estimation and ∆R

In Chapter 4, I showed that the two leading models of causal induction from contingency

data – ∆P and causal power – are maximum-likelihood estimates of the strength parameter

w1 under different parameterizations for Graph 1. A similar result can be shown for causal

induction from rate data. Under the parameterization specified by Equation 6.2, ∆R is the

maximum-likelihood parameter estimate for λ1 in Graph 1. Consequently, the failure of

∆R to describe the results shown in Figure 6.3 suggests that the construal of human causal

induction as a structural inference, rather than parameter estimation, is an important factor

in the success of the theory-based account.

It is also possible to identify a direct correspondence between ∆R and ∆P and causal

power, rather than relying upon the derivation of the Poisson model given above. To do so,

we view the rate information as just the positive events in a contingency table where the total

sample size is unknown, so N(c+) = NT P (e+|c+) and N(c−) = NP (e+|c−) for unknown

NT . If we assume that NT is fixed across different experiments, we can obtain estimates

consistent with the ordering and magnitude implied by ∆P using ∆R = N(c+)−N(c−) =

NT ∆P . If we make the further assumption that NT is very large, ∆R will also correspond to

causal power, since P (e−|c−) will tend to 1. The equivalence of ∆P and causal power in this

limit is implicit in the linear relationship expressed in Equation 6.2. An intuitive explanation

for this result is that the sole difference between the noisy-OR and linear parameterizations
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is in their treatment of situations where multiple causes simultaneously influence the effect,

and in the continuous limit such events do not occur.

Even though causal power should correspond to ∆R in the limit as NT→∞, it is in-

structive to consider its performance when we assume some finite NT . The trends predicted

by causal power do not vary with the choice of NT , so the value NT = 150 was chosen to

allow these trends to be illustrated. The predictions of this model are shown in Figure 6.3.

The predicted trends are clearly at odds with those observed in the data, reflected in the

correlation r = 0.845, γ = 0.06.

Structure learning and grating contrast

As in Chapter 4, we can also consider alternative accounts based upon different approaches

to learning causal structure. A rate-based equivalent of Pearson’s χ2 test for independence

is

χ2
r =

(N(c+) − N(c−))2

N(c−)
. (6.5)

which is derived in Appendix B. This statistic bears the same relationship to causal support

for rates as the χ2 test for independence does for contingency data: it is a frequentist

independence test that evaluates the hypothesis that two variables are dependent. Like the

χ2 test for independence, χ2
r does not make assumptions about the nature of the causal

relationship – a cause can either increase or decrease the rate at which the effect occurs.

Figure 6.3 shows the predictions of this model, which provide a strong correlation with

the data, r = 0.980, γ = 0.01. It thus seems that the construal of causal induction from

rates as a structural inference is more relevant to explaining these data than any specific

assumptions about the form of the relationship.

Computing χ2
r involves dividing the squared difference between the observed rates by

the variance of the rate in the absence of the cause, comparing the magnitude of the effect

of introducing the cause to the variation that should arise by chance. This may provide an

explanation for the success of the grating contrast measure in predicting human judgments:

inspection of Equation 6.4 reveals that grating contrast has many of the same ingredients

as χ2
r .
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6.3 Explosions

Developing an account of causal induction from rates provides the opportunity to address

events that occur in continuous time. However, since there are no dependencies across

time, it remains only a small step from causal induction from contingency data. In many

dynamic physical systems, the timing of events provide critical clues as to the underlying

causal structure. A classic example of causal inference concerning such systems is Michotte’s

(1963) extensive investigation of the perception of collisions. In these studies, a mechanical

device was used to generate the impression of two objects interacting. Typically, these

displays showed one object at rest while another approached it. If the resting object began

to move at the moment when the approaching object came into contact with it, people

reported the impression that the motion of one object had caused the motion of the other.

This impression proved very sensitive to the timing of the motion of the objects, with either

temporal or spatial separation between the end of one object’s motion and the start of the

other reducing the sense of causality. Similar effects can be found with infants, suggesting

an early origin for the perception of causality (Leslie, 1982; 1984; Leslie & Keeble, 1987;

Oakes & Cohen, 1990; Cohen & Oakes, 1993)). Several studies have examined how the

phenomena investigated by Michotte extend to more complex physical systems (Choi &

Scholl, in press; White & Milne, 1997; 1999).

Whether people identify a Michottean event as causal depends heavily upon timing:

the impression is strongest if the second ball moves at exactly the moment when the first

ball strikes it. This sensitivity to timing can be explained under a Bayesian account of

causal induction, since it would be a great coincidence to see such an event if there were

no underlying causal relationship. However, there are a number of other factors that make

people’s inferences about such events quite complex, such as the positions, velocities, and

overlap of the stimuli (e.g., Choi & Scholl, in press; Scholl & Nakayama, 2002). In the

remainder of the chapter, I will focus on a dynamic physical system that removes these

complexities, focussing just on the timing of events. This system is based upon the causal

properties of explosives.

Explosives provide rich opportunities for examining human causal inferences, as they

can explode for a variety of reasons, many of which require no physical contact. The

times at which a set of cans explode are thus the result of a complex causal process, and

identifying the elements of this process is a significant inductive challenge. Explosions
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can occur spontaneously, as the result of instability of the explosive compound, or trigger

one another in a chain reaction. Since such chain reactions can propagate by invisible

shockwaves, force waves, the timing of a set of explosions provides the only information

about the underlying causal structure, and is not accompanied by any other perceptual

cues. Explosives thus provide the opportunity to study the role of timing in causal induction,

without the other factors involved in Michottean displays.

The first task undertaken in this section is developing a simple theory of explosives. I

then consider some of the questions about dynamic physical systems that can be answered

using such a theory. Experiment 6.2 examines whether people’s responses to these questions

correspond to the predictions of this theory-based account. The section ends with a brief

consideration of alternative accounts.

6.3.1 Theory-based causal induction

Developing a theory of explosives requires not just specifying the probabilities of events

that occur in continuous time, but identifying how these events influence events at other

times. I will address the first of these problems using the method introduced above defining

a theory that specifies the rate at which different predicates become true. Unlike the theory

given in the previous section, this theory will generate causal graphical models that reflect

dependencies over time.

Figure 6.6 gives a simple theory of explosives that fulfills this requirement. Each set

of explosives is assumed to be stored in a Can, which explodes at a particular time. Cans

explode spontaneously as the result of some kind of hidden cause becoming active – local

temperature, vibration, or cosmic rays. Hidden causes can also influence multiple cans,

producing simultaneous explosions. Since I assume cans only explode at one time and

occupy only one point in space, the ExplosionTime and Position of cans are encoded as

multi-value predicates. Likewise, I assume that hidden causes only become active once, at

some ActivationTime.2 The ontology notes the range of values each of these predicates

can take on, and indicates that two of them – the time predicates – refer to the same set

of values. An equivalent theory that uses only Boolean predicates is given in Appendix D,

making explicit the connection to the results derived earlier in the chapter.

Under this theory, the time at which a hidden cause explodes follows an Exponential(α)

2An alternative theory in which hidden causes can become active on multiple occasions is discussed in
Griffiths, Baraff, and Tenenbaum (2004), and produces the same qualitative predictions.
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Ontology:

Types Number Predicates Values
Can NC ∼ PC Explodes(Can, Time) Time: R

+

HiddenCause NH = ∞ Active(HiddenCause, Time) Time: R
+

Location(Can) Space: R
2

Plausible relations:

ExplosionTime(C1) → ExplosionTime(C2)
True for with probability 1 for each C1 6= C2 pair

Active(H, T) → Explodes(C, T)
Each C has an edge from some H with probability 1, which holds for all T. The particular H is chosen
based upon the number of existing edges:

P (ActivationTime(H) → ExplosionTime(C)) ∝
{

MH,i MH,i > 0
s H is new

where MH,i is the number of edges from H when the edges are chosen for the ith can.

Functional form:

ActivationTime(H) ∼ Exponential(α)
ExplosionTime(C1) ∼ Exponential(λ(T)) for λ(T) from a continuous noisy-OR:

Cause Strength Times
(Background) λ0 = 0

ActivationTime(H) λi = ω ActivationTime(H)
ExplosionTime(C2) λi = ω ExplosionTime(C2) + D(C1, C2)/µ

Figure 6.6: Theory for causal induction with explosives. D(C1, C2) is the distance between
the locations of cans C1 and C2.
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Figure 6.7: Hypothesis space for four cans of Nitro X. Ci indicates ExplosionTime(ci) for
Can ci, while Hi indicates ActivationTime(hi) for HiddenCause hi. The dependence of
ExplosionTime(ci) on ExplosionTime(cj) and Position(ci) is suppressed.
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distribution, a consequence of being the first arrival from a Poisson process (by the second

property of Poisson processes given in Figure 6.2). Likewise, the time at which can c

explodes has an Exponential(λ(T)) distribution. Since the activation of hidden causes and

the explosion of other cans are both events that occur at a finite number of points in

a continuous interval, the rate function λ(T) is a sum of delta functions, each of which

contribute a spike multiplied by ω to the rate when their argument is equal to zero. The

details of evaluating the probability of events under such a theory are discussed in Appendix

D.

Since the causal relationships among cans are constant, the variation among the causal

graphical models generated by the theory reduces to the configuration of causal relationships

between hidden causes and explosions. Figure 6.7 depicts all configurations generated by

the theory for a set of four cans, NC = 4. The 15 graphs shown in the figure correspond

to all partitions of four objects into different sets, where the objects are cans and all cans

within a set share a hidden cause. The distribution over these partitions is provided by the

Chinese restaurant process, introduced in Chapter 5. These causal structures are similar to

those generated by the theory of the stick-ball machine described in the previous chapter.

The fundamental difference between explosions and stick-balls is in the functional form,

with the effects of causal relationships among explosions having a characteristic timecourse

which requires attention to dynamics.

6.3.2 Three questions about dynamic systems

The theory developed in the previous section can be used to answer a number of questions

about the causal properties of dynamic systems. I will show how the theory can be used to

identify the causes of particular events, to learn the parameters that describe a particular

kind of explosive, and to infer the causal structure that underlies a set of explosions. Ex-

periment 6.2 will compare human judgments with the answers that the theory provides for

these questions.

What caused what?

Working out which events caused others is one of the most basic problems posed by a causal

system. This kind of inference – the determination of the “actual cause” – is generally quite

complex (e.g., Halpern & Pearl, 2001). However, the theory given in Figure 6.6 can be used

to obtain relatively simple answers for the case of explosions. In particular, the theory can
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be used to evaluate whether a can exploded as the consequence of a hidden cause becoming

active, or as the consequence of the explosion of a previous can. For example, upon seeing

a set of explosions like those shown in Figure 6.8, the theory can be used to infer that the

first can exploded spontaneously and that each subsequent explosion was the consequence

of a previous explosion, forming a causal chain.

The fourth property of Poisson processes shown in Figure 6.2 makes it possible to eval-

uate which of the components of a sum of Poisson processes was responsible for a particular

event. Under the theory of explosions shown in Figure 6.6, explosions can occur for two

reasons: because of the activation of a hidden cause, or because of the explosion of another

can. The Poisson process for explosions is the sum of a set of component processes reflecting

each of these possible causes. Thus, we can ask which of these component processes was

likely to have been the source of the explosion event. For simplicity, I will assume that the

appropriate structure is Graph 0 from Figure 6.7, which will have highest prior probability

if s is large. The probability that the hidden cause hi is the actual cause of the explosion

of can ci, which I will denote Hi ⇒ Ci, is

P (Hi ⇒ Ci|C, Graph 0) =

∫ ∞

0
P (Hi ⇒ Ci|hi, C, Graph 0)P (hi|C) dhi (6.6)

where C = {c1, . . . , cNC
} is the set of times at which the cans c1, . . . , cNC

exploded, hi is

the time at which the hidden cause hi became active, and the integral considers all of the

possible times at which the hidden cause could have become active. In Appendix D, it is

shown that this probability is 1 if no other cans could have been responsible, and less than
1
2 if another can could have been responsible.

What kind of explosive is this?

Making inferences like that expressed in Equation 6.6 requires knowing about the proper-

ties of the particular explosive one is reasoning about. The theory given above has three

parameters: α, the rate at which hidden causes become active, ω, the influence of causes

on explosions, and µ, the velocity at which explosions propagate. Different settings of these

parameters will capture the properties of different explosives and environments. For highly

unstable explosives, α and ω will be large. For explosives that are likely to become unstable,

but are not sensitive to vibration, α might be large while ω is small. For explosives that are

relatively inert, but sensitive to vibration and changes in pressure, α would be small but
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(a)
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(b)

Figure 6.8: (a) Four cans of explosive. (b)-(e) A pattern of explosions consistent with a
causal chain.
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ω would be large. The theory thus expresses expectations about the general properties of

explosives, which can be tuned to capture a the specific properties of a given substance.

The parameters of the theory can be learned through observation of a set of explosions.

Each choice of these parameters implies a probability distribution over the times at which

explosions occur for each of the different causal structures shown in Figure 6.7. Conse-

quently, we can use Bayesian inference to infer the values of α, ω, and µ for any given

dataset. In the following analysis, I will demonstrate how this inference can be performed

assuming just one possible causal structure – Graph 0 from Figure 6.7 – but this assumption

can be relaxed by integrating over all causal structures in the hypothesis space. Each choice

of α, ω, and µ implies a particular distribution P (C|Graph 0, α, ω, µ). By defining a prior

on these parameters, P (α, ω, µ), we can use Bayes’ rule to obtain a posterior distribution

P (α, ω, µ|C, Graph 0) =
P (C|Graph 0, α, ω, µ)P (α, ω, µ)

P (C|Graph 0)
, (6.7)

where the denominator P (C|Graph 0) =
∫ ∫ ∫

P (C|Graph 0, α, ωµ)P (α, ω, µ) dα dω dµ.

Equation 6.7 can be used to infer α, ω, and µ from patterns of explosions like that shown

in Figure 6.8. To make this example more concrete, we might assume that the cans were 2

spatial units apart, the first explosion occurred after 80 temporal units, and the subsequent

explosions occurred with a separation of 40 temporal units. Comparing these numbers to

the theory shown in Figure 6.6, it can be seen that if this is a genuine chain reaction µ

should be 0.05, α should be relatively low, since it took a long time for a spontaneous

explosion to occur, and ω should be relatively high, since each can caused another can to

explode. Figure 6.9 shows the marginal posterior distributions over α, ω, and µ, obtained

via Equation 6.7. These marginal distributions were computed using numerical integration,

with P (C|Graph 0, α, ω, µ) as specified in Appendix D, and independent Exponential(1)

priors on each of the parameters. The marginal posteriors indicate that α should be small,

ω should be large, and µ has a delta function at 0.05. Thus, from the pattern of explosions

exhibited by the cans, Bayesian inference can be used to identify the velocity at which

explosions propagate, that spontaneous explosions are relatively infrequent for this kind of

substance, and that explosions are quite likely to set one another off.
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Figure 6.9: Marginal posterior distributions over α, ω, and µ for a set of explosion times C
constituting a chain reaction.

What is the underlying causal structure?

In discussing both inferring the causes of events and learning the parameters of the theory,

I made the simplifying assumption that the underlying causal structure was that denoted

Graph 0 in Figure 6.7. However, one of the most important things we can learn about a

dynamic causal system is the underlying causal structure. When inferring the causes of

events and making predictions about what might happen next, it is useful to know what

causal relationships exist. In the case of explosions, the variation in causal structure allowed

by the theory given in Figure 6.6 concerns the configuration of hidden causes: explosions

can occur independently, or be affected by hidden common causes.

The theory-based approach can be used to evaluate the underlying causal structure

for any set of observed explosion times C. This involves using Bayes’ rule to compute

a posterior distribution over the causal structures shown in Figure 6.7, P (Graph i|C). I

will run through this analysis for a particularly interesting case – an array of NC cans all

exploding simultaneously – showing how the posterior probability that the causal structure

involves at least one hidden common cause can be computed. This can be done by evaluating

the posterior probability of Graph 0 given the observation that the explosion times of all of

the cans are equal (ci = t for all i, denoted C = t).
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To apply Bayes’ rule, we need two probabilities for each causal structure: the prior prob-

ability, P (Graph i), and the probability of the data under that structure, P (⌋ = t|Graph i).

The former is supplied directly by the theory, as shown in Figure 6.7. The latter can be

computed by integrating over the explosion times of all of the hidden causes. For example,

in Graph 14, where there is only a single hidden cause h1 we have

P (C = t|Graph 14) =

∫ ∞

0
P (C = t|h1)P (h1) dh1

=

∫ ∞

0
(ωδ(t, h1))

NC α exp{−αh1} dh1

= ωNC α exp{−αt}

where h1 is the value taken by the explosion time for the hidden cause. The result follows

from the properties of the Dirac delta function.

More generally, the probability P (C = t|Graph i) depends only upon the number of

hidden causes in Graph i, being

P (C = t|Graph i) = ωNC (α exp{−αt})k ,

where k is the number of hidden causes influencing cans in Graph i. Combining this

probability with the prior defined by the theory gives

P (Graph 0|C = t) =
ζNC

∏NC−1
j=0 (j + ζ)

(6.8)

where ζ = sα exp{−αt}, and s is a parameter of the theory indicating the relative prevalence

of hidden common causes. The probability of the existence of some hidden cause, being

1 − P (Graph 0|C = t), thus increases as NC increases for any choice of s and α.

6.3.3 Experiment 6.2: Inferences about Nitro X

The theory-based approach can be used to answer three fundamental questions about explo-

sions: what the cause of a given explosion might be, what properties a particular explosive

has, and what the underlying causal structure is for a set of explosions. Experiment 6.2

examined how well the answers the algorithm provides to these questions correspond to

human judgments. In the experiment, participants saw several stimuli in which cans of a
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novel explosive – Nitro X – exploded in different patterns, and were asked to describe what

they saw. The theory-based account makes three predictions, corresponding to each of the

three questions explored above:

1. What caused what? With the right parameters for this kind of explosive, people should

be able to identify the cause of any given explosion.

2. What kind of explosive is this? People should be able to infer the parameters of the

theory from stimuli like that shown in Figure 6.8.

3. What is the underlying causal structure? When shown displays in which all cans

explode simultaneously, more people should identify the existence of a hidden common

cause as NC increases.

The experiment was designed to test all three of these predictions.3

Method

Participants. Participants were 64 members of the MIT community, recruited through

a mailing list for psychology studies. There were 16 participants in each of the four experi-

mental conditions.

Stimuli. The stimuli were pictures of cans sitting on a table, presented on a computer

screen. Each stimulus consisted of a new set of cans, all of which exploded at particular

times. Explosions were demonstrated with cartoon explosion graphics like those shown in

Figure 6.8.

Procedure. The experiment consisted of three familiarization stimuli and five test

stimuli. The familiarization stimuli introduced the participants to Nitro X. For the first

stimulus, participants were told that Nitro X is very unstable, and this was demonstrated

by the experimenter tapping a can (using the mouse) and the can exploding. For the

second stimulus, participants saw two cans of Nitro X, the experimenter tapped one can,

which exploded, and the can next to it exploded shortly afterwards. Before seeing the third

stimulus, participants were again reminded about the instability of Nitro X, and saw a

single can explode without any action by the experimenter, after waiting for a few seconds.

The first two test stimuli were identical for all four conditions, and both involved four

cans exploding in a causal chain, with a delay between successive explosions. The first

3This experiment was partially designed and entirely executed by Liz Baraff, to whom I am very grateful.
Preliminary results of the experiment are reported in Griffiths, Baraff, and Tenenbaum (2004).
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(b)

(a)

Figure 6.10: The third stimulus used in Experiment 6.2, with NC = 4. (a) Four dormant
cans. (b) A simultaneous explosion.

causal chain moved from right to left, as shown in Figure 6.8. The second originated with

the second can, with the first and third cans exploding simultaneously, and then the fourth

can, each with an appropriate delay. The four conditions differed in the third test stimulus,

where the number of cans in the display was varied, being NC = 2, 3, 4 or 6. After a

brief delay, all of the cans exploded simultaneously, as shown in Figure 6.10. The last

two stimuli allowed the participants to interact with Nitro X by tapping, and will not be

discussed further.

After each test stimulus, participants were given a sheet of questions. These sheets gave

three options:

1. The first can exploded spontaneously. That explosion caused the other cans to ex-

plode, in a chain reaction.

2. Each can exploded spontaneously, all on its own. There was no causal connection

between them.

3. Neither of the above is a likely explanation. Please write a plausible alternative here.

The order of the first two options was counterbalanced, but the third option was always

last.
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Figure 6.11: Results for the third stimulus in Experiment 6.2, compared with predictions
of the theory-based Bayesian account.

