Publications

View By Topic:
All Topics
F Foundations
P Perception
E Education
CI Causal Induction
CD Cognitive Development
PR Probabilistic Reasoning
RPM Rational Process Models
S&C Similarity and Categorization
SML Statistical Models of Language
NBM Nonparametric Bayesian Models
CEIL Cultural Evolution and Iterated Learning
DRLM Decision Making and Reinforcement Learning

(Click on an author's name to view all papers by that author.)


Filter publications

Rational Process Models
RPM
DRLM
Callaway, F., & Griffiths, T. L. (preprint). Attention in value-based choice as optimal sequential sampling. (link)
RPM
DRLM
Reichman, D., Lieder, F., Bourgin, D. D., Talmon, N., & Griffiths, T. L. (preprint). Goal pursuit for computationally bounded agents: The network structure of goal systems predicts human performance.
RPM
DRLM
Milli, S., Lieder, F., & Griffiths, T. L. (preprint). A rational reinterpretation of dual process theories. (link)
RPM
Lieder, F., & Griffiths, T. L. (in press). Resource-rational analysis: Understanding human cognition as the optimal use of limited computational resources. Behavioral and Brain Sciences, 1-85. (pdf)
RPM
DRLM
Correa, C. G.*, Ho, M. K.*, Callaway, F., & Griffiths, T. L. (2020). Resource-rational Task Decomposition to Minimize Planning Costs. Proceedings of the 42nd Annual Conference of the Cognitive Science Society. (pdf)
RPM
DRLM
Agrawal, M., Peterson, J. C., & Griffiths, T. L. (2020). Scaling up psychology via Scientific Regret Minimization. Proceedings of the National Academy of Sciences. (pdf)
F
RPM
Griffiths, T. L., Callaway, F., Chang, M. B., Grant, E., Krueger, P. M., & Leider, F. (2019). Doing more with less: meta-reasoning and meta-learning in humans and machines. Current Opinion in Behavioral Sciences, 29, 24-30. (pdf)
RPM
DRLM
Chang, M. B., Gupta, A., Levine, S., & Griffiths, T. L. (2019). Automatically composing representation transformations as a means for generalization. Proceedings of the 7th International Conference on Learning Representations (ICLR) 2019. (pdf)
RPM
DRLM
Agrawal, M., Peterson, J.C., & Griffiths, T. L. (2019). Using machine learning to guide cognitive modeling: a case study in moral reasoning. Proceedings of the 41st Annual Conference of the Cognitive Science Society . (pdf)
RPM
DRLM
Callaway, F., Gul, S., Krueger, P. M., Griffiths, T. L., & Lieder, F. (2018). Learning to select computations. Uncertainty in Artificial Intelligence. (pdf)
RPM
DRLM
Lieder, F., Shenhav, A., Musslick, S., & Griffiths, T.L. (2018). Rational metareasoning and the plasticity of cognitive control. PLoS Computational Biology. (pdf)
PR
RPM
DRLM
Lieder, F., Griffiths, T. L., Huys, Q. J. M., & Goodman, N. D. (2018). Empirical evidence for resource-rational anchoring and adjustment. Psychonomic Bulletin & Review. (pdf)
PR
RPM
DRLM
Lieder, F., Griffiths, T. L., Huys, Q. J. M., & Goodman, N. D. (2018). The anchoring bias reflects rational use of cognitive resources. Psychonomic Bulletin & Review. (pdf)
PR
RPM
DRLM
Lieder, F., Griffiths, T. L., & Hsu, M (2018). Over-representation of extreme events in decision making reflects rational use of cognitive resources. Psychological Review, 125(1), 1-32. (pdf)
RPM
DRLM
Callaway, F., Lieder, F., Das, P., Gul, S., Krueger, P. M., & Griffiths, T. L. (2018). A resource-rational analysis of human planning. Proceedings of the 40th Annual Conference of the Cognitive Science Society. (pdf)
PR
RPM
DRLM
Lieder, F., & Griffiths, T. L. (2017). Strategy selection as rational metareasoning. Psychological Review, 124(6), 762-794. (pdf)
CI
RPM
Bramley, N. R., Dayan, P., Griffiths, T. L., & Lagnado, D. A. (2017). Formalizing Neuraths Ship: Approximate algorithms for online causal learning. Psychological Review, 124(3), 301-338. (pdf)
RPM
Shenhav, A., Musslick, S., Lieder, F., Kool, W., Griffiths, T. L., Cohen, J. D., & Botvinick, M. M. (2017). Toward a rational and mechanistic account of mental effort. Annual Review of Neuroscience.(pdf)
