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Abstract

Dividing observed human behavior into individual, mean-
ingful actions is a critical task for both human learners and
computer vision systems. An important question is how much
action structure and segmentation information is available in
the observed surface level motion and image changes, without
any knowledge of human pose or behavior. Here we present a
novel approach to jointly segmenting and recognizing videos
of human action sequences, using a hierarchical topic model.
Video sequences are represented as bags of video words,
automatically discovered from local space-time interest
points. Our model jointly infers both action identification
and action segmentation. Our results are a good fit with
human segmentation judgments as well as providing relatively
accurate action recognition and localization within the videos.

Introduction
When observing a continuous stream of human behavior,
an ongoing problem for both human learners and computer
vision algorithms is recognizing and segmenting out indi-
vidual, meaningful actions from within the longer motion
sequence. This ability to pick out individual actions or
events is thought to play an important role in human social
cognition (Baldwin & Baird, 2001), allowing us to recognize
other’s behavior, and helping us link people’s actions with
their internal mental states, and with the outcomes of those
actions (Buchsbaum, Griffiths, Gopnik, & Baldwin, 2009;
Zacks, Speer, Swallow, & Maley, 2010). It is also a critical
first step in developing computational approaches that can
recognize and understand human action from naturalistic
videos. Prior research has shown that adults are able to
segment videos of common everyday activities into coherent
actions, consistent with the goals and intentions underlying
the actor’s behavior e.g. (Newtson, Engquist, & Bois, 1977;
Zacks, Tversky, & Iyer, 2001), and that even young infants
are sensitive to the boundaries between intentional action
segments (Baldwin, Baird, Saylor, & Clark, 2001; Saylor,
Baldwin, Baird, & LaBounty, 2007). People’s boundary
judgments are also sensitive to the hierarchical structure
of goals and sub-goals underlying human action – they are
able to consistently segment actions at multiple levels of
granularity (Zacks, Tversky, & Iyer, 2001; Zacks, Braver, et
al., 2001; Hard, Tversky, & Lang, 2006).

While a full understanding of human action requires
knowledge about goals and intentions, infants are able to
parse dynamic human action well before they are thought
to have a fully developed theory of mind. This suggests
that there may also be low-level cues to intentional action
structure available in human motion, an idea supported by a
variety of recent work (Zacks, 2004; Hard et al., 2006; Zacks,
Kumar, Abrams, & Mehta, 2009; Meyer, DeCamp, Hard, &
Baldwin, 2010; Hard, Recchia, & Tversky, under review). In
particular, movement features within simple animated scenes

(Zacks, 2004), as well as movement and position of tracked
body parts within videos of everyday action (Zacks et al.,
2009; Meyer et al., 2010), have been shown to correlate with
human segmentation judgments. However, this previous
work still assumed some a priori knowledge of human body
pose, and of the types of motion features relevant to boundary
detection. In this paper, we present a computational model
that makes very few representational assumptions about what
is observed, in order to explore the amount of action structure
that can be inferred from just low-level changes in pixel val-
ues, without knowledge of human body structure, higher level
goals and intentions, or even foreground/background distinc-
tions. To the extent that the model corresponds to human
segmentation judgments, and correctly recognizes actions,
we know that there are cues in surface level image changes
that can be used to both segment and identify human behavior.

In addition, the problem of determining which subse-
quences of behavior go together can be seen as an important
instance of the more general problem of variable (or feature)
discovery and segmentation, a problem that the psycho-
logical, machine learning and computer vision literatures
have addressed in other domains. Recent work in action
segmentation has drawn particularly on both psychological
and computational approaches to the problem of segmenting
words from continuous speech. There is now a large body
of evidence suggesting that both infants and adults can use
statistical patterns in spoken language to help segment speech
into words (for a partial review, see Gómez & Gerken, 2000).
More recently, it was demonstrated that a similar sensitivity
to statistical regularities in action sequences could play an
important role in action segmentation e.g. (Baldwin, An-
dersson, Saffran, & Meyer, 2008; Buchsbaum et al., 2009).
Similarly, Buchsbaum et al. (2009) were able to successfully
adapt a Bayesian model of statistical word segmentation
(Goldwater, Griffiths, & Johnson, 2009) to the action domain.