Results and Discussion

All participants in all conditions identified the first test stimulus as a causal chain. 16/16,

15/16, 15/16, and 16/16 participants identified the second test stimulus as a causal chain,

for NC = 2, 3, 4 and 6 respectively. The participants who indicated otherwise for NC = 3

and 4 both chose the third option, suggesting some combination of spontaneous explosions

and a chain reaction. For the third test stimulus, no participants indicated a causal chain –

responses were divided between spontaneous explosions and the third option. The responses

of people who chose the third option were coded by two raters, who were in 100% agreement

in classifying all such responses as indicating a hidden cause. The proportion of participants

identifying a hidden cause behind the simultaneous explosion is shown in Figure 6.11. There

was a statistically significant effect of NC , χ2(3) = 11.36, p < 0.01. The number of cans

influenced whether people inferred hidden causal stucture, with most people seeing two

cans as independent but six as causally related. The figure also shows the probability of

the existence of a hidden common cause under the theory-based account, using Equation

6.8 with ζ = 12. These predictions correlate with the data at r = 0.97.
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The results of the experiment indicate that people’s inferences about explosions corre-

spond to the three predictions of the theory-based account. People can infer what caused

what: almost every subject correctly identified the first and second test stimuli as being

causal chains. This result also indicates that people are able to learn the parameters of a

theory, as these events should only be identified as causal chains if people have correctly

identified the rate at which explosions propagate, µ. Further evidence for parameter learn-

ing comes from the third test stimulus, where no participants appealed to a causal chain,

having learned that there is a delay in inter-can causation. Finally, responses to the third

test stimulus show that people are capable of inferring hidden causal structure from obser-

vations, and the effect of NC on this inference is entirely consistent with the predictions of

the theory-based account.

6.3.4 Alternative accounts

Standard algorithms for learning causal graphical models cannot explain these results. If

we imagine that time is broken into discrete intervals, and a can either explodes or does

not explode in each interval, then we can construct a contingency table for each pair of

cans. Statistical significance tests will identify pairwise dependencies among all cans that

explode simultaneously, provided appropriate numbers of non-explosion trials are included.

The existence of a hidden common cause is consistent with such a pattern of dependency.

However, as a result of reasoning deductively from this pattern, the evidence for such a

structure does not increase with NC : a hidden common cause is merely consistent with the

pattern for all NC > 2.

This experiment also illustrates that people are willing to infer hidden causal structure

from very small samples – just one datapoint – and from observations alone. Standard

constraint-based algorithms cannot solve this problem: while a hidden common cause is

consistent with the observed pattern of dependency, causal structures in which the cans

influence one another cannot be ruled out without intervention information. People do

not consider this possibility because they have learned that the mechanism by which cans

influence one another has a time delay.
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6.4 Summary

People often make inferences about causal relationships from events that occur in continuous

time. Such inferences depend upon the rates at which events occur, or their timing. By

extending causal graphical models to events that occur in continuous time, the theory-based

approach can be used to explain these inferences. I have shown how such explanations can

be formulated for two systems – particle emissions and explosions. These systems illustrate

how the theory-based approach overcomes the challenges of causal induction from events

in continuous time, showing how causal structure can be inferred from rates, and how

dynamics can be introduced into a theory.

The experiment examining how people draw causal inferences from explosions draws

much more on perception than the other experiments discussed in this thesis. Traditionally,

perceived causality, as typified by the phenomena of Michotte (1963), has been considered

fundamentally different from cognitive causal judgment (e.g., Schlottmann & Shanks, ?).

My analysis reveals an important sense in which they are fundamentally the same: both

involve an inductive inference to a generating process, constrained by a set of assumptions

about the nature of causality. Nonetheless, I anticipate that there are important differ-

ences between perceptual and cognitive causal inferences, concerning the rigidity of those

constraints, their content, and their plasticity. Formulating both kinds of inferences in a

common framework provides the opportunity to explore these differences.



Chapter 7

Coincidences

In the last days of August in 1854, the City of London was hit by an unusually violent

outbreak of cholera. More than 500 people died over the next fortnight, most of them in

a small region in Soho, 250 yards in radius. On September 3, this epidemic caught the

attention of John Snow, a medical doctor who had recently begun to argue against the

widespread notion that cholera was transmitted by bad air. Snow immediately suspected a

water pump on Broad Street as the cause, but could find little evidence of contamination.

However, on collecting information about the locations of the cases of cholera, he discovered

that they were tightly clustered around the pump. This suspicious coincidence hardened

his convictions, and the pump handle was removed. The disease did not spread any further,

furthering Snow’s (1855) argument that cholera was caused by infected water.

Observing clusters of events in the streets of London does not always result in impor-

tant discoveries. Towards the end of World War II, London came under bombardment by

German V-1 and V-2 flying bombs. It was widespread popular belief that these bombs

were landing in clusters, with an unusual number of bombs landing on the poorer parts of

the city (Johnson, 1981). This apparent clustering was subsequently dismissed as a mere

coincidence. After the war, R. D. Clarke of the Prudential Assurance Company set out

to “apply a statistical test to discover whether any support could be found for this allega-

tion” (Clarke, 1946, p. 481). Clarke examined 144 square miles of south London, in which

537 bombs had fallen. He divided this area into small squares and counted the number of

bombs falling in each square. If the bombs fell uniformly over this area, then these counts

should conform to the Poisson distribution. Clarke found that this was indeed the case, and

concluded that his result “lends no support to the clustering hypothesis” (1946, p. 481),

130
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implying that people had been misled by their intuitions.1

The suspicious coincidence noticed by John Snow and the mere coincidence that duped

the people of London seem to establish a paradox: how is it that coincidences can simulta-

neously be responsible for important scientific discoveries and widespread false beliefs? The

resolution of this paradox has been complicated by the fact that the two approaches that

have been taken to the study of coincidences each emphasize only one of these roles. In-

spired by examples like that of Snow,2 one approach has focused on how coincidences relate

to causality (Owens, 1992), what constitutes a coincidence (Horwich, 1982; Schlesinger,

1991), and how coincidences are used in scientific argument (Hacking, 1983). The other

approach has focused on events like the bombing of London, using them as examples of the

shortcomings of human reasoning about chance (Diaconis & Mosteller, 1989; Fisher, 1937;

Gilovich, 1993; Plous, 1993).

In addition to their intrinsic interest, coincidences have the potential to help us under-

stand the process of causal discovery. Scientific knowledge is expanded and revised through

the discovery of new causal relationships which enrich or invalidate existing theories. In the

previous chapters, I have shown how simple intuitive theories can be used to explain how

people learn causal relationships. An important problem for this account, and for the more

general claim that human knowledge is organized into intuitive theories with a structure

analogous to scientific theories (Carey, 1985a; Gopnik & Meltzoff, 1997; Karmiloff-Smith,

1988; Keil, 1989; Murphy & Medin, 1985), is accounting for theory change, in which an ex-

isting theory is modified to accommodate new data, or rejected altogether. The connection

between coincidences and scientific discovery suggests that they may play a similar role in

the development of intuitive theories, helping us to understand how theories change.

The aim of this chapter is to provide a computational account of coincidences, to iden-

tify their connections to theory change, and to make quantitative predictions about human

1Clarke’s investigations were later introduced to a broader audience by the widely-used textbook of Feller
(1968), and the Poisson distribution makes several appearances in Pynchon (1973/1995).

2Such examples abound. In considering the apparent rotation of stars about the Earth, Aristotle viewed
the coincidence between the rate of motion and the distance traversed as evidence for the existence of a single
celestial sphere (Franklin, 2001, pp. 133-134). Halley would never have discovered his comet without noticing
the surprising regularity in the paths and dates in a table of orbits (Cook, 1998; Hughes, 1990; Yeomans,
1991). Semmelweis might not have developed his theory of contagion without noting the similarity in the
symptoms of a doctor injured during an autopsy and those of patients in his ward (Hempel, 1966). Perrin’s
(1913/1990) argument for the objective reality of molecules was based upon the suspiciously similar estimates
of Avogadro’s number produced by several quite different methods of measuring molecular magnitudes.
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judgments of the strength of coincidences. First, I will argue against a widespread defini-

tion of coincidences: the idea that coincidences are unlikely events. I will then present an

alternative account, claiming that coincidences are events that provide support for a hy-

pothesis, but not enough support to convince us to accept that hypothesis. I will make this

definition precise by expressing it in the Bayesian framework used throughout this thesis,

and show how it can be used to make sense of some of the key issues raised by coincidences.

After conducting a simple experimental test of this account, I will use it to make quantita-

tive predictions about the strength of coincidences in some of the complex settings where

classic examples of coincidences occur: coincidences in space, as in the examples of John

Snow and the bombing of London, and coincidences in time, as in the famous “birthday

problem”. The chapter concludes with an attempt to localize the irrational component of

human reasoning about coincidences, and a discussion of the role of coincidences in theory

change.

7.1 Coincidences are not just unlikely events

Upon experiencing a coincidence, many people report a response that involves thinking

something like “What are the chances of that?” (e.g., Falk, 1981-1982). Subjectively, coin-

cidences are unlikely events: we interpret our surprise at their occurrence as indicating that

they have low probability. In fact, it is often assumed that being surprising and having low

probability are identical properties: the mathematician Littlewood (1953) suggested that

events having a probability of one in a million be considered surprising, and many psychol-

ogists make this assumption at least implicitly (e.g., Slovic & Fischhoff, 1977). The notion

that coincidences are unlikely events pervades literature addressing the topic, irrespective

of its origin. This belief is expressed in books on spirituality (“Regardless of the details of a

particular coincidence, we sense that it is too unlikely to have been the result of luck or mere

chance,” Redfield, 1998, p. 14), popular books on the mathematical basis of everyday life

(“It is an event which seems so unlikely that it is worth telling a story about,” Eastaway &

Wyndham, 1998, p. 48), and even Diaconis and Mosteller (1989) considered the definition

“a coincidence is a rare event,” but rejected it on the grounds that “this includes too much

to permit careful study” (p. 853).

The idea that coincidences are unlikely events often appears as a prelude to the claim

that people are irrational in their reactions to coincidences. Such accounts typically assume
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that we are justified in attending to events that are sufficiently unlikely to arise by chance,

but argue that most coincidences are events that people mistakenly believe to be unlikely.

This argument is made explicit in Blackmore and Troscianko’s (1985) “chance baseline

shift” hypothesis, which suggests that beliefs in the paranormal may be a consequence of

underestimating the probability of coincidental events arising by chance. This hypothesis

has been explored in a number of studies, with mixed results (Blackmore, 1997; Bressan,

2002; Brugger, Landis & Regard, 1990; Brugger & Taylor, 2003; Musch & Ehrenberg, 2002).

The simplest version of the idea that coincidences are unlikely events refers only to the

probability of a single event. Thus, some data, D, might be considered a coincidence if the

probability of D occurring by chance is small. On September 11, 2002, exactly one year

after terrorists destroyed the World Trade Center in Manhattan, the New York State Lottery

“Pick 3” competition, in which three numbers from 0-9 are chosen at random, produced

the results 9-1-1 (Associated Press, September 12, 2002). This seems like a coincidence,3

and has reasonably low probability: the three digits were uniformly distributed between 0

and 9, so the probability of getting such a combination by chance is ( 1
10)3 or 1 in 1000. If D

is a sequence of eight coinflips that are all heads, which I will denote HHHHHHHH, then its

probability under a fair coin is (1
2)8 or 1 in 256. If D is an event in which one goes to a party

and meets four people, all of whom are born on August 3, and we assume birthdays are

uniformly distributed, then the probability of this event is ( 1
365)4, or 1 in 17,748,900,625.

Consistent with the idea that coincidences are unlikely events, these values are all quite

small.

The fundamental problem with this account is that while coincidences may be unlikely

events, there are many unlikely events that are certainly not coincidences. It is easy to find

events that have the same probability, yet differ in whether we consider them a coincidence.

Since the probability of an event arising by chance in each of the previous examples depends

only on the number of observations, any outcome with the same number of observations

has the same probability. Thus, September 11 lottery results of 7-2-3, meeting people

with birthdays of May 14, July 8, August 21, and October 4, and obtaining HHTHTTTH all

3Indeed, many people sought explanations other than chance: the authorities responsible for the New
York lottery were sufficiently suspicious that they initiated an internal investigation, and a variety of sources
claimed that mystical forces were involved. The St Petersburg Times quoted one psychologist as saying that
“It could be that, collectively, the people in New York caused those lottery numbers to come up 9-1-1. . . If
enough people all are thinking the same thing, at the same time, they can cause events to happen,” while a
psychic they interviewed suggested that the lottery was used by divine forces to communicate a message to
the American people (DeGregory, September 24, 2002).
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have the same probability as the coincidental examples given above, even though they are

not particularly surprising. This indicates that the definition of a coincidence must refer

to something more than just the probability of an event. Teigen and Keren (2003) use

several other examples of this kind, supported by experimental results, to illustrate the

weak relationship between the surprisingness of events and their probability.

A more sophisticated version of the idea that coincidences are unlikely events is to

define coincidences as being events of a “kind” that is unlikely. Hints of this view appear

in experiments on coincidences conducted by Falk (1989), who suggested that people are

‘sensitive to the extension of the judged event’ (p. 489) when evaluating the surprisingness

of coincidences. Similarly, Falk (1981-1982) suggested that when one hears a story about a

coincidence, “One is probably not encoding the story with all its specific details as told, but

rather as a more general event ‘of that kind’ ” (p. 23). Similar ideas have been proposed

by psychologists studying figural goodness and subjective randomness (e.g., Garner, 1970;

Kubovy & Gilden, 1991). This account was worked out in most extensive detail by the

philosopher Schlesinger (1991), who explicitly considered coincidences in birthdays. Under

this view, meeting four people all born on August 3 is a bigger coincidence than meeting

those born on May 14, July 8, August 21, and October 4 because the former is of the kind

all on the same day while the latter is of the kind all on different days. The probability of

observing four birthdays on the same day is 365( 1
365)4 = 1

48627125 while the probability of

observing four birthdays on different days is 365×364×363×362
365×365×365×365 = 47831784

48627125 . Coincidences are

thus surprising because events of their kind are rare.

The “unlikely kinds” definition faces a number of problems. The first of these is specify-

ing what might count as a kind of event. In some domains, such as coinflips, this might be

relatively easy, but even identifying the kinds of events that might be expressed by sets of

birthdays becomes quite involved. This problem is compounded when we consider coinci-

dences that go beyond birthdays. While the notion of a “kind” seems reasonably natural for

discrete events, many coincidences involve observations that are not naturally assimilated

to particular kinds. For example, the bombing of London involved a coincidence based upon

bomb locations, which are not easily classified into kinds. To provide a complete account

of coincidences, we need to be able to identify the kinds relevant to any contexts, including

those involving continuous stimuli.

Even when a meaningful set of kinds can be found, any event is going to be an instance

of many different kinds. For example, the set of birthdays {August 3, August 3, August 3,



CHAPTER 7. COINCIDENCES 135

August 3} is an instance of the four birthdays on the same day kind, the four birthdays on

August 3 kind, the four birthdays in August kind, and the four birthdays between June 22 and

November 26 kind, not to mention being just four birthdays. This raises the question of how

to evaluate the probability of this event: which kind should we choose when calculating the

probability of an event “of that kind”? In the case of four birthdays on August 3, it seems

obvious that we should choose something like four birthdays on the same day, although it

is difficult to account for why this is the appropriate choice. It is certainly not the most

specific kind – four birthdays on August 3 is a much smaller set. This point can be made

even more clearly by considering a set of dates like {January 12, March 22, March 22, July

19, October 1, December 8}, in which the most specific hypothesis would be six birthdays on

exactly these dates. The best kind for this data might be something relatively complicated,

like six birthdays, two of which are on the same day, which identifies a pattern that is

expressed by only a subset of the observations.

Finally, even when a meaningful set of kinds can be identified and the problem of

multiple kinds is avoided by allowing each event to be of only one kind, it is possible to

find counterexamples to the “unlikely kinds” definition. For instance, a common way of

explaining why a sequence like HHHH is judged less random (and more coincidental) than

HHTT is that the former is of the kind four heads while the latter is of the kind two heads, two

tails (c.f. Garner, 1970; Kubovy & Gilden, 1991). Since one is much more likely to obtain

a sequence with two heads and two tails than a sequence with four heads when flipping a

fair coin four times, the latter seems like a bigger coincidence. The probability of N heads

from NT trials is

Pkind(D) =
(NT

N )

2NT
, (7.1)

so the probability of the four heads kind is
(44)
24 = 0.0625, while the probability of the two

heads, two tails kind is
(42)
24 = 0.375. However, we can easily construct a sequence of a kind

that has lower probability than four heads: the reasonably random HHHHTHTTHHHTHTH-

HTHTTHHH is but one example of the fifteen heads, eight tails kind, which has probability
(2315)
223 = 0.0584.

In addition to the technical problems with the definition of coincidences as unlikely

events, this account seems to neglect one of the key components of coincidences: their

meaningfulness. This aspect of coincidences is what makes them so interesting, and is

emphasized in accounts such as that of Jung (1960), and Diaconis and Mosteller (1989),
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who consider a coincidence “a surprising concurrence of events, perceived as meaningfully

related, with no apparent causal connection” (p. 853). This meaningfulness is tied to the

role of coincidences in scientific discoveries. In the remainder of the chapter, I will argue that

we notice coincidences not just because they manifest arbitrary low-probability patterns,

but because these patterns suggest novel causal explanations.

7.2 Approaching coincidences via causal induction

The characterization of coincidences as unlikely events is associated with a focus on the

ways in which the illustrate human irrationality. An alternative approach is to try to explain

how it is that coincidences lead to meaningful scientific discoveries. Taking this perspective

suggests that we might gain insight into what constitutes a coincidence by considering their

role in causal induction. In particular, we can use the framework developed in the preceding

chapters to try to explain what makes an event a coincidence.

In this section, I will use the problem of causal induction to develop an account of what

makes an event a coincidence, and spell out how this account can explain the paradoxical

nature of coincidences. I will then provide a more detailed formal analysis of one simple

kind of coincidence – coincidences in coinflips – indicating how this account differs from the

idea that coincidences are unlikely events. The section ends by identifying the empirical

predictions made by this account, which are tested in the remainder of the chapter.

7.2.1 What makes a coincidence?

Assume that a learner has data D, and two hypotheses as to the nature of the system that

produced that data, h1 and h0. In the problem of causal induction considered thus far –

that of inferring causal structure from data – h1 and h0 might refer to causal graphical

models. Under other circumstances, h1 and h0 could be hypotheses defined at higher levels,

such as two causal theories. Given these hypotheses, the posterior odds in favor of h1 can

be computed by applying Bayes’ rule:

P (h1|D)

P (h0|D)
=

P (D|h1)

P (D|h0)

P (h1)

P (h0)
. (7.2)

This equation identifies the two factors that determine the posterior odds: the likelihood

ratio, which indicates the support that D provides in favor of h1 over h0, and the prior
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odds, which express the a priori plausibility of h1 as compared to h0.

To make this analysis more concrete, consider the specific example of evaluating whether

a new form of genetic engineering influences the sex of rats. The treatment is tested through

a series of experiments in which female rats receive a prenatal injection of a chemical, and

the sex of their offspring is recorded at birth. In the formal schema above, h1 is a causal

graphical model in which injection of the chemical influences sex, and h0 is a causal graphical

model in which injection and sex are independent, structurally equivalent to Graph 1 and

Graph 0 in Figure 4.3. Under Graph 0, the probability that a rat is male should be 0.5,

while under Graph 1, rats injected with the chemical have some other probability of being

male. Imagine that in the experimental test, the first eight rats were all born male. This

would provide relatively strong support for the existence of a causal relationship, such a

relationship seems a priori plausible, and as a consequence you might be inclined to conclude

that the relationship exists.

Now contrast this with a different case of causal induction. Your friend insists that

she possesses the power of psychokinesis. To test her claim, you flip a coin in front of

her while she attempts to influence the outcome. Again, the hypotheses h1 and h0 are

equivalent to Graph 1 and Graph 0. Under Graph 1, she can influence the probability that

a coin comes up heads. Under Graph 0, she cannot. The first eight flips are all heads. The

likelihood ratio provides just as much support for a causal relationship as in the genetic

engineering example, but the existence of such a relationship has lower prior probability.

As a consequence, you might conclude that she does not possess psychic powers, and that

the surprising outcome of the coinflips was just a coincidence.

This example illustrates the central claim of this chapter: that coincidences are events

that provide support for a hypothesis, but not enough support to convince us to accept

that hypothesis. This definition can be formalized using the Bayesian machinery introduced

above. In most cases of causal induction, such as establishing whether a chemical influences

the sex of rats, we learn about causal relationships that seem relatively plausible, and

the likelihood ratio and prior odds are roughly in agreement. A coincidence is an event

that produces a likelihood ratio in favor of h1 that is insufficient to overwhelm the prior

odds against h1, resulting in middling posterior odds. The likelihood ratio provides a

measure of the strength of a coincidence, indicating how much support the event provides

for h1. Under this definition, the strongest coincidences can only be obtained in settings

where the prior odds are equally strongly against h1. Thus, like the test of psychokinesis,
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canonical coincidences typically involve data that produce a high likelihood ratio in favor

of a hypothesis that has low prior odds.4

This account of coincidences allows us to begin to address the apparent paradox of

coincidences with which I began the chapter, explaining why coincidences are relevant to

scientific discovery, and why they often lead us to false conclusions. The answer to both of

these questions is that, under my definition, coincidences provide an opportunity to make

a discovery that is inconsistent with our current account of how the world works. The

low prior odds in favor of h1 indicates that this hypothesis is rendered implausible by the

remainder of a learner’s knowledge, while the high likelihood ratio suggests that h1 should

be taken seriously. In the case of scientific discovery, an accepted scientific theory might

endorse h0, while h1 gives a more accurate description of the world. Making the discovery

that h1 is the better hypothesis requires collecting data that favor h1. Thus, by necessity,

scientific discoveries will involve coincidences, since such data will have a high likelihood

ratio in favor of a hypothesis that has low prior odds.