RPM
Bourgin, D. D., Lieder, F., Reichman, D., Talmon, N., & Griffiths, T. L. (2017). The structure of goal systems predicts human performance. Proceedings of the 39th Annual Conference of the Cognitive Science Society. (pdf)
RPM
DRLM
Lieder, F., Krueger, P. M., & Griffiths, T. L. (2017). An automatic method for discovering rational heuristics for risky choice. Proceedings of the 39th Annual Conference of the Cognitive Science Society. (pdf)
PR
RPM
Milli, S., Lieder, F., & Griffiths, T. L. (2017) When does bounded-optimal metareasoning favor few cognitive systems? Proceedings of the 31st AAAI Conference on Artificial Intelligence. (pdf)
RPM
Hsu, A. S., Horng, A., Griffiths, T. L., & Chater, N. (2016). When absence of evidence is evidence of absence: Rational inferences from absent data. Cognitive Science, 1-13. (pdf)
RPM
Lieder, F., & Griffiths, T. L. (2016). Helping people make better decisions using optimal gamification Proceedings of the 38th Annual Conference of the Cognitive Science Society. (pdf)
PR
RPM
Suchow, J. W., & Griffiths, T. L. (2016). Deciding to remember: Memory maintenance as a Markov Decision Process. Proceedings of the 38th Annual Conference of the Cognitive Science Society. (pdf)
RPM
SML
Abbott, J. T., Austerweil, J. L., & Griffiths, T. L. (2015). Random walks on semantic networks can resemble optimal foraging. Psychological Review, 122, 558-569. (pdf)
F
RPM
Griffiths, T. L., Lieder, F., & Goodman, N. D. (2015). Rational use of cognitive resources: Levels of analysis between the computational and the algorithmic. Topics in Cognitive Science, 7, 217-229. (pdf)
CD
RPM
Gopnik, A., Griffiths, T. L., & Lucas, C. G. (2015). When younger learners can be better (or at least more open-minded) than older ones. Current Directions in Psychological Science, 24, 87-92. (pdf)
P
RPM
Hamrick, J., Smith, K. A., Griffiths, T. L., & Vul, E. (2015). Think again? The amount of mental simulation tracks uncertainty in the outcome. Proceedings of the 37th Annual Conference of the Cognitive Science Society (pdf)
PR
RPM
Lieder, F., & Griffiths, T. L. (2015). When to use which heuristic: A rational solution to the strategy selection problem. Proceedings of the 37th Annual Conference of the Cognitive Science Society. (pdf)
RPM
Lieder, F., Plunkett, D., Hamrick, J. B., Russell, S. J., Hay, N. J., & Griffiths, T. L. (2014). Algorithm selection by rational metareasoning as a model of human strategy selection. Advances in Neural Information Processing Systems, 27. (pdf)
CI
RPM
Bonawitz, E., Denison, S., Gopnik, A., & Griffiths, T. L. (2014). Win-stay, lose-sample,: A simple sequential algorithm for approximating Bayesian inference. Cognitive Psychology, 74, 35-65. (pdf)
PR
RPM
Vul, E., Goodman, N. D., Tenenbaum, J. B., & Griffiths, T. L. (2014). One and done? Optimal decisions from very few samples. Cognitive Science, 38, 599-637. (pdf)
RPM
SML
Bourgin, D. D., Abbott, J. T., Griffiths, T. L., Smith, K. A., & Vul, E. (2014). Empirical evidence for Markov chain Monte Carlo in memory search. Proceedings of the 36th Annual Conference of the Cognitive Science Society. (pdf)
PR
RPM
Hamrick, J. B., & Griffiths, T. L. (2014). What to simulate? Inferring the right direction for mental rotation. Proceedings of the 36th Annual Conference of the Cognitive Science Society. (pdf)
PR
RPM
Lieder, F., Hsu, M., & Griffiths, T. L. (2014). The high availability of extreme events serves resource-rational decision-making. Proceedings of the 36th Annual Conference of the Cognitive Science Society. (pdf)
RPM
Neumann, R., Rafferty, A. N., & Griffiths, T. L. (2014). A bounded rationality account of wishful thinking. Proceedings of the 36th Annual Conference of the Cognitive Science Society. (pdf)
RPM