However, like previous computational models of word
segmentation, the Buchsbaum et al. (2009) model assumes
that the lowest level of segmentation is already known (or
pre-labeled). That is, that there is some sort of motion
primitive (equivalent to a syllable or phoneme in speech),
that can already be recognized as a coherent unit. Since psy-
chological studies demonstrating human action segmentation
have suggested that statistical patterns or features in human
motion may correlate with segment boundaries at even the
lowest level, we would like to see whether action boundaries
can be automatically detected directly from video, without
pre-existing knowledge of low-level motion units.

Finally, in the computer vision literature, most action
recognition work has focused on pre-segmented videos of



!"#$%&'()*%!+,-+./01'.%2'3+4%"'*04%5)3+'%6+0/78+%#+/+*1'.%

9.(7/%

:)3+';%

<=/80*/%0.3%

3+;*8)>+%

4'*04%

?+0/78+;%

@47;/+8%)./'%

:);704%A'83%

:'*0>7408B%

C+(8+;+./%

?80-+;%0;%

>0,;D'?D:);704D

A'83;%

9.?+8%/'()*%

0;;),.-+./;%

0.3%>'7.308B%

4'*01'.;%%

Figure 1: Our video segmentation and recognition pipeline

individual actions, rather than on continuous human action.
We would like to better model and understand human action
segmentation abilities, by trying to discover whether there are
in fact statistical patterns or features in visible human motion
that correlate with the action boundaries people identify.
Additionally, we would like to develop a computer vision
model capable of segmenting (and perhaps recognizing)
actions, in videos that contain multiple actions, and more
varied actions than in standard computer vision data sets.

Modeling Video Segmentation
We would like to see if statistical patterns in low-level video
features correspond to the segmentation structure of human
actions, and whether this structure can be discovered directly
from video, in an unsupervised fashion. Topic modeling –
an approach to classifying language by subject matter – is
an appealing starting point for action segmentation because
it has already proven successful in modeling simultaneous
topic identification and segmentation in transcribed conver-
sations (Purver, Kording, Griffiths, & Tenenbaum, 2006), and
because of established parallels between action segmentation
and language segmentation (Baldwin et al., 2008; Buchs-
baum et al., 2009; Speer, Reynolds, Swallow, & Zacks, 2009).

Recently, Niebles, Wang, and Fei-Fei (2008) demonstrated
good action recognition results on several video data sets,
by using a combination of local video features and a topic
model. In this approach, topic modeling is applied to videos
of human action, by constructing a set of “visual words”,
corresponding to clusters of video features, and re-describing
each video as a document composed of these words. An
action (or topic) is then a distribution over visual words, and
a video (or document) is a distribution over actions (topics).

While the Niebles et al. (2008) results demonstrate the fea-
sibility of applying a topic model to videos of human action,
their model was primarily tested on stylized, pre-segmented,
individual actions, and the results were not compared to
human judgments. Here, we would like to create a model
that segments and recognizes video sequences containing
multiple actions, performed in more naturalistic settings, and
that is consistent with human action segmentation (for an
overview of our approach see Figure 1).

Feature Detection and Visual Word Representation
Computer vision approaches using local image and video
features have proven surprisingly effective in a variety of
scene, object and action recognition tasks (for a recent
review see Tuytelaars & Mikolajczyk, 2008). Broadly, these
approaches work by searching images or videos for local
patches of interest (e.g., blobs, corners, periodic motion),

and then creating summary descriptions of the image regions
surrounding these interest points, which can then be used as
features. They are an appealing choice for this application
because they are unsupervised, and work directly with
local patches of pixel values, so they do not require person
detection or knowledge of pose.

Interest Point Detection In this work, we use the space-time
interest point detector introduced by Dollár, Rabaud, Cottrell,
and Belongie (2005) and used by Niebles et al. (2008). This
feature detector consists of a pair of linearly separable
gabor filters which are applied temporally, and convolved
with a Gaussian smoothing kernel over the video’s spatial
dimensions. Space-time interest points correspond to the
local maxima of this response function. Dollár et al. (2005)
found that this detector responds most strongly to periodic
motion, but tends to respond well to any complex motion.
The detector has two parameters: a spatial scale s, and a
temporal scale t, controlling the size of the pixel volume
contributing to each interest point detection. As in Niebles et
al. (2008), we run our detector at a single scale, and rely on
the visual word vocabulary (described below) to capture any
scale variations within a given video.