The fact that many coincidences support false hypotheses is a by-product of modern

adults having a relatively accurate intuitive account of how the world works, h0. If our

understanding of the world is accurate, then coincidences can only be false alarms: cases

where events that arise by chance provide support for a different hypothesis, h1. Our

susceptibility to being misled by coincidences is thus partly a consequence of our success in

causal discovery making one of the major sources of clues redundant. For anybody with a

less accurate account of how the world works than a modern adult, such as an early scientist

or a young child, coincidences are a rich source of information as to how a theory might

be revised, and should be given great attention. This account also explains why many of

4This analysis of coincidences has strong parallels with an account developed independently in philosophy
of science by Horwich (1982). In reviewing Horwich’s book, Good (1984) indicated that he held a similar
view of coincidences, stating that “we tend to be surprised . . . when the result of an observation has much
greater probability on some other, not entirely untenable, hypothesis” (p. 164). In his Philosophical Essay

on Probabilities, Pierre Simon Laplace, one of the fathers of Bayesian statistics, presented a similar view:

If we seek a cause wherever we perceive symmetry, it is not that we regard a symmetrical
event as less possible than the others, but, since this event ought to be the effect of a regular
cause or that of chance, the first of these suppositions is more probable than the second. On
a table we see letters arranged in this order, C o n s t a n t i n o p l e, and we judge that this
arrangement is not the result of chance, not because it is less possible than the others, for if this
word were not employed in any language we should not suspect it came from any particular
cause, but this word being in use among us, it is incomparably more probable that some person
has thus arranged the aforesaid letters than that this arrangement is due to chance. (Laplace,
1795/1951, p. 16)

However, Laplace did not make the connection to coincidences explicit.
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the most compelling coincidences, such as the September 11 lottery results, are associated

with mysticism. Since h0 represents the sum of our knowledge of nature, h1 will have to

postulate the existence of a supernatural force.

The relevance of coincidences to scientific discovery provides the basis for giving h1 and

h0 the vague title of “hypotheses”, rather than identifying them with specific causal struc-

tures, as in the previous chapters. While each coincidental event may involve an inference

about a specific causal structure, the implications of these inferences typically reach much

further. For example, evaluating your friend’s claims about psychokinesis can be formu-

lated as a comparison of two causal graphical models, one in which a causal relationship

exists and one in which it does not, but the discovery that your friend actually has psy-

chokinetic powers would not just influence your beliefs about this specific relationship, but

about what kind of forces operate in the world. If your friend has such powers, you might

find it more likely that others would have them, and possibly even reconsider some other

mystical phenomena you may have dismissed. This reaction is qualitatively different from

that produced by learning that a chemical influences the sex of rats, which seems to have

few other implications. The difference arises because psychokinesis is inconsistent with your

current understanding of how the world works, and its existence suggests that the theory

should itself be revised. For many coincidences, h1 and h0 do not just concern individual

causal relationships, but completely different causal theories. I will return to the question

of how coincidences guide theory change later in the chapter.

7.2.2 Coincidences in coinflips

Having laid the conceptual groundwork for this account of coincidences, I will make these

claims precise by analyzing one simple setting in which coincidences arise: flipping a coin.

This analysis helps to clarify how the Bayesian account given above relates to the idea

that coincidences are events of unlikely kinds. I will use the theory-based causal induction

framework developed in the preceding chapters to analyze inferences about the efficacy of

psychokinesis on the basis of coinflips.

Figure 7.1 show two theories about the efficacy of psychokinesis. One theory, h0, stip-

ulates that there can be no relationship between thinking about a coin, represented by

Meditating(P,C,T) for some Person P, Coin C, and Trial T, and whether the coin comes

up heads, represented by Heads(C,T). The other theory, h1, stipulates that anybody can

influence the outcome of a coin toss by focussing their mind appropriately, and specifies
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h0:
Ontology:

Types Number Predicates Values
Person NP ∼ PP Meditating(Person,Coin,Trial) Boolean : {H, T}
Coin NC ∼ PC Heads(Coin,Trial) Boolean : {H, T}
Trial NT ∼ PT

Plausible relations:

Functional form:

Meditating(P,C,T) ∼ Bernoulli(·)
Heads(C,T) ∼ Bernoulli(0.5)

h1:
Ontology:

Types Number Predicates Values
Person NP ∼ PP Meditating(Person,Coin,Trial) Boolean : {H, T}
Coin NC ∼ PC Heads(Coin,Trial) Boolean : {H, T}
Trial NT ∼ PT

Plausible relations:

Meditating(P,C,T) → Heads(C,T)

True for all T for each P, C pair.

Functional form:

Meditating(P,C,T) ∼ Bernoulli(·)
Heads(C,T) ∼

{

Bernoulli(0.5) Meditating(P,C,T) = F

Bernoulli(ω) Meditating(P,C,T) = T

Figure 7.1: Theories for coincidences in coinflipping.

probability of the coin coming up heads under such influence using a parameter ω.

Given one Person and one Coin, each of these theories generates one causal graphical

model: h0 generates a graphical model structurally equivalent to Graph 0 from Figure 4.3,

while h1 generates a graphical model structurally equivalent to Graph 1.5 Assume that the

data, D, consists of NT trials in the presence of somebody concentrating on a coin, of which

N trials produce heads. Since h0 asserts that these outcomes are all the result of chance,

5If the two theories were not quite so extreme in the probabilities that they assigned to the existence
of a relationship, they would each generate two graphical models, equivalent to Graph 0 and Graph 1, but
assign those models different prior probabilities. The inference comparing these hypotheses could still be
performed, but would require summing over the set of causal graphical models generated by each theory. I
discuss the evaluation of theories that generate multiple causal graphical models later in the chapter.
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P (D|h0) is just
(

NT

N

)

0.5NT . Evaluating P (D|h1) requires making assumptions about the

parameter ω. If we define a prior distribution P (ω), then we can compute

P (D|h1) =

∫ 1

0
P (D|ω, h1)P (ω) dω

=

∫ 1

0

(

NT

N

)

ωN (1 − ω)NT−NP (ω) dω.

Taking P (ω) to be a uniform distribution over the range [0, 1], we obtain

P (D|h1) =
1

NT + 1

from which it follows that the likelihood ratio in favor of h1 is

P (D|h1)

P (D|h0)
=

2NT

(NT

N )(NT + 1)
(7.3)

which increasingly favors h1 as N deviates from NT /2.

Since the term
(

NT

N

)

appears in both P (D|h1) and P (D|h0), Equation 7.3 also gives the

likelihood ratio in favor of h1 for D consisting of any particular sequence of NT coinflips

with N heads. This expression can be rewritten as

P (D|h1)

P (D|h0)
=

1

Pkind(D)(NT + 1)

where Pkind(D) is defined in Equation 7.1, being the probability of a sequence of the same

“kind” as D, where kinds of sequence are differentiated by the number of heads in the

sequence. Consequently, the support for h1, and the strength of the coincidence associated

with D, will increase as the probability of a sequence of the same kind as D decreases. This

is consistent with the “unlikely kinds” account of coincidences. This observation reveals why

it is possible to construct examples that are broadly consistent with the “unlikely kinds”

account of coincidences: it approximates the Bayesian solution to this problem.

Despite this connection, the Bayesian account does not face the same difficulties as the

“unlikely kinds” account of coincidences. Firstly, it automatically indicates which kinds are

going to be relevant to evaluating coincidences. This is a consequence of formulating the

problem as a comparison of two hypotheses. In this example, the kinds are differentiated by

the number of heads in a sequence because h1 and h0 differ in the probabilities with which



CHAPTER 7. COINCIDENCES 142

they predict a coin will produce heads. In other settings, the set of kinds will be defined

based upon the kind of regularities that can discriminate between the two hypotheses: the

kinds considered in a given inference will be those that have implications for the underlying

causal structure. Since h1 and h0 are defined in terms of probability distributions, the

Bayesian account extends naturally to continuous stimuli, as I will demonstrate later in the

chapter, unlike the “unlikely kinds” account. The formulation of the comparison of these

hypotheses as a Bayesian inference also implicitly solves the problems with multiple kinds,

and removes other technical problems. For example, the appearance of the (NT + 1) term

in the denominator of Equation 7.3 corrects for the fact that there are many more kinds of

longer sequences when kinds are differentiated by the number of heads. This is the issue

that made it possible for a sequence of the kind fifteen heads, eight tails to be less likely

than a sequence of the kind four heads. Under Equation 7.3, the former provides weaker

support for h1 than the latter, as there are 24 kinds of sequence of length 23, and only 5

kinds of sequence of length 4.

7.2.3 Empirical predictions

Having given a precise definition of what constitutes a coincidence, we can evaluate how well

this definition accords with human judgments. The Bayesian account presented above makes

clear empirical predictions. First and foremost, an event will be considered a coincidence

when the likelihood ratio in favor of a hypothesis h1 is high, but insufficient to overwhelm

the prior odds against h1. If either the likelihood ratio or the prior odds increase, it will

simply be considered evidence for that hypothesis. I discuss this prediction in more detail

in the next section, and test it in Experiment 7.1 for the case of coinflipping. I then

consider how this account can be extended to some of the more complex settings that have

featured in arguments about the rationality of the human sense of coincidence, assessing the

adequacy of the likelihood ratio in favor of h1 as a measure of the strength of coincidences

in Experiments 7.2 and 7.3.

7.3 The transition from coincidence to evidence

“Well, Watson, what do you make of this?” asked Holmes, after a long pause.

“It is an amazing coincidence.”

“A coincidence! Here is one of the three men whom we had named as possible
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actors in this drama, and he meets a violent death during the very hours when

we know that that drama was being enacted. The odds are enormous against its

being coincidence. No figures could express them. No, my dear Watson, the two

events are connected – must be connected. It is for us to find the connection.”

Sir Arthur Conan Doyle (1986a), The adventure of the second stain, p. 909.

What seems like a coincidence to one person can be considered compelling evidence by

another.6 In the analysis given above, whether an event is a coincidence or simply evidence

for a hypothesis comes down to whether it ultimately justifies believing in the hypothesis,

the result of an interaction between likelihood ratio and prior. Holmes and Watson could

thus differ in their construal of a violent death if they differed in the probabilities with

which they thought such an event might arise independently or as the result of a connection

to their case, or if they differed in the prior probability they assigned to the existence of

such a connection.

Under this account, events make a transition from coincidence to evidence as the pos-

terior odds in favor of h1 increase. If the posterior odds exceed a threshold, an event ceases

being a coincidence and simply becomes evidence, as illustrated schematically in Figure

7.2. The figure also identifies an intermediate stage between considering an event a mere

coincidence and finding it compelling evidence. This intermediate stage consists of “suspi-

cious coincidences”: events that we can neither dismiss nor accept as evidence, but suggest

further investigation may be appropriate. The region in which events are considered sus-

picious coincidences should contain posterior odds of 1, indicating no preference for h1 or

h0, with the thresholds for mere coincidence and evidence corrsponding to posterior odds

slightly above and below this value.

As indicated in Equation 7.2, the posterior odds increase if either the prior odds or the

likelihood ratio increases. Such changes can thus result in a transition from coincidence to

evidence. An example of the former was provided above: eight male rats in a row seems

like evidence in the context of a genetic engineering experiment, but eight heads in a row

is mere coincidence in a test of psychokinesis, where the prior odds are smaller. Tests of

psychokinesis can also be used to illustrate how a change in the likelihood ratio can produce

a transition from mere coincidence, to suspicious coincidence, to evidence: eight heads in a

6Coincidences played an important role in the “logical” method of deduction endorsed by Sherlock Holmes,
with the notion appearing in 13 of his 60 published cases.
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EvidenceSuspicious coincidenceMere coincidence

P (h1|D)
P (h0|D)

Figure 7.2: Mere and suspicious coincidences both feature a high likelihood ratio and low
prior odds in favor of h1, but in suspicious coincidences the posterior odds exceed a threshold
that makes it seem possible that h1 could actually be true.

row is a mere coincidence, but sixteen might begin to raise suspicions about your friend’s

powers, or the fairness of the coin. At ninety heads in a row you might, like Guildenstern

in Stoppard’s (1967) play, begin entertaining the possibility of divine intervention, having

relatively unambiguous evidence that something unusual is taking place.

Experiment 7.1 was designed to examine this transition from coincidence to evidence.

The experiment uses the two scenarios discussed above – genetic engineering and psychoki-

nesis – to assess whether people’s designation of events as mere or suspicious coincidences

is affected by changes in the likelihood ratio and prior odds. If an event is judged “just a

coincidence” when it provides insufficient support to overcome the prior, we should expect

to see events with higher likelihood ratios considered a mere coincidence when people are

evaluating claims about psychokinesis. More specifically, if people’s assessment of events as

coincidences or evidence is based upon the posterior probability of h1, we should expect to

see a negative correlation between this posterior probability and the proportion of people

who consider an event a coincidence. Since these predictions rely upon a subtle interaction

between likelihood ratio and prior, they are inconsistent with accounts of coincidences that

do not incorporate both of these components, such as the definition of coincidences as events

of unlikely kinds.
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7.3.1 Experiment 7.1: Psychokinesis and genetics

Method

Participants. Participants were 101 undergraduates from Stanford University, par-

ticipating for course credit. Of these participants, 24 were assigned to the psychokine-

sis,posterior condition, 20 to the genetics, posterior condition, 28 to the psychokinesis,

coincidence condition, and 29 to the genetics, coincidence condition.

Stimuli. Two basic cover stories were constructed that would allow the same data to

be presented in different contexts. The data consisted of a table of frequencies that showed

how many times a heads or tails (males or females) were produced from 100 trials. These

data showed 8 trials on which 47, 51, 55, 59, 63, 70, 87, and 99 heads (males) were obtained.

Participants receiving the psychokinesis cover story saw:

A group of scientists investigating paranormal phenomena have conducted a

series of experiments testing people who claim to possess psychic powers. All

of these people say that they have psychokinetic abilities: they believe that

they can influence the outcome of a coin toss. The scientists tested this claim

by flipping a fair coin 100 times in front of each person as they focus their

psychic energies. Under normal circumstances, a fair coin produces heads and

tails with equal probability. The results of these experiments are shown below:

the identities of the people are concealed with subject numbers, but you are

given the number of times the coin came up heads or tails while that person was

focusing their psychic energies.

while those receiving the genetics cover story saw:

A group of scientists investigating genetic engineering have conducted a series

of experiments testing drugs that influence the development of rat fetuses. All

of these drugs are supposed to affect the sex chromosome: they are intended to

affect whether rats are born male or female. The scientists tested this claim by

producing 100 baby rats from mothers treated with the drugs. Under normal

circumstances, male and female rats are equally likely to be born. The results

of these experiments are shown below: the identities of the drugs are concealed

with numbers, but you are given the number of times male or female rats were

produced by mothers treated with each drug.
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These cover stories were presented with the data in a short questionnaire, together with

further instructions on how to respond to the stimuli.

Procedure. Each participant received a questionnaire listing the eight target data sets

in one of two random orders. Orthogonal to the manipulation of the cover story, participants

either received the posterior or the coincidence instructions. The posterior instructions for

the psychokinesis condition were:

For each of the lines below, please rate HOW LIKELY you think it is that the

person has psychic powers, taking into account the results of the experiment.

Use a scale from 1 to 10, where 1 indicates NOT AT ALL LIKELY and 10

indicates EXTREMELY LIKELY.

Likewise, the instructions for the genetics condition were:

For each of the lines below, please rate HOW LIKELY you think it is that the

drug affects the sex of rats, taking into account the results of the experiment.

Use a scale from 1 to 10, where 1 indicates NOT AT ALL LIKELY and 10

indicates EXTREMELY LIKELY.

The eight sets of frequencies were accompanied by lines on which participants could write

their responses. The coincidence instructions for the psychokinesis condition asked people

to choose between a mere coincidence and evidence:

For each of the lines below, please decide whether you think the results for

that person are JUST A COINCIDENCE, or COMPELLING EVIDENCE for

them having psychic powers, by checking either the COINCIDENCE or the

EVIDENCE box.

Similarly, the instructions for the genetics condition were:

For each of the lines below, please decide whether you think the results are JUST

A COINCIDENCE, or COMPELLING EVIDENCE for that drug influencing

the sex chromosome, by checking either the COINCIDENCE or the EVIDENCE

box.

The eight sets of frequencies were listed with checkboxes to allow participants to indicate

their responses.
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Results and Discussion

One participant in the genetics condition and two in the psychokinesis condition appeared

to reverse the rating scale, and were eliminated from the analysis. The results are shown

in Figure 7.3. The posterior ratings were subjected to a two-way between-within ANOVA

examining the effects of condition (psychokinesis, genetics) and varying frequency. There

was a main effect of condition (F (1, 39) = 9.30, MSE = 13.10, p < .01), a main effect

of frequency (F (7, 273) = 91.60, MSE = 3.31, p < .0001), and an interaction between

the two (F (7, 273) = 7.86, MSE = 3.31, p < .0001). As can be seen from the figure,

the rated probability of the conclusion went up as frequency increased, but did so earlier

for the genetics than the psychokinesis condition. The same analysis was performed for the

coincidence assessments, showing a main effect of condition (F (1, 55) = 18.78, MSE = 0.18,

p < .0001), a main effect of frequency (F (7, 385) = 99.01, MSE = 0.08, p < .0001), and

an interaction between the two (F (7, 385) = 7.39, MSE = 0.08, p < .0001). These results

are due to a similar pattern of effects: the proportion of cases classified as coincidences

decreased as the frequency increased, but earlier for the genetics than the psychokinesis

condition.

As predicted, there was a close correspondence between the proportion of cases classified

as a mere coincidence and the mean posterior probability of the regular generating process,

with a linear correlation of r = −0.98. In fact, points that are equivalent in posterior

probability are also equivalent in the proportion of cases that were classified as coincidences.

Examining Figure 7.3 closely, it can be seen that 87 heads and 63 males produce the

same results in both graphs, as do 63 heads and 59 males, and 99 heads and 70 males.

This relationship holds despite the fact that responses were binary in one condition and

continuous in the other, and obtained from completely different participants.

The assumption that there is a threshold on the posterior odds that determines whether

an event is a coincidence or evidence, as indicated in Figure 7.2, suggests that these judg-

ments might be modeled using a sigmoid (logistic) function of the posterior odds

P (“evidence”|D) =
1

1 + exp
{

−g log P (h1|D)

P (h0|D)
− b

} (7.4)
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Figure 7.3: Results of Experiment 7.1. The upper panel shows the proportion of cases
judged to be coincidences in the coincidence condition, and the lower panel shows the mean
responses in the posterior condition. Dotted lines show model predictions, obtained by
estimating prior probabilities for each participant.

where g is the gain of the sigmoid, and b is the bias. As g→∞, this becomes a step function

at the point b. I will assume that g = 1 and b = 0, meaning that P (“evidence”|D) is equal

to P (h1|D). Since the likelihood ratio P (D|h1)

P (D|h0)
is given by Equation 7.3, we can estimate

the prior odds for each participant by fitting the sigmoid function to their responses, and

thus obtain the prior P (h1).

In the coincidence condition, all but one of the participants responded in a fashion

consistent with thresholding the posterior odds. It was thus simple to find the value of

the prior odds for each participant that maximizes the probability of their responses as

predicted by Equation 7.4. This results in a model fit for each participant, and the quality

of these fits can be seen from the mean model predictions shown in the upper panel of

Figure 7.3. The median values of P (h1) for the psychokinesis and genetics conditions were

were 0.0004 and 0.23 respectively.

A similar procedure can be used to estimate the prior odds directly from the posterior

probabilities provided by the participants in the posterior condition. Again fitting a sigmoid

function for each participant, this time relative to the squared error, we obtain the fits

shown in the lower panel of Figure 7.3. People’s more extreme probability judgments can
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be seen to be more conservative than those predicted by our Bayesian model, consistent

with previous research (e.g., Edwards, 1968). However, this procedure yields similar median

values for P (h1): 0.0011 in the psychokinesis condition and 0.20 in the genetics condition.

Contrary to previous results illustrating deficits in the ability to combine likelihood ratios

with prior odds (e.g., Kahneman & Tversky, 1972), people seem quite accurate in assessing

the posterior probabilities of causal relationships. This may be a consequence of using

priors that are derived from extended experience, rather than base-rates provided in an

experimental scenario (c.f. Evans, Handley, Over & Perham, 2002).

The results of this experiment are consistent with the predictions of my Bayesian account

of coincidences. Data that provided the same support for h1 were judged to be coincidences if

presented as the results of a test of psychokinesis, and evidence if presented as the results of a

test of genetic engineering. The proportion of people who considered an event a coincidence

showed a direct correspondence to the posterior probability, with the difference between the

two conditions resulting from a difference in the prior probability of a causal relationship.