Press, A., Pacer, M., Griffiths, T. L., & Christian, B. (2014). Caching algorithms and rational models of memory. Proceedings of the 36th Annual Conference of the Cognitive Science Society. (pdf)
CI
RPM
Denison, S., Bonawitz, E., Gopnik, A., & Griffiths, T. L. (2013). Rational variability in children's causal inferences: The Sampling Hypothesis. Cognition, 126, 285-300. (pdf)
PR
RPM
Abbott, J. T., Hamrick, J. B., & Griffiths, T. L. (2013). Approximating Bayesian inference with a sparse distributed memory system. Proceedings of the 35th Annual Conference of the Cognitive Science Society. (pdf)
RPM
SML
Abbott, J. T., Austerweil, J. L., & Griffiths, T. L. (2012). Human memory search as a random walk in a semantic network. Advances in Neural Information Processing Systems, 25. (pdf)
PR
RPM
Lieder, F., Griffiths, T. L., & Goodman, N. D. (2012). Burn-in, bias, and the rationality of anchoring. Advances in Neural Information Processing Systems, 25. (pdf)
CD
RPM
Bonawitz, E., Gopnik, A., Denison, S., & Griffiths, T. L. (2012). Rational randomness: The role of sampling in an algorithmic account of preschoolers' causal learning. In F. Xu (Ed.) Rational constructivism in cognitive development. Waltham, MA: Academic Press. (book)
F
RPM
Griffiths, T. L., Vul, E., & Sanborn, A. N. (2012). Bridging levels of analysis for probabilistic models of cognition. Current Directions in Psychological Science, 21(4), 263-268. (pdf)
CI
RPM
Abbott, J. T., & Griffiths, T. L. (2011). Exploring the influence of particle filter parameters on order effects in causal learning. Proceedings of the 33rd Annual Conference of the Cognitive Science Society. (pdf)
CI
RPM
Bonawitz, E., Denison, S., Chen, A., Gopnik, A., & Griffiths, T. L. (2011). A simple sequential algorithm for approximating Bayesian inference. Proceedings of the 33rd Annual Conference of the Cognitive Science Society. (pdf)
RPM
S&C
NBM
Sanborn, A. N., Griffiths, T. L., & Navarro, D. J. (2010). Rational approximations to rational models: Alternative algorithms for category learning. Psychological Review, 117 (4), 1144-1167.(pdf)
PR
RPM
S&C
Shi, L., Griffiths, T. L., Feldman, N. H., & Sanborn, A. N. (2010). Exemplar models as a mechanism for performing Bayesian inference. Psychonomic Bulletin & Review, 17 (4), 443-464. (pdf)
PR
RPM
S&C
Sanborn, A. N., Griffiths, T. L., & Shiffrin, R. (2010). Uncovering mental representations with Markov chain Monte Carlo. Cognitive Psychology, 60, 63-106. (pdf)
CI
PR
RPM
Bonawitz, E. B., & Griffiths, T. L. (2010). Deconfounding hypothesis generation and evaluation in Bayesian models. Proceedings of the 32nd Annual Conference of the Cognitive Science Society. (pdf)
CI
PR
RPM
Denison, S., Bonawitz, E. B., Gopnik, A., & Griffiths, T. L. (2010). Preschoolers sample from probability distributions. Proceedings of the 32nd Annual Conference of the Cognitive Science Society. (pdf)
PR
RPM
Shi, L., & Griffiths, T. L. (2009). Neural implementation of hierarchical Bayesian inference by importance sampling. Advances in Neural Information Processing Systems 22. (pdf)
RPM
SML
Levy, R., Reali, F., & Griffiths, T. L. (2009). Modeling the effects of memory on human online sentence processing with particle filters. Advances in Neural Information Processing Systems 21. (pdf)
PR
RPM
Vul, E., Goodman, N. D., Griffiths, T. L., & Tenenbaum, J. B. (2009). One and done? Optimal decisions from very few samples. Proceedings of the 31st Annual Conference of the Cognitive Science Society. (pdf)
RPM
S&C
Shi, L., Feldman, N. H., & Griffiths, T. L. (2008). Performing Bayesian inference with exemplar models. Proceedings of the 30th Annual Conference of the Cognitive Science Society. (pdf)
RPM
S&C
NBM
Sanborn, A. N., Griffiths, T. L., & Navarro, D. J. (2006). A more rational model of categorization. Proceedings of the 28th Annual Conference of the Cognitive Science Society. (pdf)

© 2020 Computational Cognitive Science Lab  |  Department of Psychology  |  Princeton University