Feature Descriptor After detecting the video feature
locations, we extract a spatial-temporal cube of pixels
around each feature center. To obtain a descriptor for each
cube, we calculate the brightness gradient and concatenate
it to form a vector. This descriptor is then projected to a
lower dimensional space using PCA (for a full techinical
description of the feature detector and descriptor see Dollár
et al., 2005; Niebles et al., 2008). The intuition behind using
this type of feature descriptor over the raw pixel intensities,
is that it creates relative invariance to slight disparities in
appearance (e.g., small changes in motion or lighting).

Visual Words Finally, as in Niebles et al. (2008), we cluster
the feature descriptors into v, the vocabulary size, categories,
to create the visual word vocabulary. Each detected feature
is assigned a cluster label as its “word” type. Cluster
assignments are made using the k-means algorithm, and the
best (minimum overall distance) set of cluster assignments
from 10 runs of the algorithm is used.

Qualitatively, the resulting feature clusters appear in-
tuitively meaningful, often corresponding to motion in a
particular direction, or of a specific body part. This results
in a set of “utterances” for each processed video, where each
utterance is a frame of the input video, each word in the
utterance is a video feature occurring at that frame, and each
vocabulary item is a cluster of video features with similar
descriptors. Example videos of the detector response func-
tion, detected features, and vocabulary clusters are available
at http://cocosci.berkeley.edu/videosegdemos.php

Topic Segmentation Model
Our generative model is the hierarchical Bayesian topic
segmentation model presented in Purver et al. (2006). In
this model, a meeting is composed of multiple conversations
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Figure 2: Variable dependencies in the SLDA model

(documents), where each conversation is a series of utter-
ances all generated from the same distribution over topics. As
standard, topics are equated with discrete distributions over
the set of vocabulary words. The intuition is that a single con-
versation may contain a number of different topics, but that
these topics form a particular coherent group, different from
the topics the other conversations range over. Given an unseg-
mented transcription of a meeting, the model infers the times
at which the distribution over topics has shifted, and therefore
where the segment boundaries between conversations are.

For our purposes, we can think of a complete video of a
series of actions as a meeting, with individual actions being
conversations. Similarly, topics are distributions over video
words (as in Niebles et al., 2008). Just as certain topics tend
to appear together during a conversation and shift between
conversations, perhaps certain video topics tend to appear
together in actions, and shift between actions.1

Figure 2 depicts the entire generative model, which we will
call Segmented Latent Dirichlet Allocation (SLDA). The pa-
rameter π ∼ Beta(γ1,γ2) is the probability that each frame u
will begin a new action, in which case cu = 1. Otherwise,
cu = 0, and the frame is a continuation of the previous action.
All the frames of an action share the same topic distribution,
so that θ(u) = θ(u−1) if frames u and u−1 are part of the same
action (that is, if cu = 0), and θ(u) ∼ Dirichlet(α) if frame u
begins a new action (if cu = 1). Within a frame u, the ith vi-
sual word, wu,i, is generated by the topic zu,i, which is drawn
from the topic distribution θ(u) specific to frame u. Each topic
j has an associated multinomial distribution φ( j) over visual
words, generated from a Dirichlet(β) distribution. So the vi-
sual word wu,i is drawn from the distribution φ(zu,i). The hier-
archical topic model has four parameters: α, β, γ1, and γ2.

Given an unsegmented video of multiple actions, we can
invert the generative model to infer both video topics and
segmentation boundaries by sampling from their posterior

1This is somewhat different from the approach used by Niebles
et al. (2008), where an action is a topic and a complete video is a
document. Here, a video contains multiple documents, with an ac-
tion being a single document, and topics are at the sub-action level.

distribution, conditioned on the observed frames of (unseg-
mented and unlabeled) video. We can use Gibbs sampling
to generate our samples from the posterior distribution, as
described in Purver et al. (2006). Each sample is a complete
assignment of the cu and zu,i variables for every frame u
in a video, specifying a set of inferred boundaries between
video segments of single actions, along with the inferred
distribution of topics within each frame of each action.

Implications for Action Segmentation The SLDA topic
segmentation model infers boundary locations based on
changes in the distribution over topics between frames of
video. Therefore, it is sensitive to the patterns of video
features that appear together within versus across individual
actions, and within actions versus at boundary points.
However, the bag-of-visual-words approach means that
the model is not aware of spatial or temporal relationships
between visual features within an action or a frame. To the
extent that individual actions are characterized by particular
statistical distributions over combinations of visual features,
the model will be successful at discovering action structure.
However, if some aspects of action segmentation require
knowledge of spatial relations (e.g., between body parts) or
of temporal relations (e.g., ordering of sub-goals), and are
not also characterized by changes in local features, they will
not be captured by this model. The model is therefore a
starting point for exploring the amount of representational
structure required both to begin parsing human action, and to
eventually parse it with adult human accuracy.