Assuming that people are accurately evaluating the likelihood ratio in favor of h1 allows us to

assess the values of these prior beliefs, which are consistent across experimental procedures

and with our intuitions about the efficacy of psychic powers and genetic engineering.

7.4 The strength of coincidences

Experiment 7.1 suggests that the basic constituents of my definition of coincidences are

correct: that events are considered a coincidence when they provide support for a hypothesis

that is insufficient to convince us of its truth. We can now examine these constituents more

carefully. Under this account of coincidences, the likelihood ratio indicates the strength of

a coincidence, with higher likelihood ratios indicating more compelling coincidences. In the

analysis given in the previous section, I assumed that the likelihood ratio given in Equation

7.3 accurately captured people’s assessment of the support that D gave for h1 over h0.

Whether people’s assessment of the strength of coincidences corresponds to the likelihood

ratio in favor of h1 is an empirical question.

In exploring this question, we have the opportunity to examine people’s assessment of

coincidences in more realistic settings. The simplicity of coinflipping makes it an effective

example with which to explore formal models, but real coincidences, such as the bombing

of London, often involve more complex data and more elaborate hypotheses. In these
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cases, detecting a coincidence does not just involve recognizing an unusual pattern, but

doing so despite the presence of observations that do not express that pattern. These

sophisticated inductive inferences have parallels in other aspects of cognition. For example,

many problems that arise in cognitive development have exactly this character, requiring a

child to notice a regularity that is expressed in only a subset of the data. One such case is

word learning: young children are able to learn the relationship between the use of words

and the appearance of the objects they identify, despite the fact that only about 70% of the

uses of a word by a parent occur when the child is attending to the relevant object (Collins,

1977; Harris, Jones, & Grant, 1983).

I will examine people’s judgments about the strength of coincidences from two differ-

ent kinds of data: spatial data, consisting of the locations of bombs, and temporal data,

concerning the dates of birthdays. These two cases were chosen because they have connec-

tions to two of the most prominent examples that are used to argue for the irrationality of

human reasoning about coincidences: the “birthday problem” and the bombing of London.

I will show that people’s assessment of the strength of coincidences corresponds extremely

well with the rational predictions of the Bayesian account developed above, suggesting that

this apparent irrationality must result from a different aspect of people’s reasoning about

coincidences. I make some suggestions as to the locus of this irrationality towards the end

of the chapter.

7.4.1 Coincidences in date

How often have you been surprised to discover that two people share the same birthday?

Matching birthdays are a canonical form of coincidence, and are often used to demonstrate

errors in human intuitions about chance. The “birthday problem” – evaluating the number

of people that need to be in a room to provide a 50% chance of two sharing the same

birthday – is a common topic in introductory statistics classes, since students are often

surprised to discover that the answer is only 23 people. In general, the number of people

required to have a 50% chance of a match on a variable with k alternatives is approximately
√

k, since there are (NP

2 ) ≈ N2
P opportunities for a match between NP people. Using a set of

problems of this form that varied in k, Matthews and Blackmore (1995) found that people

expect NP to increase linearly with k, explaining why such problems produce surprising

results. Diaconis and Mosteller (1989) argued that many coincidences are of similar form

to the birthday problem, and that people’s faulty intuitions about such problems are one
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source of errors in reasoning about coincidences.

In this section, I will examine how people evaluate coincidences in date, through a novel

“birthday problem”: assessing how big a coincidence it would be to meet a group of people

with a particular set of birthdays. In contrast with the tasks that have been used to argue

that coincidences are an instance of human irrationality, this is not an objective probability

judgment. It is a subjective response, asking people to express their intuitions. In many

ways, this is a more natural task than assessing the probability of an event. It is also,

under my characterization of the nature of coincidences, a more useful one: knowing the

probability of an event is generally less useful than knowing how much evidence it provides

for a hypothesis. By examining the structure of these subjective responses, we have the

opportunity to understand the principles that guide them.

Imagine you went to a party, and met people with a set of birthdays such as {August

3, August 3, August 3, August 3}. Figure 7.4 gives two theories that might be used to

explain such an event. One theory, h0, asserts that the presence of people at the party

is independent of their birthday. This theory generates one causal graphical model for

any number of people NP , which is denoted Graph 0 in Figure 7.5. The other theory, h1,

suggests that the presence of some subset of the people at the party was dependent upon

their birthdays. As with the theory of bombing presented above, this theory generates

2NP causal graphical models for NP people, consisting of all partitions of those people into

subsets whose presence either depends or does not depend upon their birthday. Both graphs

shown in Figure 7.5 are generated by h1 with NP = 6. A priori, h0 seems far more likely

than h1, so a set of birthdays that provides support for h1 constitutes a coincidence.

The data D in this setting consists of the birthdays of the people encountered at the

party. Since only the people present at the party can be encountered, these are conditional

data. If Bi indicates Birthday(pi) and Pi indicates Present(pi) for Person pi, our data

are the values of Bi conditioned on Pi = p+
i for all i. Under h0, Bi and Pi are independent,

so we have

P (D|h0) =

(

1

365

)N+
P

(7.5)

where N+
P is the number of people who are present at the party.

Evaluating P (D|h1) is slightly more complicated, due to the possible dependence of Bi

on Pi and the functional form of that dependence. Under h1, if Birthday(P) influences

Present(P), then Present(P) is true with probability α only if Birthday(P) belongs to the
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h0:
Ontology:

Types Number Predicates Values
Person NP ∼ PP Present(Person) Boolean : {T, F}

Birthday(Person) Date : {1, . . . , 365}

Plausible relations:

Functional form:

Birthday(P) ∼ Uniform({1, . . . , 365})
Present(P) ∼ Bernoulli(α)

h1:
Ontology:

Types Number Predicates Values
Person NP ∼ PP Present(Person) Boolean : {T, F}

Birthday(Person) Date : {1, . . . , 365}

Plausible relations:

Birthday(P)→Present(P)
True with probability p for each P.

Functional form:

Birthday(P) ∼ Uniform({1, . . . , 365})

Present(P) ∼







Bernoulli(α) Birthday(P)→Present(P) and Birthday(P) ∈ B
Bernoulli(0) Birthday(P)→Present(P) and Birthday(P) 6∈ B
Bernoulli(α) otherwise

Figure 7.4: Theories for coincidences in birthdays.

h0

h1

P(Graph 60 |    ) = 0
P(Graph 60 |    ) = p (1-p)4 2

h1

h0P(Graph 0 |    ) = 1
P(Graph 0 |    ) = (1-p)6

B B

P P P P P P654321

1 2

P P P P P P321 4 65

1 2 3 4 5 6 B B B B3 4 5 6B B B B B B

Figure 7.5: Causal graphical models generated by theories of birthdays. Bi indicates
Birthday(pi), and Pi indicates Present(pi)
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set B. This set indicates the “filter” that was applied to determine whether people would

be invited to the party, identifying some subset of admissable dates. Computing P (D|h1)

requires making some assumptions about the nature of B.

As a first step towards evaluating P (D|h1), we can consider the probability of D con-

ditioned on a particular B. There are two possibilities for the component of the causal

structure that corresponds to each person pi: with probability 1 − p, Bi and Pi are inde-

pendent, and with probability p, Bi and Pi are dependent. If Bi and Pi are independent,

the probability distribution of Bi conditioned on Pi is just the unconditional distribution

of Bi, which is uniform over {1, . . . , 365}. If Bi and Pi are dependent, the distribution

of Bi conditioned on Pi is uniform over the set B, since Pi has constant probability when

Bi ∈ B and zero probability otherwise. It follows that the probability distribution for each

Bi conditioned on Pi = p+
i is a mixture of two uniform distributions, and

P (D|B) =

N∗
P

∏

i=1

[

1 − p

365
+ I(bi ∈ B)

p

|B|

]

(7.6)

where I(·) is an indicator function that takes the value 1 when its argument is true and 0

otherwise, and |B| is the number of dates in B.

We can use Equation 7.6 to compute P (D|h1). If we define a prior, P (B) on filter sets

B, we have

P (D|h1) =
∑

B

P (D|B)P (B). (7.7)

The extent to which a set of birthdays will provide support for h1 will thus be influenced

by the choice of P (B). We want to define a prior that identifies a relatively intuitive set of

filters that might be applied to a set of birthdays to determine the presence of people at

a party. An enumeration of such regularities might be: falling on the same day, falling on

adjacent days, being from the same calendar month, having the same calendar date (e.g.,

January 17, March 17, September 17, December 17), and being otherwise close in date.

With 365 days in the year, these five categories identify a total of 11,358 different sets B:

365 consisting of a single day in the year, 365 consisting of neighboring days, 12 consisting

of calendar months, 31 consisting of specific days of the month, and 10,585 having to do

with general proximity in date (from 3-31 days). This is not intended to be an exhaustive

set of the kinds of regularities one could find in birthdays, but is a simple choice for the

values that B could take on that allows us to test the predictions of the model. Given this
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set, I will define a prior, P (B), by taking a uniform distribution over the hypotheses in the

first four categories, and giving all 10,585 hypotheses in the fifth category as much weight as

a single hypothesis in one of the first four. Equation 7.7 can then be evaluated numerically

by explicitly summing over all of these possibilities.

The second term in Equation 7.6 has an important implication: the influence of a filter

B on the assessment of a coincidence decreases as that filter admits more dates. Thus, while

the set {August 3, August 3, August 3, August 3} consists of birthdays that all occur in

August, the major contribution to the support for h1 having been responsible for producing

this outcome is the fact that all four birthdays fall on the same day. This sensitivity to

the size of the set B is equivalent to the “size principle” that plays a key role in Bayesian

models of concept learning and generalization (Tenenbaum, 1999b; 1999a; Tenenbaum &

Griffiths, 2001). The filtering procedure by which people come to be present at the party

under h1 is one means of deriving this size principle.

We can use Equations 7.5 and 7.7 to compute the likelihood ratio P (D|h1)

P (D|h0)
for any set of

birthdays. Experiment 7.2 compares this likelihood ratio with human ratings of the strength

of coincidence for different sets of birthdays.

7.4.2 Experiment 7.2: Birthdays

Method

Participants. Participants were 93 undergraduate students from Stanford University,

participating for course credit.

Stimuli. Stimuli were sets of dates, chosen to allow assessment of the degree of co-

incidence associated with some of the regularities enumerated above. Fourteen potential

relationships between birthdays were examined, using two choices of dates. The sets of

dates included: 2, 4, 6, and 8 apparently unrelated birthdays for which each date was cho-

sen from a different month, 2 birthdays on the same day, 2 birthdays in 2 days across a

month boundary, 4 birthdays on the same day, 4 birthdays in one week across a month

boundary, 4 birthdays in the same calendar month, 4 birthdays with the same calendar

dates, and 2 same day, 4 same day, and 4 same date with an additional 4 unrelated birth-

days, as well as 4 same week with an additional 2 unrelated birthdays. These dates were

delivered in a questionnaire. One choice of dates, in the order specified above, was:

February 25, August 10
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February 11, April 6, June 24, September 17

January 23, February 2, April 9, July 12, October 17, December 5

February 22, March 6, May 2, June 13, July 27, September 21, October 18, December 11

May 18, May 18

September 30, October 1

August 3, August 3, August 3, August 3

June 27, June 29, July 1, July 2

January 2, January 13, January 21, January 30

January 17, April 17, June 17, November 17

January 12, March 22, March 22,July 19, October 1, December 8

January 29, April 26, May 5, May 5, May 5, May 5, September 14, November 1

February 12, April 6, May 6, June 27, August 6, October 6, November 15, December 22

March 12, April 28, April 30, May 2, May 4, August 18

Procedure. Participants completed the questionnaire as part of a booklet of other short

psychology experiments. Each participant saw one choice of dates, with the regularities

occurring in one of six random orders. The instructions on the questionnaire read as follows:

All of us have experienced surprising events that make us think “Wow, what a

coincidence”. One context in which we sometimes encounter coincidences is in

finding out about people’s birthdays. Imagine that you are introduced to various

groups of people. With each group of people, you discuss your birthdays. Each

of the lines below gives the birthdays of one group, listed in calendar order.

Please rate how big a coincidence the birthdays of each group seem to you.

Use a scale from 1 to 10, where 1 means ‘Very small (or no) coincidence’, and

10 means ‘Very big coincidence’.

The sets of dates were then given on separate lines, in calendar order within each line, with

a space beside each set for a response.

Results and Discussion

The mean responses for the different stimuli are shown in Figure 7.6. The birthdays dif-

fered significantly in their judged coincidentalness (F (13, 1196) = 185.55, MSE = 3.35,

p < .0001). The figure also shows the predictions of the Bayesian model. The ordinal

correlation between the likelihood ratio P (D|h1)

P (D|h0)
and the human judgments was ρ = 0.921.
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0 5 10

 Feb 25, Aug 10  (N)  

 Feb 11, Apr 6, Jun 24, Sep 17  (M)  

Jan 23,  Feb 2, Apr 9, Jul 12, Oct 17, Dec 5  (L)  

 Feb 22, Mar 6, May 2, Jun 13, Jul 27, Sep 21, Oct 18, Dec 11  (K)  

May 18, May 18  (J)  

Sep 30, Oct 1  (I)  

Aug 3, Aug 3, Aug 3, Aug 3  (H)  

Jun 27, Jun 29, Jul 1, Jul 2  (G)  

Jan 2, Jan 13, Jan 21, Jan 30  (F)  

Jan 17, Apr 17, Jun 17, Nov 17  (E)  

Jan 29, Apr 26, May 5, May 5, May 5, May 5, Sep 14, Nov 1  (D)  

Jan 12, Mar 22, Mar 22, Jul 19, Oct 1, Dec 8  (C)  

 Feb 12, Apr 6, May 6, Jun 27, Aug 6, Oct 6, Nov 15, Dec 22  (B)  

Mar 12, Apr 28, Apr 30, May 2, May 4, Aug 18  (A)  

How big a coincidence?

Human data

0 5 10
Statistical evidence

Bayesian model

0 5 10
Statistical evidence

Without sizes

0 5 10
Statistical evidence

Uniform P(B)

0 5 10
Statistical evidence

Unit weights

Figure 7.6: The leftmost panel shows the mean judgment of the strength of coincidences
from human participants in Experiment 7.3. Error bars indicating one standard error in
either direction are shown in the upper right hand corner of the panel. The second panel
shows the predictions of the Bayesian model, the third shows the consequences of removing
the size principle, and the third shows the consequences of using a uniform prior on filters,
P (B). The fifth panel shows the combined effects of these two omissions, illustrating the
performance of the model when each filter B contributes equally to P (D|h1).

The values shown in the Figure were obtained by applying a nonlinear transformation,

y = sign(x)abs(x)γ where x is the log likelihood ratio and γ = 0.60, which gave a linear

correlation of r = 0.958.

The predictions of the Bayesian model correspond closely to people’s judgments of the

strength of coincidences. Each of the parts of this model – the size principle, the set of filters

B, and the prior over filters P (B) – contributes to this performance. Figure 7.6 illustrates

the contributions of these different components: the panel labelled “Without sizes” shows

the effect of removing the size principle; “Uniform P (B)” shows the effect of removing P (B);

and “Unit weights” shows the effect of removing both of these elements of the model and

simply giving equal weight to each filter B consistent with Bi. I will discuss how each of

these modifications reduces the fit of the model to the data, but the basic message is clear:

simply specifying a set of regularities is not sufficient to explain people’s judgments. The

model explains many of the subtleties of people’s performance on this task as the result of

rational statistical inference.

The “Without sizes” model shown in Figure 7.6 replaces the p
|B| term in Equation 7.6
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with just p, removing the effect of the size principle. The model fit is significantly worse, with

a rank-order correlation of ρ = 0.12, and γ = 1.00 giving a linear correlation of r = −0.079.

The worse fit of this model illustrates the importance of the size of the extension of the

judged event in determining the strength of a coincidence, consistent with Falk’s (1981-1982;

1989) results. This effect can be seen most clearly by examining the stimuli that consist

of four dates: {August 3, August 3, August 3, August 3} is more of a coincidence than

{January 17, April 17, June 17, November 17}, which is in turn more of a coincidence than

{January 2, January 13, January 21, January 30}. This ordering is consistent with the size

of the regularities they express: a set of four birthdays falling on August 3 cover only one

date, August 3, while there are 12 dates covered by the hypothesis corresponding to dates

falling on the 17th day of the month, and 31 dates covered by the hypothesis corresponding

to dates in January.

The size of the extension of the hypothesis is not the only factor influencing the pre-

dictions of the Bayesian model. While the size of B is important in determining P (D|h1),

the prior P (B) also has a large effect. In the basic model, P (B) gives less weight to the

extremely large number of regularities corresponding to intervals of between 3 and 31 days.

The importance of this prior over hypotheses is illustrated by the “Uniform P (B)” model,

which gives equal probability to all of the filters B. This model gives too much weight to

the filters that correspond to intervals of dates, resulting in a fit of ρ = 0.776, and r = 0.806

with γ = 0.80. The main error made by this model is not predicting the apparent equiv-

alence of {January 17, April 17, June 17, November 17} and {June 27, June 29, July 1,

July 2}, despite the fact that the former is of size 12 and the latter of size 7. In the basic

model, the effect of the sizes of the regularities is overwhelmed by P (B), corresponding to

the fact that dates falling within seven days over a month boundary is not a particularly

salient regularity.

The effects of the size principle and P (B) interact in producing the good performance

of the basic Bayesian model. These two factors determine which regularities influence the

strength of a coincidence. Simply having a sensible set of filters B provides no guarantee of

a good model of coincidence judgments. This can be seen in the “Unit weights” model, in

which all filters B are given unit weight, removing the size principle and using a uniform

prior P (B). The model gives a fit of ρ = 0.099, and r = 0.158 with γ = 0.002. In this

model, the major contributors to the strength of a coincidence are the number of dates and

their proximity.
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The main discrepancy between the basic Bayesian model and the data is the ordering

of the random dates. The model predicts that the longer lists of unrelated dates should be

considered less of a coincidence, while people seem to believe the opposite. To explore this

curious effect further, we conducted a second survey with a separate group of 73 Stanford

undergraduates, showing them a subset of 8 of the 14 stimuli used in the experiment that

included the four sets of random dates. The participants were asked to rate the strength

of the coincidences, as before, and to state why they gave the rating they did. Of the

73 participants, 49 did not identify any kind of pattern in the random dates, 23 noted

a regularity, and one gave a high rating because of a match with her own birthday. The

regularity identified by the 23 subjects had to do with the fact that the “random” birthdays

were suspiciously evenly spaced throughout the year, not overlapping at all in month or date.

This regularity could be accommodated by using a more elaborate set of filters, at the cost

of greater complexity of the model.

7.4.3 Coincidences in space

John Snow’s inference to the cause of the Broad Street cholera outbreak and the mistaken

beliefs of the populace during the bombing of London were both based upon coincidences in

space – clusters in the locations of patients and bombs respectively. By studying people’s

assessment of the strength of coincidences in space, we can gain insight into how people make

such inferences. Formulating these coincidences in terms of causal induction also extends

the theory-based causal induction framework to another kind of data. In the previous

chapters, I considered how causal structure could be inferred from contingency data, rates,

and times. Here, the data consist of points in space.

As in the temporal case discussed in Chapter 6, spatial coordinates are continuous. By

analogy to discrete trials, we could imagine cutting up space into a discrete set of regions,

and defining the probability of a particular event for each region. By the same arguments

as those presented in Chapter 6, when we take the limit of the number of regions to infinity

we obtain a spatial Poisson process, which gives a rate for each point in space. The number

of events that occur in a particular region can be computed using this rate, just as the

number of events that occur in a particular interval can be computed using the rate of the

temporal Poisson process. Consequently, the functional form component of causal theories

for spatial events needs to specify how the rate for each variable as a function of its parents.
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Figure 7.7 gives two theories of bombing.7 The theory identified as h0 assumes that each

bomb has its own target, while the theory identified as h1 allows some bombs to share a

common target.8 The points at which a bomb explodes has a Gaussian distribution around

the location of its target, with covariance matrix Σ. Targets are distributed uniformly

throughout the region in which bombs fall, R.

The theory h0 generates only one causal graphical model, denoted Graph 0 in Figure

7.8. In this model, each Bomb bi has a single Target ti, and the points at which the

bombs explode are independent. Using Xi to indicate the point at which bi explodes,

ExplosionTime(bi), and Li to indicate the location of the target ti, Location(tit), we

have

P (xi|h0) =

∫

R
P (xi|ℓi)P (ℓi) dℓi

∝
∫

R
φΣ(xi, ℓi) dℓi

≈ 1

where xi is the value taken by Xi, ℓi is the value taken by Li, and φΣ(x, ℓ) is the value of

the multivariate Gaussian density with mean ℓ and covariance matrix Σ at point x. The

approximation in the last line is a consequence of the fact that if ℓi is near the boundary of

R, some of the mass of P (xi|ℓi) will fall outside R, making values of xi near the boundary

slightly less likely. This effect will be negligible if R is large relative to Σ, so P (xi|h0) is

well approximated by a uniform distribution over R. With D consisting of the locations of

NB bombs, we thus have

P (D|h0) =

(

1

|R|

)NB

(7.8)

where |R| is the area of R.

