Publications

View By Topic:
All Topics
CI Causal Induction
CD Cognitive Development
CEIL Cultural Evolution and Iterated Learning
DMRL Decision Making and Reinforcement Learning
E Education
F Foundations
IB Inductive Biases
NBM Nonparametric Bayesian Models
P Perception
PR Probabilistic Reasoning
RPM Rational Process Models
S&C Similarity and Categorization
SC Social Cognition
SML Statistical Models of Language

(Click on an author's name to view all papers by that author.)


Filter publications

By Levine, S
DMRL
NBM
Chang, M., Dayan, A. L., Meier, F., Griffiths, T. L., Levine, S., & Zhang, A. (2023). Neural Constraint Satisfaction: Hierarchical abstraction for combinatorial generalization in object rearrangement. Proceedings of the 11th International Conference on Learning Representations. (pdf)
S&C
Chang, M., Griffiths, T. L., & Levine, S. (2022). Object representations as fixed points: Training iterative refinement algorithms with implicit differentiation. Advances in Neural Information Processing Systems 36. (pdf)
DMRL
Chang, M., Kaushik, S., Weinberg, S. M., Griffiths, T., & Levine, S. (2020). Decentralized Reinforcement Learning: Global Decision-Making via Local Economic Transactions. Proceedings of the International Conference on Machine Learning. (pdf)
DMRL
RPM
Chang, M. B., Gupta, A., Levine, S., & Griffiths, T. L. (2019). Automatically composing representation transformations as a means for generalization. Proceedings of the 7th International Conference on Learning Representations (ICLR) 2019. (pdf)
IB
PR
Grant, E., Finn, C., Levine, S., Darrell, T., & Griffiths, T. L. (2018). Recasting gradient-based meta-learning as hierarchical Bayes. In Proceedings of the 6th International Conference on Learning Representations (ICLR). (pdf)

© 2025 Computational Cognitive Science Lab  |  Department of Psychology  |  Princeton University