Segmentation and Recognition Model Results
We tested our model on three video data sets of everyday
human action, described below, and compared the model’s
segmentation predictions to human judgments (and to ground
truth boundary locations, when applicable). For the two data
sets with repeating, identifiable actions, we also measured
action recognition, by comparing the model’s per frame topic
assignments to the true action labels for those frames.

All videos were converted to 256 grayscale and 160x120
pixels in preprocessing, to speed feature detection. For each
data set, we tested a small range of parameter values for the
spatial and temporal scale of feature extraction, and for the
size of the visual word vocabulary, s ∈ {1,2,3}, t ∈ {2,3,4},
v ∈ {25,50,100,250,500,1000}, based on values used in
previous work (Dollár et al., 2005; Niebles et al., 2008). We
also varied the number of topics T used by the SLDA model,
to match the number of action types present in the videos.
In all cases, SLDA model parameters of α = 0.1, β = 0.1,
γ1 = 1 and γ2 = 5 were used, corresponding to a bias towards
having few words per topic, few topics per document, and
a prior expectation of a segment boundary approximately
every six frames.

For all results, we ran the Gibbs sampler for 24,000 iter-
ations, with a burn-in period of 2000 iterations. Simulated
annealing was used during the first 1000 iterations. Per-
frame segmentation probabilities were estimated by averag-
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Figure 3: Human boundary judgments and model predictions
for the WBD videos

ing 2000 samples, evenly spaced after the burn-in period.
Per-frame topic assignments were estimated by first assigning
each frame within a single sample to the majority topic over
its component words, and then counting the number of times
each frame was assigned to each topic, over the 2000 samples.

Segmenting and Identifying Repeated Actions

Recently, Shi, Wang, Cheng, and Smola (2008) presented a
supervised, discriminative approach to jointly recognizing
and segmenting human actions from video. They created
the Walk Bend Draw (WBD) data set, consisting of videos
of three subjects, each performing three continuous actions:
slow walk, bend body and draw on board. Each subject
performed the action sequence 6 times, for a total of 18
videos, averaging 8 seconds each. This data set of short,
simple, repeated actions provides a good baseline to test
our model. Since human segmentation judgments were not
available for this data set, we conducted an experiment to
gather ground truth segmentations from human participants.

Participants Participants were 50 English speakers on
Amazon’s Mechanical Turk.

Stimuli and Procedure For this experiment, we used the
WBD data set from Shi et al. (2008), described above.
Participants first viewed each movie in its entirety. They
were then presented with an interface for stepping through
every 5th frame of the video, and were instructed to to step
through the movie and mark the frame where the person first
begins bending down, and the frame where they first begin
drawing on the board (previous work has found boundary
judgments gathered by paging through still frames to be
reliable, e.g. Meyer et al., 2010; Hard et al., under review).
Participants provided boundary judgments for all 18 videos,
and video order was randomized across participants. The
experiment was run via a custom Flash program.

Experiment Results Data from 7 participants who did not
rate all the movies, or who placed the boundaries in incorrect
order were discarded. Qualitatively, boundary choices were
consistent across participants, and with our own judgments
of boundary locations.

Model Settings We ran our model on the concatenation of
all 18 WBD videos, using feature extraction and vocabulary
parameters s = 2, t = 3, v = 250, and number of SLDA
topics, T = 3.

Model Walk Bend Draw
SLDA 0.82 0.86 0.87
SVM-SMM 0.78 0.91 0.86

Table 1: Comparison of SLDA action recognition perfor-
mance, with the supervised model from Shi et al.(2008)

Segmentation Results Model segmentation probabilities
were calculated over a 5 frame window, in order to align them
with the human data, resulting in human and model boundary
judgments at a resolution of 0.17s. Pseudo-Gaussian smooth-
ing with a 0.5s kernel size was applied to the model out-
put, to obtain a more continuous distribution over boundary
probabilities. There was a significant correlation between the
model’s predictions and human boundary judgments, Pear-
son’s correlation coefficient, r = 0.57 across all videos, p <
0.001. Model predictions and human boundary judgments for
the concatenated WBD videos are shown in Figure 3.