The theory h1 generates 2NB causal graphical models, corresponding to each partition of

NB bombs into two sets, one in which each bomb bi has a unique target ti and one in which

7As with the theory of explosions presented in Chapter 6, these theories can be defined entirely in terms
of boolean predicates at the loss of some notational efficiency. A version of h1 in this form appears in
Appendix E, and reveals some interesting parallels with the temporal case.

8A more elaborate version of h1 might allow multiple common targets, in line with the theories used
to analyze the stick-ball machine and Nitro X. While such a theory might be a more accurate account of
people’s expectations, evaluating quantities like P (X|h1) becomes a challenging computational problem.
Consequently, in this chapter I restrict myself to cases in which a single common target is sufficient to
describe the regularities present in the data.
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h0:
Ontology:

Types Number Predicates Values
Target NT = ∞ Location(Target) Space : R ⊂ R

2

Bomb NB ∼ PB ExplosionPoint(Bomb) Space : R ⊂ R
2

Plausible relations:

Location(T)→ExplosionPoint(B)
Each B has an edge from a unique T.

Functional form:

Location(T) ∼ Uniform(R)
ExplosionPoint(B) ∼ Gaussian(Location(T),Σ)

h1:
Ontology:

Types Number Predicates Values
Target NT = ∞ Location(Target) Space : R ⊂ R

2

Bomb NB ∼ PB ExplosionPoint(Bomb) Space : R ⊂ R
2

Plausible relations:

Location(T)→ExplosionPoint(B)
Each B has an edge from some T. With probability p, T = tC, a common target, otherwise T

is unique to B.

Functional form:

Location(T) ∼ Uniform(R)
ExplosionPoint(B) ∼ Gaussian(Location(T),Σ)

Figure 7.7: Theories for coincidences in bombing.
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h0P(Graph 0 |    ) = 1
P(Graph 0 |    ) = (1−p)6

L L L

X X X X X X654321

1 2 C

h0

h1

P(Graph 60 |    ) = 0
P(Graph 60 |    ) = p (1−p)4 2

L L L L L

X X X X X X321 4 65
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Figure 7.8: Causal graphical models generated by theories of bombing. Li indicates
Location(ti), Xi indicates ExplosionPoint(bi), and tC is the common target.
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each bomb shares a common target tC. Both of the causal graphical models shown in Figure

7.8 are generated by this theory, with NB = 6. Evaluating P (D|h1) requires summing over

all of these different causal models, a procedure that is discussed in Appendix E. Evaluating

this probability is facilitated by the fact that h1 implies that each Xi is drawn from a mixture

of a uniform and a Gaussian, giving

P (D|Σ, p, ℓC) =

NB
∏

i=1

[P (xi|Li→Xi)P (Li→Xi|p) + P (X|Σ, ℓC, LC→Xi)P (LC→Xi|p)]

=

NB
∏

i=1

1 − p

|R| + p φΣ(xi, ℓC)

where P (Li→Xi|p) is the probability that bi has a unique target, and P (LC→Xi|p) is

the probability that bi shares the common target. Each of these possibilities implies a

different distribution for Xi, being uniform and Gaussian respectively, and their probabilities

provide the weights with which these distributions are mixed, being 1−p and p respectively.

Computing P (D|h1) thus reduces to the problem of computing the marginal probability of

data under a mixture distribution, a problem that has been studied extensively in statistics

(e.g., Emond, Raftery, & Steele, 2001).

These results provide the basic constituents of the likelihood ratio, which indicates

the support that data D provide for h1. Experiment 7.3 was designed to investigate how

well this quantity predicts people’s assessment of the strength of coincidences in bombing.

Participants were informed that h0 was in fact the correct account of the data, meaning

that any support for h1 would constitute a coincidence.

7.4.4 Experiment 7.3: Bombing

Method

Participants. Participants were 235 undergraduates from Stanford University, partici-

pating for course credit.

Stimuli. Stimuli were 12 images containing points at different locations within a 10 by

10 square, ranging from -5 to 5 in two directions. No markers on the axes indicated this

scale, but we provide the information to give meaning to the parameters listed below. Nine

of these stimuli were generated from a mixture of a uniform and a Gaussian distribution,

with parameters selected to span four different dimensions – number of points, proportion of
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Table 7.1: Parameters Used in Generating the Stimuli for Experiment 7.3.
Property Parameters

Number NB = 20 NB = 50 NB = 200
Proportion p = 0.5 p = 0.3 p = 0.1

Location ℓC =

[

−3
−3

]

ℓC =

[

0
0

]

ℓC =

[

3
3

]

Spread Σ =

[

2 0
0 2

]

Σ =

[

1
2 0
0 1

2

]

Σ =

[

1
5 0
0 1

5

]

points within the cluster, location of the cluster, and spread of the cluster. The basic values

of the parameters used in generating the stimuli were NB = 50, p = 0.3, ℓC =
[

3

3

]

and

Σ =
[

1
2

0

0 1
2

]

, which were varied systematically to produce the range of stimuli described

above. The parameter values used to generate these stimuli are given in Table 1. The

other three stimuli were generated by sampling 50 points from the uniform distribution.

All 12 images are shown in Figure 7.9, with repetition of the stimulus embodying the basic

parameter values accounting for the presence of 15 images in the Figure. The stimuli were

delivered in a questionnaire.

Procedure. Participants completed the questionnaire as part of a booklet of other short

psychology experiments. Each participant saw all 12 images, in one of six random orders.

The instructions on the questionnaire read as follows:

During World War II, the city of London was hit repeatedly by German bombs.

While the bombs were found to be equally likely to fall in any part of London,

people in the city believed otherwise.

Each of the images below shows where bombs landed in a particular part of

London for a given month, with a single point for each bomb. On the lines at

the bottom of the page corresponding to each image, please rate HOW BIG A

COINCIDENCE the distribution of bombs seems to you. Use a scale from 1

to 10, where 1 means ‘Very small (or no) coincidence’, and 10 means ‘Very big

coincidence’.

The images were labelled with alphabetical letters, and correspondingly labelled lines were

provided at the bottom of the questionnaire for responses.
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Results and Discussion

The mean responses are shown in Figure 7.9. Planned comparisons were computed for each

of the manipulated variables, with statistically significant outcomes for number (F = 22.89,

p < .0001), proportion (F = 10.18, p < .0001), and spread (F = 12.03, p < .0001), and

a marginally significant effect of location (F = 2.0, p = 0.14). The differences observed

among responses to the three sets of points generated from the uniform distribution were

not statistically significant (F = 0.41, p = 0.66). All planned comparisons had df = 2, 2574,

and MSE = 6.21.

Values of P (D|h1)

P (D|h0)
were computed for each image using the method outlined in Appendix

E. The predictions of the Bayesian model are shown in Figure 7.9. The ordinal correlation

between the raw statistical evidence and the responses was ρ = 0.965. The values shown in

the figure are a result of the transformation y = sign(x)abs(x)0.32 for x = log P (D|h1)

P (D|h0)
, which

gave a linear correlation of r = 0.981. People’s assessment of the strength of coincidences

shows a remarkably close correspondence to the predictions of this Bayesian account. The

main discrepancy is an overestimate of the effect of strength of coincidence for the stimulus

with the least spread. This may have been a consequence of the fact that the dots indicating

the bomb locations overlapped in this image, making it difficult for participants to estimate

the number of bombs landing in the cluster.

7.5 The locus of human irrationality

“Singular coincidence, Holmes. Very smart of you to notice it, but rather un-

charitable to suggest that it was cause and effect.”

Sir Arthur Conan Doyle (1986b), The adventure of the dying detective, p. 396.

The results of Experiments 7.2 and 7.3 are consistent with the prediction that the

perceived strength of a coincidence should correspond to the support for an improbable

hypothesis. In both experiments, the likelihood ratio in favor of h1 gave a remarkably good

fit to human judgments. These results have implications for understanding how coinci-

dences sometimes lead people to false conclusions. In the terminology I have introduced,

the irrational errors associated with coincidences involve mistaking mere coincidences for

suspicious ones, and erroneously taking suspicious coincidences as compelling evidence for a

conclusion. Under my analysis, these errors result from over-estimating the posterior odds
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Figure 7.9: Results of Experiment 7.2. Each line shows the three stimuli used to test the
effects of manipulating one of the statistical properties of the stimulus, together with the
mean judgments of strength of coincidences from human participants and the predictions
of the Bayesian model. Error bars show one standard error, and letters label the different
stimuli.
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in favor of a hypothesis. The results of the preceding experiments suggest that people are

accurate in their assessment of the support that data provide for a particular hypothesis,

raising the possibility that these errors are due to inaccurate prior odds. Thus, people reach

false conclusions as the consequence of a coincidence when they fail to accurately assess the

a priori plausibility of the hypothesis that the coincidence suggests.

The suggestion that people can accurately assess the evidence that a set of events pro-

vides for a conclusion is consistent with some of the ideas that appear in the literature

on judgment and decision making. Tversky and Koehler (1994) argued that many of the

irrational aspects of people’s probability judgments can be understood by viewing these

judgments as reflecting the support that a set of observations provide for a particular hy-

pothesis. In order to use this information, people have to be able to actually compute some

measure of support. While various measures have been suggested, a Bayesian measure of

support similar to our measure of evidence has been found to provide reasonable results on

at least some cognitive tasks (Koehler, White, & Grondin, 2003). This is consistent with

the results of Experiments 7.2 and 7.3. However, accurately assessing the support for a

hypothesis does not guarantee a valid conclusion about the truth of that hypothesis, just as

accurate results from a statistical analysis do not guarantee a valid conclusion. Reaching

the right conclusion requires having well-calibrated priors.

The importance of veridical prior knowledge can be illustrated by an analogy to logical

deduction. The validity of an argument is a consequence of both the truth of the premises

and the soundness of the reasoning, which correspond to the calibration of the prior beliefs

and the calculation of the evidence in a Bayesian inductive inference. Invalid conclusions

can be reached if a single premise is false, or the deduction mechanism is unsound. The

claim that miscalibration of priors contributes to false inferences is analogous to asserting

that the deduction mechanism behind people’s conclusions is sound, but the premises from

which they reason are not always true. Our knowledge about the world is complex and

often inconsistent, and the right evidence in the wrong place can lead us astray. If we are

promiscuous believers in paranormal events, we can easily take mere coincidences to be

suspicious.

A classic example of a case in which the miscalibration of priors may have resulted in

an unusual conclusion is provided by the history of synchronicity. Jung (1960) introduced

synchronicity as an acausal force connecting events, “equal in rank to causality as a principle

of explanation” (p. 435). Jung was led to believe in the existence of synchronicity through a
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series of coincidences, including a spontaneous explosion during a conversation with Freud,

the mysterious appearance of a scarab beetle while a patient was relating a dream about

a scarab, and an alarmingly extended series of encounters with fish. The fact that it may

seem possible for many of us to go through similar experiences without believing them more

than mere coincidences may illustrate a difference in our prior beliefs about the validity of

our theories about the world. As Hardy, Harvie, and Koestler (1973) suggest, “Whether

one believes that some highly improbable meaningful coincidences are manifestations of

some such unknown principle operating beyond physical causality, or are produced by that

immortal monkey at the typewriter, is ultimately a matter of inclination and temperament”

(p. 230).

One suggestive hypothesis as to why we might be more willing to believe in the existence

of causal relationships than we could be comes from developmental psychology. Gopnik and

Meltzoff (1997) argue that the scientific behavior of adults is an extension of the capacity

for causal discovery that is essential for the cognitive development of children. It is quite

understandable that children might be willing to believe in the hypotheses suggested by

coincidences, since they are surrounded by events that really do involve novel causal rela-

tionships. Small children are justified in being conspiracy theorists, since their world is run

by an inscrutable and all-powerful organization possessing secret communications and mys-

terious powers. If our scientific capacities really are for solving these childhood mysteries,

then our disposition to believe in the existence of unexpected causal relationships might lag

behind our current state of knowledge, leading us to see causes where none exist.

Further opportunities for erroneous inferences are provided by cases where suspicious

coincidences are not tested through further investigation. If we examine the contexts in

which coincidences lead people to false beliefs, we see that many of them involve situations

where it is hard to conduct convincing experiments that invalidate a hypothetical causal

relationship. Synchronicity, extrasensory perception, and other paranormal forces are all

quite slippery subjects of investigation, for which it is challenging to construct compelling

experimental tests (e.g., Diaconis, 1978). The bombing of London involved a similarly

untestable hypothesis, compounded by the fear and uncertainty associated with being un-

der attack. The cases where coincidences have resulted in rational discoveries, in science

and detective stories, are all cases where a coincidence suggests a hypothesis which can be

established through further investigation. Halley’s hypothesis was spectacularly validated
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by the return of his comet in 1758, and Holmes has the chance to test his theories by collect-

ing further clues. Without this kind of detailed investigation, all but the most compelling

coincidences should be treated as nothing more than suspicious.

7.6 Coincidences and theory change

Many cognitive scientists have suggested that the growth and organization of knowledge can

be understood by examining similar processes in scientific theories (Carey, 1985a; Gopnik

& Meltzoff, 1997; Karmiloff-Smith, 1988; Keil, 1989; Murphy & Medin, 1985). One of

the major problems that arises in this “theory theory” is understanding the process of

theory change. The formal analyses I have presented in this chapter have characterized

coincidences as involving data that provide support for a theory that has low a priori

probability. Coincidences thus constitute an opportunity to discover that one’s current

theory of how the world works is false. This characterization of coincidences suggests that

they may play an important role in theory change, similar to the role of anomalies in Kuhn’s

(1970) influential account of scientific discovery.

The theory theory draws extensively upon work in philosophy of science, and in partic-

ular upon Kuhn’s (1970) analysis of science in terms of a succession of scientific revolutions.

One of the major topics of Kuhn’s work is the factors contributing to scientific discovery and

subsequent theoretical change. Principal among these factors is the growing awareness of

“anomalies,” with Kuhn (1970) claiming that “discovery commences with the awareness of

anomaly, i.e., with the recognition that nature has somehow violated the paradigm-induced

expectations that govern normal science” (p. 52). Kuhn (1970) argued that the process of

discovery often follows a particular course:

Initially, only the anticipated and usual are experienced even under circum-

stances where anomaly is later to be observed. Further acquaintance, however,

does result in awareness of something wrong or does relate the effect to some-

thing that has gone wrong before. That awareness of anomaly opens a period

in which conceptual categories are adjusted until the initially anomalous has

become the anticipated. At this point the discovery has been completed. (p.

64)

Anomalies can also be responsible for large-scale theoretical change, inducing a crisis that
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is resolved by the development of a new theory. However, Kuhn (1970) noted that “if an

anomaly is to evoke crisis, it must usually be more than just an anomaly” (p. 82).

Anomalous scientific results can be of two kinds. The strongest kind of anomaly is an

event that is impossible under a particular scientific theory, having zero probability. Such

an event contributes infinite evidence against the theory, and suggests that it should be

replaced. However, most anomalies are of a different kind: events that are improbable

under a theory. Salmon (1990) suggested that a Bayesian approach to comparing theories

might be consistent with Kuhn’s characterization of theory change. Salmon characterized

an anomaly as “a phenomenon that appears to have a small, possibly zero, likelihood given

that theory” (1990, p. 193). This assertion is similar to the claim that coincidences are

unlikely events, defining anomalies only in terms of their probability under the current

theory and not considering alternatives. Just as we can construct cases in which events are

equally unlikely but not equally coincidental, we can construct cases in which events are

equally unlikely but not equally anomalous. A full account of anomalies needs to compare

this likelihood with some alternative, as in my account of coincidences.

The consistency of Salmon’s (1990) statistical definition of an anomaly with the accounts

that appear in the literature on coincidences suggests that there may be some correspon-

dence between the two notions. Kuhn’s characterization of anomalies is very similar to my

definition of coincidences: anomalies are patterns of results that suggest a structure not

predicted by the current theory, which can come to motivate theoretical change once suffi-

cient evidence mounts. Kuhn’s (1970, p. 64) description of the process by which anomalies

lead to discoveries bears a remarkable similarity to the process by which mere coincidences

become suspicious. Initially, a few surprising coincidences will be dismissed as the result of

chance. However, as one comes to consider the possibility of other processes being involved,

and as the number of coincidences increases, the evidence provided by this set of events be-

gins to promote suspicions. Further exploration of the source of these events might reveal

an unexpected causal relationship. Once one is aware of this relationship, the events that

were previously coincidences become anticipated, and merely provide further evidence for a

known relationship. Likewise, the statement that crises are provoked by anomalies that are

not just anomalies expresses the same sentiment as our notion of suspicious coincidences –

in order to result in a change in beliefs, a coincidence must be more than just a coincidence.
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7.7 Summary

Coincidences pose an interesting paradox, playing key roles in both significant scientific

discoveries and in propagating false beliefs. Resolving this paradox requires going beyond

the common idea that coincidences are just unlikely events, and considering their relation-

ship to causality. The theory-based causal induction framework provides the tools that are

needed in order to make this relationship clear. Using this framework, it is possible to define

coincidences as events that provide support for a hypothesis, but not enough support to

convince us to believe in that hypothesis. This account can be used to identify what goes

wrong when we are misled by coincidences, and to clarify the role that coincidences play in

the revision of intuitive theories.



Chapter 8

Implications for intuitive theories

The variation in the formal theories presented in the preceding chapters illustrates the

diversity of the knowledge that guides human causal induction. The quality of the corre-

spondence between computational models and data suggests that these theories give a good

characterization of the assumptions that people make in these different settings. Having

established the descriptive virtues of theory-based causal induction, I will use this chapter

to examine some of the implications of this framework for the role of intuitive theories in

causal induction. The formal nature of the framework makes it possible to make precise

claims about some of the key issues surrounding intuitive theories introduced in Chapter 1:

domain-specificity, the role of mechanism knowledge, and theory acquisition. I will discuss

these issues in turn.

8.1 Domain specificity

Physics, biology, and psychology all involve quite different causal principles, such as force,

growth, and desire. Even young children are sensitive to this variation, having different

expectations about the causal relationships participated in by biological and non-biological

(Springer & Keil, 1991) and social and non-social (Gelman & Spelke, 1981; Shultz, 1982a)

entities. Consequently, it has been suggested that each of these domains is characterized by

a separate domain-specific theory, identifying the principles appropriate to that domain (see

Hirschfeld & Gelman, 1994, for a variety of views on this issue). The early manifestation of

domain-specific causal inferences, such as knowledge of the causal properties of objects (e.g.,

Spelke, Breinlinger, Macomber, & Jacobson, 1992) has led to claims that these inferences

170
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are the result of distinct and specialized cognitive modules (e.g., Leslie, 1994).

Claims of domain-specificity are highly controversial. Recently, Schulz and Gopnik

(in press) reported a series of studies that seemed to provide evidence against the domain-

specificity of causal reasoning, demonstrating that young children made the same inferences

in different domains and were willing to identify causal relationships that involved domain-

inappropriate causes. Schulz and Gopnik (in press) used these results to argue that children

have a domain-general capacity for learning causal relationships.

In the theory-based framework introduced in this thesis, causal induction is viewed as

the result of domain-general statistical inference that is informed by a domain-specific (or at

least domain-sensitive) theory. The theory provides constraints on the causal structures that

are evaluated by statistical inference. In this section, I will use this framework to explain

Schulz and Gopnik’s (in press) results, demonstrating that they are consistent with domain-

specific prior knowledge playing a role in causal induction. I will do so by considering

how domain might be expected to influence expectations about the functional form and

plausibility of causal relationships.

8.1.1 The effect of domain on functional form

Causal relationships in different domains involve very different causal mechanisms. For

example, you would probably use different methods to move a heavy box a yard to the

left from those that you would use to move a friend a yard to the left. However, this

difference in the mechanism by which effects are brought about need not be reflected in a

difference in the assumed functional form of the underlying relationship. If attempting to

drag a heavy box and asking your friend to move are both successful about 90% of the time,

these two relationships can be described by a similar functional form. The mapping from

domain-specific mechanism to functional form is many-to-one, with a variety of different

mechanisms reducing to the same set of qualitative assumptions about functional form.

Consequently, causal induction involving systems in quite different domains can have much

the same character: even if the content of theories differs, the constraints they imply for

causal relationships can be the same.

An experiment conducted by Schulz and Gopnik (in press, Experiment 3) illustrates

this point. In this experiment, children learned about causal relationships in two differ-

ent domains: biology and psychology. In the biology domain, children were asked to infer

which flowers caused a toy monkey to sneeze, while in the psychology domain, they learned



CHAPTER 8. IMPLICATIONS FOR INTUITIVE THEORIES 172

Table 8.1: Effect of Domain on Functional Form

Condition C All Other
test (biology) 0.78 (0.90) 0.11 (0.00) 0.11 (0.10)

control (biology) 0.05 (0.06) 0.89 (0.86) 0.05 (0.08)
test (psychology) 0.67 (0.90) 0.28 (0.00) 0.05 (0.10)

control (psychology) 0.05 (0.06) 0.83 (0.86) 0.11 (0.08)

Note: Numbers indicate the proportion of children identifying C as the cause, A, B, and C as causes,

or producing some other response, from Schulz & Gopnik (in press, Experiment 3). Predictions of

Bayesian model are given in parentheses. Boldface indicates majority.

which animals scared a toy rabbit. There were two conditions in each domain. Using

A, B, and C to indicate the presence of each of three flowers (or animals) and E to in-

dicate a sneezing monkey or a scared rabbit, the test condition consisted of four events:

e−|a+b−c−, e−|a−b+c−, e+|a−b−c+, and e+|a+b+c+. The control condition featured four

different events: e+|a+b−c−, e+|a−b+c−, e+|a−b−c+, and e+|a+b+c+. Children made quite

similar inferences across the two domains, as shown in Table 8.1, identifying C as the cause

in the test condition, and all of A, B, and C as causes in the control condition.