Action Recognition Results Although our model does not
require that topics have a one-to-one correspondence with
actions, we expect few topics per document using our prior,
and so the extent to which topic assignments are consistent
within actions is a reasonable proxy for action recognition.

To measure per-frame recognition accuracy, we first
assigned each video frame to the most common topic across
samples. We then computed the most common topic for each
action type, and the proportion of frames of each action type
assigned to this topic (we used hard boundaries located at the
local maxima of human segmentation judgments for these
calculations). Results are shown in Table 1. Recognition
accuracy was high, and comparable to that achieved by Shi
et al. (2008) using a supervised approach.

Hierarchical Statistically Grouped Actions
The second test of our model used the video corpus from
Experiment 1 of Buchsbaum et al. (2009). This video corpus
was designed to replicate the structure of artificial language
learning experiments. Since previous work (Baldwin et al.,
2008; Buchsbaum et al., 2009) has established that adults
are able to recognize artificial actions – triplets of smaller
motion elements, grouped only by their statistical regularities
– this corpus is an interesting test case for whether our model
will also pick up on this hierarchical grouping of motions.

In this corpus, 12 individual video clips of object-directed
motions (referred to as small motion elements or SMEs in
previous work) were used to create four actions composed
of three SMEs each. A 25 minute corpus was created by
randomly choosing actions to add to the sequence, resulting
in 90 appearances of each action and 30 appearances of each
transition between pairs of actions. After viewing the corpus,
participants were asked to rate individual actions, as well
as part-action and non-action comparison stimuli, on how
meaningful and coherent they felt each combination of three
SMEs was. As is standard in this genre of experiments, a
part-action was a combination of three SMEs that appears
across a transition (e.g., the last two SMEs from the first
action and the first SME from the second action), and a
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Figure 4: True boundary locations and model predictions for
the first 500 frames of the Buchsbaum et al. (2009) corpus

non-action was a combination of three SMEs that never
appear together in the exposure corpus. Buchsbaum et al.
(2009) found that participants rated actions as more coherent
than part-actions and non-actions, suggesting they perceive
them as distinct, meaningful action segments.

Model Settings We down-sampled the exposure corpus from
30 to 5 fps, and ran our model on the complete 25 minute
video, using feature extraction and vocabulary parameters
s = 2, t = 2, v = 500, and number of topics, T = 4.

Segmentation Results Since the corpus was artificially
assembled, the true locations of transitions between actions
are known. For this analysis, we consider the 2 frames
on either side of a boundary as the ground-truth frames.
Pseudo-Gaussian smoothing with a 0.8s kernel size was
applied to the model output, to obtain a more continuous
distribution over boundary probabilities.

There was a significant correlation between the model’s
boundary probabilities and human boundary judgments,
Pearson’s correlation coefficient, r = 0.49, p < 0.001. The
first 500 frames of model predictions and ground-truth
boundaries are shown in Figure 4.

Action Recognition Results Per-frame recognition accuracy
for actions was computed as for the WBD data set. Recogni-
tion accuracy for non-actions and part-actions was computed
in a similar manner, by looking at the most common topic
assignments for the component motions (without requiring
these motions to appear sequentially). Results are shown in
Table 2. Overall, the model’s per-frame topic assignments
were very similar to human coherence judgements from
Experiment 1 of Buchsbaum et al. (2009).

Segmenting Naturalistic Action
The previous two data sets consist of a set of repeated actions,
performed in a relatively uncluttered environment. To look at
whether our model can use low-level features to find structure
in more realistic action, at multiple hierarchical levels, we

Table 2: Comparison of SLDA action recognition, with
human coherence ratings from Buchsbaum et al. (2009)

Actions Part-Actions Non-Actions
SLDA 0.67 0.54 0.43
People 0.63 0.53 0.46
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Figure 5: Human “fine” boundary data and model predic-
tions. First 500 frames of Zacks, Braver, et al.(2001) video

tested it on a video of everyday activity, from Zacks, Braver,
et al. (2001). The video is 336 seconds long, and shows a
person making a large bed. Sixteen participants provided on-
line segmentation data for this video, at two levels of action
granularity (“coarse” and “fine” boundaries respectively).