Schulz and Gopnik (in press) used the results of this experiment to argue that chil-

dren’s ability to infer causal relationships is domain independent. A different interpretation

of these results is that they indicate that the same functional form can be assumed in

different domains (and for different underlying causal mechanisms). If the theories char-

acterizing two systems are isomorphic, then causal inferences using those theories will be

identical. A pair of isomorphic theories for sneezing and scaring is shown in Figures 8.1

and 8.2. There is a direct correspondence between the types of entities identified by these

theories and the predicates applied to those entities, with Flower and Beast, Monkey and

Rabbit, and Sneezes and Scared all playing the same roles. The theories are identical in

their assumptions about the plausibility of causal relationships and the functional form of

those relationships. For the stimuli shown to the children, both theories generate the same

hypothesis space of causal graphical models, shown in Figure 8.3.

Under the theories shown in Figures 8.1 and 8.2, the influences of multiple causes on

both sneezing and scaring are described by the noisy-OR parameterization. The use of

the same functional form across the two theories is a consequence of the applicability of

the same set of assumptions about the nature of causal relationships in the domain: that

causes influence their effects probabilistically, and that these each of these influences has
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Ontology:

Types Number Predicates Values
Flower NF ∼ PB Present(Flower,Trial) Boolean: {H, T}
Monkey NM ∼ PM Sneezes(Monkey,Trial) Boolean: {H, T}
Trial NT ∼ PT

Plausible relations:

Present(F, T) → Sneezes(M, T)
True for all T with probability p for each F, M pair

Functional form:

Present(F, T) ∼ Bernoulli(·)
Sneezes(M, T) ∼ Bernoulli(ν) for ν from a noisy-OR:

Cause Strength
(Background) w0 = ǫ
Present(F, T) wi = 1 − ǫ

Figure 8.1: Theory for causal induction with “biology” (sneezing monkeys).

Ontology:

Types Number Predicates Values
Beast NB ∼ PB Present(Beast, Trial) Boolean: {T, F}
Rabbit NR ∼ PR Scared(Rabbit, Trial) Boolean: {T, F}
Trial NT ∼ PT

Plausible relations:

Present(B, T) → Scared(R, T)
True for all T with probability p for each B, R pair

Functional form:

Present(B, T) ∼ Bernoulli(·)
Scared(R, T) ∼ Bernoulli(ν) for ν from a noisy-OR:

Cause Strength
(Background) w0 = ǫ
Present(B, T) wi = 1 − ǫ

Figure 8.2: Theory for causal induction with “psychology” (scared rabbits).
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an independent opportunity to do so. This shared functional form results in the same

predictions for the two conditions, as shown in Table 8.1. These predictions used p = 0.5

and ǫ = 0.05 for both biology and psychology.

8.1.2 The effect of domain on plausibility

In many of the examples discussed in the previous chapters, assumptions about the plau-

sibility of a causal relationship played a less important role than assumptions about the

underlying ontology and the functional form of causal relationships. In part, this is because

the stimuli used in psychology experiments on causal learning tend to involve variables

among which causal relationships are quite plausible. Studying problems of causal learning

involving variables from different domains provides an opportunity to explore the effect of

domain on the plausibility of causal relationships. In particular, one might expect that

plausible relationships would be restricted to causes that use forces appropriate to that

domain. For example, asking a box to move is far likely to be successful than dragging it.

Shultz (1982b, Experiment 4) demonstrated that young children have strong expecta-

tions about the plausibility of different kinds of causal relationships. For example, he found

that children know that a lamp is more likely than a fan to produce a spot of light, that

a fan is more likely than a tuning fork to blow out a candle, and that a tuning fork is

more likely than a lamp to produce resonance in a box. All of these kinds of relationship

are in the physical domain, but they involve different mechanisms. Schulz and Gopnik (in

press) have recently extended this kind of investigation, examining how children assess the

plausibility of causal relationships across domains, and how this assessment interacts with

statistical evidence.

Schulz and Gopnik (in press, Experiment 4) introduced children to causal systems in

two domains. The physical domain involved a machine that made noise, with the candidate

causes of the activation of the machine being two magnetic buttons, the in-domain objects

a and b, and speech, the out-domain object c. The psychological domain involved reasoning

about what might make a person giggle. The in-domain objects a and b were silly faces,

and the out-domain object c was a switch. In each domain, children were first asked which

objects were likely to produce the effect, and unanimously identified the in-domain causes.

They then saw a series of trials exactly the same as those used in the test condition of

Schulz and Gopnik’s (in press) Experiment 3, discussed above. As shown in Table 8.2, the

majority of the children now identified the out-domain object c as the cause, despite its low
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Table 8.2: Effect of Domain on Plausibility

Condition c a, b Other
physical 0.75 (0.79) 0.00 (0.08) 0.25 (0.13)

psychological 0.81 (0.79) 0.00 (0.08) 0.19 (0.13)

Note: Numbers indicate the proportion of children identifying c as a cause, a and/or b as a cause,

or producing some other response, from Schulz & Gopnik (in press, Experiment 4). Predictions of

Bayesian model are given in parentheses. Boldface indicates majority.

initial plausibility.

A simple theory that characterizes both the physical and the psychological stimuli used

by Schulz and Gopnik is shown in Figure 8.4. Under this theory, both in-domain and out-

domain objects can influence the effect, but the plausibility of such relationships differs.

The probability of an in-domain relationship is set by p, while the probability of an out-

domain relationship is set by q. The hypothesis space generated by this model for objects

a, b, and c is shown in Figure 8.3, using A to indicate the presence of a, B to indicate the

presence of b, C to indicate the presence of c, and E to indicate the activation of the effect.

The initial responses of the children in Schulz and Gopnik’s experiment indicates that

q is much less than p. The predictions of the model with p = 0.5, q = 0.05, and ǫ = 0.5 are

shown in Table 8.2. The model identifies c as a cause, despite its low plausibility, because

of the strong assumptions about functional form. This effect can be best understood by

considering the limit as ǫ → 0. If E never occurs in the absence of a cause, then seeing E

occur in the presence of c provides unambiguous evidence that C causes E. Thus, provided

q takes on some value greater than zero, the probability that C causes E will be 1.00.

Allowing ǫ to take on values greater than zero increases the influence of q on the outcome.

In particular, if ǫ is somewhat greater than q, it becomes more likely that A and B are

causes of E, and the causal relationship simply failed to manifest on the trials when a and

b were present.

Schulz and Gopnik (in press) interpreted this experiment as indicating that children are

aware of domain-specific constraints on causal relationship, but that these constraints can

be over-ridden by domain-general principles of causal learning. In the analysis above, the

probability of an out-domain variable being involved in a causal relationship, q, has little

effect on the predictions of the model: the assumptions about the functional form of the

causal relationship mean that C will be identified as the cause even if q is very small. The
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Ontology:

Types Number Predicates Values
Cause NC ∼ PC Present(Cause, Trial) Boolean: {H, T}

InDomain · Active(Effect, Trial) Boolean: {H, T}
OutDomain ·

Effect NE ∼ PO

Trial NT ∼ PT

Plausible relations:

Present(C, T) → Active(E, T)
True for all T with probability p for each C, E pair where C is an InDomain cause,
and with probability q for each C, E pair where C is an OutDomain cause

Functional form:

Present(C, T) ∼ Bernoulli(·)
Active(E, T) ∼ Bernoulli(ν) for ν from a noisy-OR:

Cause Strength
(Background) w0 = ǫ
Active(C, T) wi = 1 − ǫ

Figure 8.4: Theory for causal induction across domains.

model predicts that the value of q would have a greater effect given ambiguous evidence.

For example, seeing e+|a+b−c+ and e+|a−b+c+ would suggest that A and B cause E if q

is small, and that C causes E if q is large. Exploring cross-domain inferences in the face of

ambiguous evidence might reveal a more subtle, graded interaction between domain-specific

constraints and domain-general statistical learning.

Different domains operate by different causal princples, a fact that can be captured in

the theory-based framework by using different causal theories and by allowing relationships

to differ in their plausibility. However, such differences need not always result in different

behavior: as shown by the results of Schulz and Gopnik (in press, Experiment 3), if the

theories that describe causal systems in two domains imply the same constraints on causal

graphical models, then we should expect causal inferences to have much the same character

across those systems. Likewise, while knowledge of the causal principles by which different

domains operate can influence the plausibility of causal relationships, strong assumptions

about functional form can overwhelm the effects of plausibility, as in Schulz and Gopnik

(in press, Experiment 4). These experiments thus leave open the possibility that domain-

specific knowledge guides causal induction. Analyzing their results using the theory-based
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causal induction framework suggests further experiments which might shed light upon this

important issue.

8.2 Theories and mechanisms

As mentioned in Chapter 1, psychological theories about causal induction have traditionally

fallen into two camps (Newsome, 2003): covariation-based approaches characterize human

causal induction as the consequence of a domain-general statistical sensitivity to covari-

ation between cause and effect (e.g., Cheng & Novick, 1990; 1992; Shanks & Dickinson,

1987), while mechanism-based approaches focus on the role of prior knowledge about the

mechanisms by which causal force can be transferred (e.g., Ahn & Kalish, 2000; Shultz,

1982b; White, 1995). The theory-based approach emphasizes the interaction between prior

knowledge and statistical learning in causal induction. In this section I will attempt to

clarify how the formal theories appealed to by the theory-based approach connect to the

notion of causal mechanism.

When researchers refer to “causal mechanism”, they typically mean the chain of events

mediating between cause and effect, as illustrated in Figure 8.5 (a) (e.g., Bullock, Gelman,

& Baillargeon, 1982; Glymour, & Cheng, 1998; Shultz, 1982b; see Shultz & Kestenbaum,

1985, for a discussion of different kinds of mechanism). However, a detailed understanding

of the mechanisms mediating between cause and effect is clearly not necessary for causal

induction – if one possessed such knowledge there would be nothing to learn. Furthermore,

recent studies investigating the limits of people’s understanding of causal systems suggests

that in fact, our mechanism knowledge may look more like Figure 8.5 (b). For example,

Rozenblit and Keil (2002) found that when asked to explain how mechanical systems like

crossbows and helicopters work, people radically over-estimated the extent of their mech-

anism knowledge. It seems that, in general, our causal knowledge identifies the fact that

a mechanism exists, but does not necessarily articulate all of the steps that connect cause

and effect (Keil, 2003).

Results like those of Rozenblit and Keil (2002) raise an interesting question: if our

knowledge of causal mechanisms is as shallow as it appears to be, how is it possible for

this knowledge to inform causal induction? The theory-based account provides an answer

to this question. Under this account, prior knowledge plays two important roles in causal

induction: identifying which relationships are plausible, and characterizing the functional
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(a) EC 1M M2 M?. . .

(b) EC 1M M2 M?. . .

Figure 8.5: Two conceptions of causal mechanism knowledge. (a) The causal mechanism
specifies the chain of events mediating between a cause C and its effect E. (b) Often, people
know that some mechanism exists, but not the details.

form of those relationships. The shallow mechanism knowledge described by Keil (2003) is

sufficient to fulfill these roles. Whether a causal relationship seems plausible is affected by

mechanism knowledge, but the key determinant in this decision is not the particular details

of the causal mechanism, but whether such a mechanism could exist. Similarly, evaluating

the functional form of a causal relationship does not require knowing every step between

cause and effect, but knowing what kind of relationship those steps might produce.

Neither assessing plausibility nor specifying functional form requires a detailed account

of a chain of events from cause to effect. Several authors have equated the plausibility

of a causal relationship with the existence of a potential mechanism by which the cause

could influence the effect (e.g., Ahn & Kalish, 2000; Schlottmann, 1999). Koslowski (1996)

provides a succinct exposition of this view:

The mechanism in a causal situation explains the process by which a cause brings

about an effect. Without the availability of a plausible process, causation is

unlikely to be seen as taking place. Covariation is sometimes seen as indicating

cause and is at other times seen as merely artifactual precisely because plausible

mechanisms are seen as operating in the former instances and as unlikely to be

operating in the latter. (p. 13)

Koslowski and her colleagues (Koslowski, 1996; Koslowski & Okagaki, 1986; Koslowski,

Okagaki, Lorenz, & Umbach, 1989) have conducted a series of experiments investigating

this claim, finding that people consider causal relationships more plausible when supplied

with a potential mechanism, and less plausible when the most likely mechanisms are ruled

out.
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Lack of complete mechanism knowledge is likewise no impediment to reasoning about

the functional form of a causal relationship. This point is illustrated by the discovery of

Halley’s comet, a causal inference that required the prior knowledge supplied by Newton’s

theory of physics. Newton’s theory was notoriously amechanistic, departing from its fore-

bears by introducing forces unmediated by particles (e.g., Westfall, 1977). Physicists are

still engaged in the project of providing a mechanistic account of Newton’s ideas, and in

particular the force of gravity. While Halley did not know how the mass of stars and planets

influenced the orbits of comets, he was still able to use information about the form of this

influence to reason about the cause of the events that he observed. Indeed, in introducing

his own account of causality, Pearl (1996) reduces mechanisms to “. . . nothing but ordinary

physical laws, cast in the form of deterministic equations” (p. 432), being no more than the

specification of the functional form of the relationship between two variables.

The causal theories used in theory-based causal induction can thus be viewed as ex-

pressing the consequences of the shallow knowledge people possess of the mechanisms that

operate in different domains. However, these theories do not express that knowledge di-

rectly: they are just as amechanistic as Newton’s theory of physics, characterizing the

possible relationships among entities and their form. The theories I have described are the

constraints on the functional relationships among variables that can be the consequence of

mechanism knowledge rather than the knowledge itself. Many mechanisms can imply the

same set of constraints, as illustrated in the discussion of domain-specificity in the previous

section.

Distinguishing between theories and mechanisms provides an important insight into

how causal induction is possible. A major challenge for mechanism-based accounts of causal

induction is explaining how new causal mechanisms might be learned: if all causal induction

requires mechanism knowledge, one can never discover a relationship that suggests a new

mechanism (e.g., Cheng, 1993). If theory and mechanism are distinct, it becomes possible

to learn a set of causal relationships without knowing their underlying mechanism. The

existence of these relationships can then encourage the search for a mechanism that accounts

for them, and the discovery of such a mechanism justifies further inferences about possible

causal relationships. Such a pattern is extremely common in science – most of the suspicious

coincidences that suggest new causal relationships are followed by a search for a mechanism.

For example, Hempel (1966) describes a famous discovery of exactly this kind, made by

the Hungarian physician Ignaz Semmelweis in the 19th century. Semmelweis noticed a
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suspicious similarity in the symptoms of patients in a particular ward and the symptoms

exhibited by a colleague injured during an autopsy. Inferring that a causal relationship

might exist, he began to search for the mechanism responsible – a search that brought him

remarkably close to the modern theory of germs.

8.3 Theory acquisition

Analyses of causal induction that postulate a common representation for causal relation-

ships and intuitive theories can construe cognitive development and the everyday discovery

of new causal relationships as the same process, with theories being enriched and revised

through the addition of those new relationships (e.g., Gopnik & Glymour, 2002). I have

argued that causal induction actually involves multiple levels of representation, with causal

graphical models being adequate to express specific causal relationships, but causal theories

defining laws that constrain those relationships. Under this account, cognitive development

and everyday learning do not act upon the same representations: cognitive development

can involve the revision of theories, while everyday learning uses those theories when iden-

tifying new causal relationships. My focus in this thesis has been on the latter process,

explaining the role of causal theories in causal induction. Understanding how those theories

themselves are learned is an important open problem. Under the analogy between language

comprehension and causal induction introduced in Chapters 2 and 3, this is the explanatory

problem, the equivalent of accounting for how people learn grammars.

The question of how people learn causal theories can be answered using the methods

I have applied to the question of how people learn causal structure. The three levels of

representation assumed by this account (Figure 3.1) and the assumption that each level

generates the one below define a hierarchical Bayesian model. As discussed in Chapter

5, data can be used to make inferences about theories as well as inferences about causal

structure. Given data D, the posterior distribution over theories T is

P (T |D) =
P (D|T )P (T )

P (D)
, (8.1)

where P (D) =
∑

T P (D|T )P (T ), and

P (D|T ) =

|HT |
∑

i=1

P (D|Graph i)P (Graph i|T )
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which sums over all causal graphical models generated by the theory.

Equation 8.1 can be used to assess the posterior probability of any set of theories.

However, most cases of theory change do not involve comparing a completely arbitrary set

of theories. Rather, one of the components of an existing theory is modified, distinguishing

new types of entities, allowing new causal structures, or specifying a different form for a

known relationship. In the preceding chapters, I discussed two examples of this kind of

inference. In Chapter 5, I showed how Equation 8.1 could be used to select between two

theories that differed in the functional form of the relationship between blickets and blicket

detectors. The same approach can be used to evaluate a range of theories that differ in their

assumptions about functional form. In Chapter 7, the coincidences I analyzed all involved

a decision between two theories that differed in their assumptions about causal structure.

The same analysis can be extended to allow more general comparison of theories that differ

in the forces they posit.

The question of how people infer that there are different types of entities that engage

in different patterns of causal relationships has recently been explored by Tenenbaum and

Niyogi (2003). Tenenbaum and Niyogi (2003) found that people could learn about the

existence of different types of entities based purely upon the causal relationships in which

they participated. Kemp, Griffiths, and Tenenbaum (2004) have developed a computational

model that explains how such learning can take place, using Bayesian inference to simulta-

neously identify the number of types, the types themselves, and the plausibility of causal

relationships among entities of those types. This approach performs the computation iden-

tified in Equation 8.1 for a slightly more impoverished class of theories than those presented

here (Tenenbaum & Griffiths, in prep).

These examples of theory acquisition just begin to scratch the surface of the question

of how people learn intuitive theories. More detailed development and testing this account

raises a rich set of questions to be explored in future research. One issue is the source of

prior probabilities for theories – the distribution P (T ) in Equation 8.1. As discussed in the

next section, such prior probabilities can be construed as the consequence of higher-level

theories. Another source of priors over theories is linguistic interaction. While suspicious

coincidences provide some of the most compelling examples of scientific theory change,

the development of intuitive theories is intimately related to the development of linguistic

abilities (e.g., Gopnik & Meltzoff, 1997). The Bayesian approach discussed in this section

has the potential to provide insight into how these factors can be combined, with data
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driving theory change through suspicious coincidences and linguistic interaction modifying

the prior plausibility of candidate theories.

8.4 Higher-level theories

The causal theories that I presented in the previous chapters have the same constituents

as the intuitive theories discussed in accounts of cognition and cognitive development –

ontologies and causal laws – but are far more limited in scope. The analogy to Wellman’s

(1990; Wellman & Gelman, 1992) notion of a framework theory is useful in indicating the

way that multiple levels of causal knowledge interact, but misleading in suggesting that

the causal theories I describe are at the same level of generality as framework theories.

Framework theories are supposed to provide the fundamental principles used in organizing

an entire domain, such as intuitive physics, biology, or psychology. The theories I have

presented characterize the principles that underlie very simple causal systems, with well

delineated boundaries. For example, while the theory of Nitro X makes predictions for

any array of arbitrarily many cans of explosive, it hardly provides a complete theory of all

physical systems.

The theories I have discussed in this thesis are at a relatively low level of generality,

identifying the causal principles involved in specific kinds of system. This is partly a conse-

quence of attempting to provide the simplest theory that provides the constraints necessary

to explain hman inferences. Doing justice to the notion of a framework theory requires

postulating the existence of higher-level theories, which express principles common to many

systems. As indicated in Equation 8.1, applying Bayes’ rule at the level of theories requires

having a prior distribution over such theories. Just as people have strong expectations

about the causal relationships that might hold in a given system, they have strong expecta-

tions about the kind of causal relationships that could operate in a domain. For example,

theories of the stick-ball machine are constrained by beliefs about how any physical system

could work. These constraints are expressed in higher-level domain theories. Such higher-

level theories can act as hypothesis-space generators for theories at a lower level, defining a

hypothesis space of theories, and a prior on those theories. This view is explored in detail

in Tenenbaum and Griffiths (in prep).

Identifying the kind of principles that should be included in these higher-level theories

requires investigating the assumptions that guide causal induction across a wide range of
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systems. By examining inferences involving different systems in physics, biology, and psy-

chology, it should become possible to pick out the domain-specific principles that generate

the theories of these systems that people use. The different physical systems discussed

in Chapters 5 and 6, such as the stick-ball machine and Nitro X, suggest what some of

these principles might be for the domain of physics. The theories that I used to explain

people’s inferences about these systems had much the same character, using hidden causes

(“prime movers”) to inject mechanical energy into the system, and having rules about the

circumstances under which events occurred that gave a qualitative correspondence to New-

ton’s first two laws of physics – that no object changes state without a cause, and that

causes produce changes in state with high probability. These principles may be a part of

the higher-level theory that organizes knowledge about physical causality, a hypothesis that

can be explored by examining people’s inferences about other physical systems.

Providing an account of how people learn causal theories of specific systems that appeals

to higher-level causal theories raises a new problem: explaining how these higher-level

theories are learned. Changes in the causal theories of domains constitute some of the most

interesting phenomena in cognitive development, and in the history of science. However,

at this point, concerns about an infinite recursion, providing no ultimate solution to the

question of how people learn causal relationships, seem justified. There are three reasons

not to be concerned by such a recursion. First, the mechanism by which the inference is

performed at each step is the same – regardless of the level of representation, inferences

about the level above can be made using Bayesian inference. There is thus no mysterious

new force of learning that enters at any point. Second, this inference becomes simpler at

each level. While more data might be required, the space of possible theories of physics

must be smaller than the space of possible theories of the stick-ball machine, since the latter

is generated by the former. Third, the recursion is not infinite. At some point, it grounds

out in a set of basic assumptions about the nature of causality, which provide constraints

on the most general domain theories.

8.5 Summary

The development of any kind of computational model of cognition provides the opportunity

to demonstrate that a particular set of assumptions is sufficient to predict human judgments.

The theory-based causal induction framework casts human causal induction as the result of
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a domain-general statistical inference, informed by domain-specific prior knowledge. Having

a formal computational account makes it possible to explain why effects of domain might

not be observed in particular experiments, even if people are making use of domain-specific

knowledge. It also helps to clarify the role of mechanism knowledge in causal induction,

identifying the key factor as not the specific mechanisms that mediate between cause and

effect, but the constraints on causal relationships that are implied by such mechanisms. The

domain-general statistical principles that are used to infer causal structure can be extended

to the level of causal theories, with the potential to provide insight into how those theories

are learned. This perspective suggests a hierarchy of theories, with more general theories

providing constraints that are used in learning theories at levels below, and provides the

potential to explore the content and acquisition of those theories.



Chapter 9

Conclusion

Edmond Halley, James Currie, John Snow, and Ignaz Semmelweis all made scientific dis-

coveries by evaluating a set of hypotheses constrained by their prior knowledge. Through

the interaction of theory and data, they were able to infer the existence of new causal rela-

tionships. In this thesis, I have presented a series of examples that suggest that everyday

causal inferences can be explained in the same way, as the consequence of a rational statis-

tical inference evaluating hypothetical causal structures generated by an intuitive theory.

This theory-based approach explains how people can learn so much from so little: they

have expectations about which causal relationships are possible, and the form that those

relationships should take. Given such constraints, only a small amount of data is required

to infer causal relationships.

The theory-based causal induction framework specifies how shallow mechanism knowl-

edge can be integrated with statistical inference. The formal theories I have presented spell

out the aspects of this knowledge that have implications for causal induction: knowing the

types of entities in a domain, the causal relationships in which they can participate, and the

functional form of those relationships. By viewing a theory as a hypothesis-space generator,

it becomes clear how such theories play a role in causal induction: they identify possible

causal structures, and inform our beliefs about the prior probability of such structures. Tak-

ing this perspective allows the top-down influence of theories and the bottom-up influence of

data to be combined via Bayesian inference. It also reveals how domain-general statistical

principles can be integrated with domain-specific theories to facilitate the learning of new

causal relationships.

While I have used causal graphical models as the basic representation of causal structure

186
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throughout the thesis, I have argued that they cannot represent all of the content of human

causal knowledge. Causal graphical models can express causal relationships, but they cannot

express causal laws that state which relationships are possible and the form they take.

Such laws are a key constituent of both scientific and intuitive theories (e.g., Carey, 1985b;

Laudan, 1977; Wellman, 1990; Wellman & Gelman, 1992). In making this point, I drew

upon an analogy to formal linguistics: causal graphical models play the same role in causal

induction as syntactic structures like parse trees play in language comprehension. The

grammar of a language places constraints on possible parse trees, and these constraints

cannot be expressed in any single parse tree. Likewise, intuitive theories place constraints

on causal graphical models, and these constraints cannot be expressed in a single causal

graphical model. These claims also have implications for the adequacy of structure-learning

algorithms as accounts of human causal induction. Standard structure learning algorithms

do not exploit the kind of constraints on causal graphical models that are implied by an

intuitive theory. As a consequence, they require much more data than human learners to

identify a causal relationship.

The tension between statistical learning and prior knowledge that has motivated much of

the literature concerning human causal induction is also behind many of the classic debates

in cognitive science, such as similarity- vs. theory-based accounts of categorization (Murphy

& Medin, 1985), and association- vs. knowledge-based language acquisition (Skinner, 1957;

Chomsky, 1959). Each of these debates centers around a difficult inductive problem, and

such problems can only be solved by using some form of statistical learning to choose

among a constrained set of hypotheses. The controversy concerns the relative importance

of these two factors, with one camp advocating powerful domain-general statistical learning

with minimal constraints on hypotheses, and the other endorsing limited learning with

strong domain-specific constraints. Examples of these two positions appear in the earliest

days of inquiry into human cognition, but the question that they address – how the mind

solves inductive problems – is fundamentally a computational question, and one that can

be addressed using the tools of modern statistics. Expressing problems of induction as

statistical problems makes it possible to go beyond the classical positions, and to formally

evaluate how statistical learning interacts with constraints from prior knowledge.

Causal induction is a particularly promising arena for exploring the interaction between

statistical learning and prior knowledge in human cognition, for two reasons. First, work in

computer science and statistics has begun to make it possible to articulate the computational
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problem underlying causal induction, suggesting methods for representing the structure of

causal systems. Second, people learn about causal relationships in diverse settings, from

being provided with contingency data, to observing dynamic physical systems. Each of

these settings draws on different prior knowledge, and the variation in human judgments

across settings provides insight into the role that such knowledge plays in causal learning. By

establishing the prior knowledge that is necessary to explain causal inferences across a range

of settings, we can begin to understand the principles by which that knowledge is organized,

and the mechanisms by which it is used. Whether they concern the orbits of comets or

computer-generated explosions, inferences about causal relationships provide insight into

how people solve the difficult inductive problems that are at the heart of understanding

human cognition.



Appendix A

Causal graphical models considered

While they have been (almost surprisingly) enthusiastically welcomed by psychologists,

causal graphical models remain controversial in statistics (see, for example, Pearl, 1995,

and the following discussion). Several statisticians and philosophers have strongly criticized

the causal graphical model formalism and its proponents (in particular, Humphreys &

Freedman, 1996; Freedman & Humphreys, 1998; Freedman, 2004; responses are provided

by Korb & Wallace, 1997, and Spirtes, Glymour, & Scheines, 1997). My treatment of

causal graphical models in Chapter 2 is relatively uncritical, focussing on the features of the

formalism rather than its problems.1 In this appendix, I will summarize these criticisms,

and assess how they apply to the project undertaken in the thesis. I will focus on the

criticisms presented by Humphreys and Freedman (1996; Freedman & Humphreys, 1998:

Freedman, 2004). I see these criticisms as addressing three major issues: the definition of

causality, algorithms for causal induction, and the possibility of inferring causation from

observation. I have different reactions to these three groups of criticisms. I accept only

some of the criticisms of the definition of causality, agree with the criticisms of algorithms

for causal induction and believe that they are consistent with my argument, and agree with

the skepticism about inferring causation from observation but believe that it is irrelevant

to the project undertaken in this thesis.

1I thank Persi Diaconis for pointing this out, and for leading me to consider the issues discussed in this
appendix.
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A.1 Defining causality

Philosophers and statisticians have offered a variety of definitions of causality, including

associative, generative, logical, and probabilistic accounts (e.g., Bunge, 1959; Harre & Mad-

den, 1975; Holland, 1986; Rubin, 1990; Sosa & Tooley, 1993; Suppes, 1970). Spirtes et al.

(1993), and more explicitly Pearl (2000), define causality as directed functional dependence:

the existence of a functional relationship between two variables, where the direction of that

relationship is used in inferring the consequences of intervention. i.e. if X causes Y , then

Y = f(X) for some f , and the state of Y can be influenced by intervening on X, but the

state of X is not altered by intervening on Y .

Humphreys and Freedman (1996) criticize Spirtes et al. (1993) for failing to provide a

non-circular definition of causality. This is a valid criticism, since Spirtes et al. (1993) were

not explicit about the notion of causality that their account assumed, and did not explore

its implications (Spirtes et al. 1997). However, I think subsequent work has diluted the

content of this criticism. Pearl (2000) provided an explicit definition of causality along the

lines above, and more recently Woodward (2003) has developed a philosophical account

that starts from the notion of intervention rather than causality, defines causality in terms

of intervention, and derives from this a framework equivalent to that offered by SGS and

Pearl. It is this framework that I take as a starting point: a definition of causality as

directed functional dependency, with the corresponding implications for statistical models

of observation and intervention.

Whether this framework is either metaphysically valid or capable of capturing all aspects

of human inferences remains an open question. Leaving aside the metaphysical issue, the

work presented in this thesis suggests that the definition of causality as directed functional

dependency might be more general than the intuitive use of the term. For example, the

results presented in Chapter 4 show that people tend to interpret causation as a generative

relation, with causes increasing the probability of their effects. If this is the case, then

directed functional dependency is necessary for X to cause Y , but not sufficient.

Despite these shortcomings, the causal graphical model framework provides the best

available formalism for exploring the questions that are central to understanding human

causal induction. In particular, the relationship between intervention and causality as-

sumed in causal graphical models both clearly defines the difference between causation and

association and motivates why an agent should wish to learn about the former. Stating
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causal relationships in terms of functional dependency makes it possible to formalize the

kinds of expectations about causality that guide human inferences, and to differentiate

expectations that concern causal structure from those that concern functional form.

A.2 Algorithms for causal induction

Humphreys and Freedman (1996) provide extensive criticisms of the algorithms of Spirtes

et al. (1993). These algorithms involve conducting χ2 tests to identify dependencies among

variables, and then reasoning deductively from the pattern of dependencies to the set of

causal structures that could account for those dependencies. As I discuss in depth in Chapter

5, there are two problems with these algorithms: they attempt to reduce an inductive

problem to a deductive problem, and they do not incorporate prior knowledge. Humphreys

and Freedman (1996) focus on the same points, as do Korb and Wallace (1997), who are

otherwise in favor of causal graphical models. These criticisms are thus consistent with my

argument, and the weaknesses of these algorithms do not pose a general problem for using

the causal graphical model framework to explain human inferences.

A.3 The possibility of inferring causation

Humphreys and Freedman’s (1996; Freedman & Humphreys, 1998; Freedman, 2004) most

substantial objections are part of a more general concern about the willingness of social

scientists to infer causation from correlational analyses, without checking the assumptions

of their models and corroborating their analyses with other sources of data. This concern

appears elsewhere in Freedman’s work (e.g. Freedman, 1991; 1999). His conclusions are

pessimistic: that causal relationships cannot be inferred “. . . unless there is substantial prior

knowledge about the mechanisms that generated the data.” (Freedman, 2004, p. 1). I agree

with this pessimistic conclusion, but think that it does not obviate the use of this framework

for examining human inferences. In fact, it supports the project undertaken in this thesis:

people readily infer causal relationships, so what strong prior knowledge is allowing them

to make these inferences?

The issues that arise in modeling cognition are very different from those that arise in

statistical data analysis. This comes down to the fact that statisticians and psychologists

have different unknowns. In any causal inference, there are three factors: (1) the observed
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data, (2) the existence of the causal relationship, and (3) the set of assumptions under

which the inference is made. The statistical questions about causality concern whether (2)

can be inferred from (1) given a particular choice of assumptions (3), and whether these

assumptions are justified in a given setting. Cognitive modeling involves observing that

people are willing to infer (2) from (1) in a given setting, and asking what assumptions

(3) guided that inference. These two sets of questions are related, in that both require

a definition of causality that identifies what pairs of observations and assumptions justify

the inference of causation. However, an answer to the psychological questions will not be

an answer to the statistical questions, because the assumptions that people make about

causality can be identified even if those assumptions are not justified.

This claim can be clarified by pursuing an analogy. Developing models of cognition

that are based upon statistical inference is not about statistics, but meta-statistics. It is

analogous to a situation in which one is provided with a dataset and the conclusions of

a group of statisticians, and attempts to determine the assumptions that the statisticians

were making in drawing their conclusions. Some of these assumptions may not have been

valid, and some statisticians may have inferred a causal relationship where none exists as

a consequence. But their inferences were hopefully rational given their assumptions, and

their actions give clues to those assumptions.

Under this analysis, causal graphical models can be useful for cognitive modeling if they

provide a means of identifying which pairs of observations and assumptions justify inferring a

particular causal structure. The criticisms considered in this appendix fail to demonstrate

that this is not the case. Freedman (2004) quotes a passage of personal communication

from Judea Pearl that supports the claim that this is exactly what causal graphical models

provide:

Causal analysis with graphical models does not deal with defending modeling

assumptions, in much the same way that differential calculus does not deal

with defending the physical validity of a differential equation that a physicist

chooses to use. In fact no analysis void of experimental data can possibly defend

modeling assumptions. Instead, causal analysis deals with the conclusions that

logically follow from the combination of data and a given set of assumptions, just

in case one is prepared to accept the latter. (Pearl, personal communication,

cited in Freedman, 2004, p. 15)



Appendix B

Contingencies

This appendix summarizes some of the technical results concerning the models discussed in

Chapter 4. I show that ∆P and causal power are maximum likelihood parameter estimates,

and discuss how causal support can be computed, and how it relates to χ2.

B.1 Maximum likelihood parameter estimates

Both ∆P and causal power are maximum likelihood estimates of the causal strength pa-

rameter for C in Graph 1 of Figure 2.1 (a), but under different parameterizations. For any

parameterization of Graph 1, the log likelihood of the data is given by

log P (D|w0, w1) =
∑

e,c

N(e, c) log P (e|c) (B.1)

where D is contingency data N(e, c), P (e|c) is the probability distribution implied by the

model, suppressing its dependence on w0, w1, and
∑

e,c denotes a sum over all pairs of e+, e−

and c+, c−. Equation B.1 is maximized whenever w0 and w1 can be chosen to make the

model probabilities equal to the empirical probabilites:

P (e+|c+, b+; w0, w1) = P (e+|c+), (B.2)

P (e+|c−, b+; w0, w1) = P (e+|c−). (B.3)

To show that ∆P corresponds to a maximum likelihood estimate of w1 under a linear

parameterization of Graph 1, we identify w1 in Equation 2.4 with ∆P (Equation 4.1), and
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w0 with P (e+|c−). Equation 2.4 then reduces to P (e+|c+) for the case c = c+ and to

P (e+|c−) for the case c = c−, thus satisfying the sufficient conditions in Equations B.2-B.3

for w0 and w1 to be maximum likelihood estimates. To show that causal power corresponds

to a maximum likelihood estimate of w1 under a noisy-OR parameterization, we follow the

analogous procedure: identify w1 in Equation 2.1 with causal power (Equation 4.2), and

w0 with P (e+|c−). Then Equation 2.1 reduces to P (e+|c+) for c = c+ and to P (e+|c−) for

c = c−, again satisfying the conditions for w0 and w1 to be maximum likelihood estimates.

B.2 Evaluating causal support

Causal support is defined as the log likelihood ratio in favor of Graph 1 over Graph 0:

support = log
P (D|Graph 1)

P (D|Graph 0)
. (B.4)

We obtain the likelihoods P (D|Graph 1), P (D|Graph 0) by integrating out the parameters

w0, w1. This means that each value of the parameters is assigned a prior probability, and

this probability is combined with the likelihood of the data given the structure and the

parameters to give a joint distribution over data and parameters given the structure. We

can then sum over all values that the parameters can take on, to result in the probability of

the data given the structure. Thus, if we want to compute the probability of the observed

data for the structure depicted by Graph 1, we have

P (D|Graph 1) =

∫ 1

0

∫ 1

0
P (D|w0, w1, Graph 1) P (w0, w1|Graph 1) dw0 dw1 (B.5)

and the equivalent value for Graph 0 is given by

P (D|Graph 0) =

∫ 1

0
P0(D|w0, Graph 0) P (w0|Graph 0) dw0. (B.6)

where the likelihoods P (D|w0, w1, Graph 1), P (D|w0, Graph 0) are specified by the param-

eterization of the graph, and the prior probabilities P (w0, w1|Graph 1), P (w0|Graph 0) are

set a priori. Integrating over all values of the parameters penalizes structures that require

more parameters, simply because the increase in the dimensionality of the space over which

the integrals are taken is usually disproportionate to the size of the region for which the

likelihood is improved.



APPENDIX B. CONTINGENCIES 195

For generative causes, P (D|Graph 1) is computed using the noisy-OR parameteriza-

tion, and for preventive causes, it is computed using the noisy-AND-NOT. We also need

to define prior probabilities P (w0, w1|Graph 1) and P (w0|Graph 0), to which we assign a

uniform density. Because causal support depends on the full likelihood functions for both

Graph 1 and Graph 0, we may expect causal support to be modulated by causal power, but

only in interaction with other factors that determine how much of the posterior probability

mass for w1 in Graph 1 is bounded away from zero (where it is pinned in Graph 0).

B.3 An algorithm for computing causal support

Equation B.6 can be evaluated analytically. If w0 denotes the probability of the effect

occurring regardless of the presence or absence of the cause and we take a uniform prior on

this quantity, we have

P (D|Graph 0) =

∫ 1

0
w

N(e+)
0 (1 − w0)

N(e−) dw0 = B(N(e+) + 1, N(e−) + 1) (B.7)

where B(r, s) is the beta function, and N(e+) is the marginal frequency of the effect. For

integers r and s, B(r, s) can be expressed as a function of factorials, being (r−1)!(s−1)!
(r+s−1)! . In

general Equation B.5 cannot be evaluated analytically, but it can be approximated simply

and efficiently by Monte Carlo simulation. Since we have uniform priors on w0 and w1, we

can obtain a good approximation to P (D|Graph 1) by drawing m samples of w0 and w1

from a uniform distribution on [0, 1] and computing

P (D|Graph 1) ≈ 1

m

m
∑

i=1

P (D|w0i, w1i, Graph 1) (B.8)

where w0i and w1i are the ith sampled values of w0 and w1. We thus need only compute the

probability of the observed scores D under this model for each sample, which can be done

efficiently using the counts from the contingency table. This probability can be written as

P (D|w0i, w1i, Graph 1) =
∏

e,c

P (e|c, b+; w0i, w1i)
N(e,c) (B.9)

where the product ranges over e+, e− and c+, c−, and P (e|c; w0i, w1i) reflects the chosen

parameterization – noisy-OR for generative causes, and noisy-AND-NOT for preventive.
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As with all Monte Carlo simulations, the accuracy of the results improves as m becomes

large. For the examples presented in this paper, we used m = 100, 000.

B.4 The χ2 approximation

For large samples we can approximate the value of causal support with the familiar χ2 test

for independence. There are both intuitive and formal reasons for the validity of the χ2 ap-

proximation. Intuitively, the relationship holds because the χ2 statistic is used to test for

the existence of statistical dependency between two variables, and C and E are dependent

in Graph 1 but not in Graph 0. A large value of χ2 indicates that the null hypothesis

of independence should be rejected, and that Graph 1 is favored. However, χ2 assumes a

different parameterization of Graph 1 from causal support, and the two will only be similar

for large samples.

The formal demonstration of the relationship between χ2 and causal support is as fol-

lows. When the likelihood P (D|w0, w1) is extremely peaked (e.g., in the limit N→∞),

we may replace the integrals in Equation B.5 with supremums over w0, w1. That is, the

marginal likelihood essentially becomes the maximum of the likelihood, and causal support

reduces to the ratio of likelihood maxima – or equivalently, the difference in loglikelihood

maxima – for Graph 1 and Graph 0. Under these circumstances causal support reduces

to the frequentist likelihood ratio statistic, equal to half of the G2 statistic (e.g., Wickens,

1989). Correspondingly, Pearson’s χ2 for independence,

χ2 = N
∑

e,c

(P (e, c) − P (e)P (c))2

P (e)P (c)
, (B.10)

can be shown to approximate twice causal support by a Taylor series argument: the second

order Taylor series of
∑

i pi log pi

qi
, expanded around p = q, is 1

2

∑

i
(pi−qi)

2

qi
(Cover & Thomas,

1991). The χ2 approximation only holds when ∆P is small and N is large.

For learning with rates, the likelihood ratio statistic for comparing Graph 0 and Graph 1 un-

der the parameterization given in Chapter 6 is

N(c+) log N(c+) + N(c−) log N(c−) − (N(c+) + N(c−)) log
N(c+) + N(c−)

2
, (B.11)

which, by essentially the same argument as that given above for G2, will approximate the
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value of causal support in the large sample limit. Using the Taylor series argument employed

in the contingency case, we obtain the χ2 approximation given in Equation 6.5, which holds

only when the difference in rates is small.