Model Settings We down-sampled the exposure corpus from
30 to 5 fps, and ran our model on the complete 336s video.
Since human boundaries were given in milliseconds, each
human boundary was re-assigned to the closest following
frame, resulting in human and model boundary judgments at
a resolution of 0.20s. Previous work on this type of natural-
istic video binned segmentation judgments at a 1s resolution
(e.g., Zacks, Braver, et al., 2001; Zacks et al., 2009), so
Pseudo-Gaussian smoothing with a 1s kernel size was applied
to both human boundaries and model predictions. Since par-
ticipants provided online boundary judgments, there might
be a response time delay between the true boundaries, and
human judgments. To account for this possibility, we looked
at correlations between the model and human segmentation,
with the model shifted between 0 and 5 frames (0 to 1s).

Fine Segmentation Results There was a significant cor-
relation between the model’s boundary probabilities and
human fine grain boundary judgments, Pearson’s correlation
coefficient, r = 0.31, p < 0.001, using feature extraction and
vocabulary parameters s = 2, t = 3 v = 250, shift = 0, and
number of topics, T = 10. The first 500 frames of model pre-
dictions and human “fine” boundaries are shown in Figure 5.

Coarse Segmentation Results There was a significant
correlation between the model’s boundary probabilities and
human coarse grain boundary judgments, Pearson’s correla-
tion coefficient, r = 0.35, p < 0.001, using feature extraction
and vocabulary parameters s = 3, t = 2 v = 250, shift = 3,
and number of topics, T = 3. The first 500 frames of model
predictions and human “coarse” boundaries are shown in
Figure 6. The greater lag between the model and participant
responses seen here is consistent with previous work suggest-
ing that coarse grain boundaries may take longer to process
than fine grain boundaries (e.g Meyer et al., 2010; Hard et
al., under review). The smaller number of topics is consistent
with there being fewer, larger “coarse” versus “fine” actions.
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Figure 6: Human “coarse” boundary data and model predic-
tions. First 500 frames of Zacks,Braver, et al.(2001) video

Discussion
Across three sets of videos, our model’s action segmentation
predictions were significantly correlated with human bound-
ary judgments and ground-truth boundary locations. The
model was able to discover relevant local visual features,
and statistical patterns over those features, for all videos,
even though they contained a variety of actors, were filmed
from different angles, and encompassed actions performed at
multiple time-scales and hierarchical levels. Despite having
no a priori knowledge of person location or human pose,
the correlations between our model’s boundary predictions
and human judgments were comparable to those found in
previous work looking at pre-selected movement features of
tracked people and body parts (Zacks et al., 2009; Meyer et
al., 2010). In the case of the Buchsbaum et al. (2009) data set,
our model was able to make reasonable boundary predictions,
even though the “actions” were artificially assembled, and
were defined only by co-occurence probabilities of the lower
level motion units. Similarly, our model made meaningful
boundary predictions for the Zacks, Braver, et al. (2001)
“bed” video, for multiple hierarchical levels of segmentation.

In addition, our model was able to successfully identify
repeated actions within the videos, assigning consistent topic
labels to occurrences of the same action. On the WBD
data set, the performance of our unsupervised approach was
comparable to that of earlier work using labeled training
examples (Shi et al., 2008), and on the Buchsbaum et al.
(2009) corpus, our model’s performance was qualitatively
very similar to human judgments of action coherence.

This model does not make explicit distinctions between
people and objects, or foreground and background. It also
does not look for pre-defined motion features, such as speed
or acceleration. Therefore, to the extent that our approach
was successful, it indicates that a portion of human action
structure is discoverable simply by attending to locally salient
visual cues within a broader visual scene. This suggests that
attending to such cues is a potential mechanism by which
learners (whether infants or computer vision algorithms)
might bootstrap their way into action parsing.

Finally, our model did not fully capture human bound-
ary judgments, and it performed more poorly on the less
repetitive, more naturalistic action sequence. Differences
between our model and human performance indicate areas

where additional knowledge may be required to fully parse
observed actions. We would like to explore the extent to
which adding representational (e.g., human pose), contextual
(e.g., object knowledge) and social (e.g., intentions and
goals) information improve results in future work.
Acknowledgments. We thank Jeff Zacks, Dare Baldwin, Meredith
Meyer, Misha Shashkov, and Andy Horng. This work was supported
by an NSF Graduate Research Fellowship and grant FA-9550-10-1-
0232 from the Air Force Office of Scientific Research.
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