Appendix C

Stick-balls

The hypothesis spaces generated by the theory of stick-ball machines presented in Chapter

5 can include structures in which balls can cause one another to move, such as that shown

in Figure C.1 (a). Cyclic relationships are usually prohibited in graphical models (Pearl,

1988), although some kinds of cycles can be dealt with in causal graphical models (e.g.,

Pearl, 2000). One common approach to dealing with cycles is to impose temporal structure

on a set of events, unrolling the cycle into a set of dependencies that hold between two

variables in successive time slices. In this appendix, I will outline how this approach can be

used to deal with cyclic causal relationships in stick-ball machines.

Given NB balls, with Bi indicating Moves(bi, T) and NH hidden causes, with Hj indi-

cating Active(hj , T), the following procedure can be used to generate values of Bi and Hj

on any given trial:

1. Determine which hidden causes are active by sampling the values of Hj .

2. Determine which balls are moved by the hidden causes by sampling the values of Bi,

conditioned just on Hj . If Hj→Bi and hj = 1, then bi = 1 with probability ω.

3. Determine which balls move other balls. Every ball that moves has one opportunity

to move the balls to which it has causal connections. If Bi→Bj , bj is currently 0, and

bi has not previously attempted to move bj , then bj = 1 with probability ω.

4. Repeat step 3 with the balls that were just moved by other balls. This procedure

continues until all balls that have moved have had one opportunity to influence each

of the balls to which they are connected.
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Figure C.1: Dealing with bidirectional causal relationships in stick-ball machines. (a) A
causal graphical model generated by the theory of stick-ball machines given in Chapter 5.
(b) The same model “unrolled” through time, removing the cyclic causal relationship. Both
models show the causal relationships among variables on a single trial, but can be quantified
over trials as discussed in Chapter 2.

This procedure implicitly defines a temporal succession of events, with hidden causes be-

coming active, then moving a subset of the balls, each of which moves some subset of the

remaining balls, each of which moves further balls, and so forth. This temporal succes-

sion removes the cycles in the underlying causal graphical model, allowing events to unroll

through time.

The generative procedure described in the previous paragraph can be expressed as a

recipe for constructing an “unrolled” graphical model from the basic graphical model. The

unrolled model can be used to compute the probability of events, and is constructed as

follows:

1. Create NB + 1 copies of Bi, numbered from 0 to NB, indicating successive points in

time within the trial. I will use B
(t)
i to refer to the copy of Bi at time t.

2. B
(t−1)
i →B

(t)
i for all t ≥ 1. If Hj→Bi in the basic model, then Hj→B

(1)
i in the unrolled

model. If Bi→Bj in the basic model, then B
(t−1)
i →B

(t)
j and B

(t−2)
i →B

(t)
j for all t ≥ 2

in the unrolled model.

3. Set b
(0)
i = 0. Parameterize B

(1)
i as a noisy-OR of Hj . For t ≥ 2, parameterize B

(t)
i as

P (b
(t)
i = 1|b(t−1)

· , b
(t−2)
· ) = 1 − (1 − b

(t−1)
i )(1 − ω)

P

j 6=i b
(t−1)
j (1−b

(t−2)
j ).

Under this parameterization b
(t)
i = 1 if b

(t−1)
i = 1, and is otherwise a noisy-OR of all
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Bj that changed between t − 2 and t − 1.

The probability of a set of observed values for Bi in the basic model is the probability of

B
(NB)
i taking those values in the unrolled model, summing over all latent variables. Figure

C.1 (b) shows the unrolled model for the basic model shown in Figure C.1 (a).



Appendix D

Explosions

This appendix provides some of the technical details behind the analysis of explosions pre-

sented in Chapter 6. I will present a theory of explosions that uses only Boolean predicates,

and indicate how this reduces to the theory given in the chapter. I will then explain how

quantities like P (D|Graph 0) can be computed under this theory, outline the generative

procedure that is described by such probability distributions, and show how these results

can be used to answer questions about the causes of particular explosions.

D.1 A Boolean theory

Figure D.1 presents a theory for causal induction with explosives that uses only Boolean

predicates. All variables are parameterized as Poisson processes, with rates that depend

upon the variables with which they have causal relationships. On the assumption that a

can explodes only once and a hidden cause becomes active only once, these events are the

first produced by the appropriate Poisson processes. It follows from the second property

of Poisson processes given in Figure 6.2 that these times have exponential distributions,

resulting in the theory given in Figure 6.6.

A causal graphical model generated by this theory is shown in Figure D.2. This model

is similar in spirit to a dynamic Bayesian network (e.g., Murphy, 2003), depicting the rela-

tionships that hold among a set of variables over time. There are two important differences

from standard depictions of dynamic Bayesian networks. First, this model is defined for con-

tinuous time, while dynamic Bayesian networks typically describe discrete trials. Second,

the relationships shown here are quantified over all future times, while dynamic Bayesian

201
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Ontology:

Types Number Predicates Values
Can NC ∼ PC Explodes(Can, Time) Boolean: {T, F}
HiddenCause NH = ∞ Active(HiddenCause, Time) Boolean: {T, F}
Time R Located(Can, Space) Boolean: {T, F}
Space R

Plausible relations:

Explodes(C1, T) → Explodes(C2, T
′)

True for with probability 1 for all T and all T′ > T, for each C1 6= C2 pair

Active(H, T) → Explodes(C, T)
Each C has an edge from some H with probability 1, which holds for all T. The particular H
is chosen based upon the number of existing edges:

P (Active(H,T) → Explodes(C,T)) ∝
{

MH,i MH,i > 0
s H is new

where MH,i is the number of outgoing edges from H when the edges are chosen for the ith
can.

Functional form:

Active(H, T) ∼ PoissonProcess(α)
Explodes(C1, T) ∼ PoissonProcess(λ(T)) for λ(T) from a continuous noisy-OR:

Cause Strength Times
(Background) λ0 = 0
Active(H, T) λi = ω {T|Active(H,T)}

Explodes(C2, T) λi = ω {T|T = TC2
+ D(C1, C2)/µ}

Figure D.1: Theory for causal induction with explosives using Boolean predicates. TC

indicates the time at which can C explodes, while D(C1, C2) is the distance between the
locations of cans C1 and C2.
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∀T ∀T′ > T

Explodes(C2, T)

Explodes(C1, T
′)

Explodes(C2, T
′)

Explodes(C1, T)

Active(H, T)

Figure D.2: Causal relationships among variables over time for a system in which NC = 2.
The dependence of each variable on its previous state and the dependence of Explodes(ci, T)
on Located(ci, S) are not shown in this figure.

networks typically show only the relationships that hold between successive trials. This

is fundamentally a constraint of tractability: in general, quantifying over all future times

will result in a network in which some nodes have an unbounded number of parents. In

this case, the functional form of the causal relationships involved is such that only a small

subset of these parents are relevant, and computations can still be performed efficiently.

D.2 Evaluating probabilities

The theory of explosions given in Chapter 6 (and re-expressed above) allows us to compute

the probability of any set of explosion times under any causal structure. I will demonstrate

how such probabilities can be computed for Graph 0, in which each can has a separate

hidden cause. In this causal structure

P (C|Graph 0, α, ω, µ) =

∫ ∞

0
· · ·

∫ ∞

0
P (C|h1, . . . , hNC

)

[

NC
∏

i=1

P (hi) dhi

]

(D.1)

where hi is the time at which hidden cause hi becomes active. Since each hi follows an

Exponential(α) distribution, P (hi) = α exp{−αhi}. I will derive P (C|h1, . . . , hNC
), and use

this to compute P (C|Graph 0, α, ω, µ).
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The explosion times of the cans follow Exponential(λ(ci)) distributions, with an explo-

sion at time ci having probability λ(ci) exp{−
∫ ci

0 λ(t) dt}. Let tij , for i 6= j, denote the

time at which can ci should explode as a result of the explosion of can cj at time cj , being

tij = cj + D(ci, cj)/µ. Then, under the continuous noisy-OR parameterization assumed in

the theory,

P (C|h1, . . . , hNC
) =

NC
∏

i=1

ω(δ(ci, hi) +
∑

j 6=i

δ(ci, tij)) exp{−ω(mi + I(hi < ci))}, (D.2)

where mi =
∑

j 6=i I(tij < ci) is the number of missed opportunities to explode as a result

of other explosions, and I(·) is an indicator function taking the value 1 when its argument

is true, and 0 otherwise. Substituting this probability into Equation D.1, we obtain

P (C|Graph 0, α, ω, µ) = ωNC exp{−ω

NC
∑

i=1

mi}
NC
∏

i=1

α exp{−αci} +

∑

j 6=i

δ(ci, tij) (exp{−αci} + (1 − exp{−αci}) exp{−ω})(D.3)

This gives the probability of C for each choice of α, ω, and µ, and can be used to evaluate

the posterior distribution over these parameters as described in Chapter 6.

D.3 A generative procedure

The probability distributions described in the previous section seem relatively complex,

but can be derived as the result of a simple generative procedure. This procedure is the

continuous analogue of that defined in Appendix C for the stick-ball machine, and proceeds

as follows:

1. Sample the time Hj at which each hidden cause hj becomes active from an Exponential(α)

distribution.

2. Conditioned on Hj , sample C
(1)
i for each can. With probability 1− exp{−ω}, the can

explodes at the time its hidden cause becomes active; with probability exp{−ω} it

does not explode, and we set C
(1)
i = ∞.

3. Starting with the earliest c
(1)
i , determine the times tij at which the shockwave origi-

nating from ci would encounter each other can cj . Set c
(2)
i = c

(1)
i . For j 6= i, sample
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the explosion time C
(∗)
j that would result from a shockwave originating at ci: with

probability 1 − exp{−ω}, cj explodes at tij ; with probability exp{−ω}, it does not

explode and c
(∗)
j = ∞. Set c

(2)
j = min(c

(1)
j , c∗j ).

4. Repeat step 3 with the next earliest c
(2)
i , and continue this procedure until values of

C
(NC)
i are obtained. At this point, shockwaves originating from each can have had

the opportunity to influence all other cans.

The probability of a set of explosion times C is the probability of C
(NC)
i under this generative

procedure. This procedure treats each possible cause as a separate process that has an

opportunity to produce the explosion. Since the minimum of the times generated from

exponential distributions with rates λ1 and λ2 has an exponential distribution with rate

λ1 + λ2, taking the minimum over all of these processes yields the distribution given in

Equation D.2.

D.4 What caused what?

In Graph 0, the probability that the hidden cause hi is the actual cause of the explosion of

can ci (denoted Hi ⇒ Ci), is given by

P (Hi ⇒ Ci|C, Graph 0) =

∫ ∞

0
P (Hi ⇒ Ci|hi, C, Graph 0)P (hi|C, Graph 0) dhi. (D.4)

The right hand side of this equation has two parts: the probability that hi is the actual

cause of the explosion of ci conditioned on the time at which hi becomes active, hi, and

the explosion times of all of the cans, C, and the posterior distribution on hi given C. Both

parts require elaboration.

Using the fourth property of Poisson processes from Figure 6.2, the probability that a

potential cause was responsible for producing an explosion is proportional to the contribu-

tion of that cause to the rate of explosions at the time when the explosion occurred. The

probability that the hidden cause hi produced the explosion of ci at time ci is thus

P (Hi ⇒ Ci|hi, C, Graph 0) =
δ(ci, hi)

δ(ci, hi) +
∑

j 6=i δ(ci, tij)
.
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The consequences of taking ratios of delta functions can be determined by using the defini-

tion of δ(·, ·) as the limit of φσ(·, ·) as σ→0. Thus

P (Hi ⇒ Ci|hi, C, Graph 0) = lim
σ→0

φ(ci, hi)

φ(ci, hi) +
∑

j 6=i φ(ci, tij)

= lim
σ→0

1

1 +
∑

j 6=i exp{((ci − hi)2 − (ci − tij)2)/2σ2

=
1

1 + (
∑

j 6=i I(ci = tij))/I(ci = hi)
(D.5)

where the ratio in the denominator remains well-defined as at least one of its terms must

take a non-zero value.

The posterior distribution over all the Hi given C can be computed by applying Bayes’

rule,

P (h1, . . . , hNC
|C, Graph 0) =

P (C|h1, . . . , hNC
, Graph 0)

∏NC

i=1 P (hi)

P (C|Graph 0)
,

where the likelihood is supplied by Equation D.2, the prior on hi is Exponential(α), and

the denominator is given in Equation D.3. In Graph 0, the Hi are independent conditioned

on C, so we can evaluate the posterior for the hidden cause of interest without taking the

other hidden causes into account. The result is

P (hi|C,Graph 0) =
(δ(ci, hi) +

∑

j 6=i δ(ci, tij) exp{−ωI(hi < ci)})α exp{−αhi}
α exp{−αci} +

∑

j 6=i δ(ci, tij)(exp{−αci} + (1 − exp{−αci)}) exp{−ω}) .

(D.6)

If ci 6= tij for all j, then this is a delta function at ci. If ci = tij for some j, then the

posterior has support for all values of hi, but retains a delta spike at ci.

Equations D.5 and D.6 are the two components we need to compute the probability that

hi caused ci to explode. Equation D.5 shows that P (Hi ⇒ Ci|hi, C, Graph 0) only takes on

non-zero values when ci = hi. Consequently, Equation 6.6 gives P (Hi ⇒ Ci|C, Graph 0)

equal to

1

1 + (
∑

j 6=i I(ci = tij))/I(ci = hi)

1

1 + 1
α

∑

j 6=i δ(ci, tij)(1 + (exp{αci} − 1) exp{−ω})
,

where the first term reflects the ratio of the contribution to the rate at ci = hi, and the

second is the mass associated with the delta function at ci = hi in the posterior distribution

of hi. This expression has two important qualitative properties: that the probability that

hi caused ci to explode is 1 if no other cans could have been responsible, and that this
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probability is less than 1
2 if another can could have been responsible.



Appendix E

Bombing

This appendix provides some of the technical details behind the analysis of coincidences in

bombing presented in Chapter 7. I will present a theory of bombing that uses only Boolean

predicates, and indicate how this reduces to the theory given in the chapter. I will then

explain how quantities like P (D|h1) can be computed by approximating the sum over all

possible causal structures.

E.1 A Boolean theory

Figure D.1 presents a theory for causal induction with explosives that uses only Boolean

predicates. All variables are parameterized as Poisson processes, with rates that depend

upon the variables with which they have causal relationships. Targets arise with constant

rate throughout the space. The rate at which bombs fall increases around a target is the

result of a continuous noisy-OR. Rather than using the Dirac delta function as a convo-

lution kernel, here I use the probability density function for a multivariate Gaussian with

covariance matrix Σ, denoted φΣ(·, ·).
The Poisson processes defined in the theories given in Figure E.1 become probability

density in the theories given in Figure 7.7 through the assumption that Location(T, S) and

Explodes(B, S) are each true at a single point S. For example, if Li denotes the point S such

that Location(ti, S) is true, we can derive a probability density function for Li for each

of the theories shown in Figure E.1. It follows from the properties of the Poisson process

that the probability density at each point is proportional to the rate at that point, so in

this case Li has a uniform distribution over the space. If Xi denotes the point S such that
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h0:
Ontology:

Types Number Predicates Values
Bomb NB ∼ PB Explodes(Bomb, Space) Boolean: {T, F}
Target NT = ∞ Location(Target, Space) Boolean: {T, F}
Space R ⊂ R

2

Plausible relations:

Location(T, S)→Explodes(B, S′)
Each B has an edge from a unique T with probability 1, which holds for all S and S′

Functional form:

Location(T, S) ∼ PoissonProcess(α)
Explodes(B, S) ∼ PoissonProcess(λ(S)) for λ(S) from a continuous noisy-OR

Cause Strength Points
(Background) λ0 = 0
Location(T, S) λ1 = ω {S|Location(T, S)}

h1:
Ontology:

Types Number Predicates Values
Bomb NB ∼ PB Explodes(Bomb, Space) Boolean: {T, F}
Target NT = ∞ Location(Target, Space) Boolean: {T, F}
Space R ⊂ R

2

Plausible relations:

Location(T, S) → Explodes(B, S′)
Each B has an edge from some T with probability 1, which holds for all S and S′. With
probability p, T = tC, a common target, otherwise T is unique to B.

Functional form:

Location(T, S) ∼ PoissonProcess(α)
Explodes(B, S) ∼ PoissonProcess(λ(S)) for λ(S) from a continuous noisy-OR

Cause Strength Points
(Background) λ0 = 0
Location(T, S) λ1 = ω {S|Location(T, S)}

Figure E.1: Theories for coincidences in bombing using Boolean predicates.
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Explodes(bi, S) is true, then a similar argument applied to the Gaussian convolution kernel

used in defining the rate of Explodes(B, S) indicates that Xi has a multivariate Gaussian

distribution.

E.2 Evaluating probabilities

Computing P (D|h1) for D = {x1, . . . xNB
} requires evaluating

P (D|h1) =

2NB−1
∑

i=0

[
∫

R

∫

P (D|Σ, ℓC,Graph i)P (Σ)P (ℓC) dΣ dℓC

]
∫ 1

0

P (Graph i|p)P (p) dp. (E.1)

I will explain how this sum can be computed evaluating the bracketed term for Graph

2NB − 1, in which all Xi are drawn from a single Gaussian distribution, summing over the

mean ℓC and covariance Σ, and then discussing how the result can be generalized. More

details on the kind of computations performed in this section can be found in Minka (2001).

I will assume a uniform prior on ℓC, with P (ℓC) = 1/|R| for ℓC ∈ R, and an inverse

Wishart prior on Σ with parameters I, k, where I is the d-dimensional identity matrix.

Under this prior,

P (Σ) =
1

ckd|Σ|(k+d+1)/2
exp{−1

2
tr(Σ−1)}

where ckd = 2kd/2πd(d−1)/4
∏d

j=1 Γ((k + 1 − j)/2) and Γ is the standard gamma function

(e.g., Boas, 1983). Given Σ and ℓC, we have

P (D|Σ, ℓC, Graph 2NB − 1) =
1

|2πΣ|NB/2
exp{−1

2

NB
∑

i=1

(xi − ℓC)
T Σ−1(xi − ℓC)}

=
1

|2πΣ|NB/2
exp{−NB

2
(x̄ − ℓC)

T Σ−1(x̄ − ℓC) −
1

2
tr(SΣ−1)}

where x̄ is 1
NB

∑

xi and S =
∑NB

i=1(xi − x̄)(xi − x̄)T .

Using these definitions, we can express our integral as

P (D|Graph 2NB − 1) =

∫

R

∫

P (X|Σ, ℓC, Graph 2NB − 1)P (Σ)P (ℓC)

=
1

|R|ckd(2π)dNB/2

∫

1

|Σ|(NB+k+d+1)/2
exp{−1

2
tr((S + I)Σ−1)}

[
∫

R
exp{NB

2
(x̄ − ℓC)

T Σ−1(x̄ − ℓC)} dℓC

]

dΣ.
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The bracketed integrand has the form of a Gaussian. The result is upper bounded by

|2πΣ/NB|1/2, with the tightness of the bound increasing with the size of R relative to

Σ/NB. This reduces the outer integral to

P (D|Graph 2NB − 1) ≈ 1

|R|ckd(2π)d(NB−1)/2N
d/2
B

∫

1

|Σ|(NB+k+d)/2
exp{−1

2
tr((S + I)Σ−1)} dΣ

=
1

|R|πd(NB−1)/2N
d/2
B |S + I|(NB+k−1)/2

d
∏

j=1

Γ((NB + k − j)/2)

Γ((k + 1 − j)/2)
(E.2)

where the result follows from the fact that the integrand has the form of an inverse Wishart

distribution. The expression given in Equation E.2 is a measure of the “Gaussianity” of D:

it is the probability of D being produced from some Gaussian distribution, assessed under

the priors specified on ℓC and Σ.

This result can be extended to allow us to evaluate the probability of D under any other

graph. For each graph, the Xi can be partitioned into two sets: those that have their own

target and those that share the common target. The Xi that have their own target each

have probability 1
|R| . The probability of the Xi that share a target can be computed using

Equation E.2.

The integral over p is straightforward to evaluate. Taking P (p) to be uniform over [0, 1],

the probability of Graph i, in which N+
B bombs share a common target and N−

B bombs have

their own targets, is

P (Graph i) =

∫ 1

0
P (Graph i|p)P (p) dp

=

∫ 1

0
pN+

B (1 − p)N−
B dp

=
Γ(N+

B + 1)Γ(N−
B + 1)

Γ(NB + 2)
(E.3)

as the integrand takes the form of the beta function (Boas, 1983).

Combining the values of P (D|Graph i) obtained via Equation E.2 with with P (Graph i)

from Equation E.3, we need only evaluate the sum over the 2NB possible graph structures.

This can be done by Monte Carlo simulation. The results shown in Figure 7.9 were computed

using a form of importance sampling designed for finding the Bayes factors of mixture

distributions (Emond, Raftery, & Steele, 2001). The model predictions shown in the figure

use 100,000 samples and k = 4.
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