Publications

View By Topic:
All Topics
F Foundations
P Perception
E Education
CI Causal Induction
CD Cognitive Development
PR Probabilistic Reasoning
RPM Rational Process Models
S&C Similarity and Categorization
SML Statistical Models of Language
NBM Nonparametric Bayesian Models
CEIL Cultural Evolution and Iterated Learning
DMRL Decision Making and Reinforcement Learning

(Click on an author's name to view all papers by that author.)


Filter publications

Foundations
F
Musslick, S., Bartlett, L. K., Chandramouli, S. H., Dubova, M., Gobet, F., Griffiths, T. L., Hullman, J., King, R. D., Kutz, J. N., Lucas, C. G., Mahesh, S., Pestilli, F., Sloman, S. J., & Holmes, W. R. (2025). Automating the practice of science: Opportunities, challenges, and implications. Proceedings of the National Academy of Sciences, 122(5), e2401238121. (pdf)
F
CEIL
Allen, K., Brändle, F., Botvinick, M., Fan, J. E., Gershman, S. J., Gopnik, A., Griffiths, T. L., Hartshorne, J. K., Hauser, T. U., Ho, M., de Leeuw, J. R., Ma, W. J., Murayama, K., Nelson, J. D., van Opheusden, B., Pouncy, T., Rafner, J., Rahwan, I., Rutledge, R. B., Sherson, J., Şimşek, Ö., Spiers, H., Summerfield, C., Thalmann, M., Vélez, N., Watrous, A. J., Tenenbaum, J. B., & Schulz, E. (2024). Using games to understand the mind. Nature Human Behaviour, 8, 1035–1043. (pdf)
F
Almaatouq, A., Griffiths, T. L., Suchow, J. W., Whiting, M. E., Evans, J., & Watts, D. J. (2024). Beyond playing 20 questions with nature: Integrative experiment design in the social and behavioral sciences. Behavioral and Brain Sciences, 47, e33. (pdf)
F
SML
Binz, M., Akata, E., Bethge, M., Brändle, F., Callaway, F., Coda-Forno, J., Dayan, P., Demircan, C., Eckstein, M. K., Éltető, N., Griffiths, T. L., Haridi, S., Jagadish, A. K., Ji-An, L., Kipnis, A., Kumar, S., Ludwig, T., Mathony, M., Mattar, M., Modirshanechi, A., Nath, S. S., Peterson, J. C., Rmus, M., Russek, E. M., Saanum, T., Scharfenberg, N., Schubert, J. A., Schulze Buschoff, L. M., Singhi, N., Sui, X., Thalmann, M., Theis, F., Truong, V., Udandarao, V., Voudouris, K., Wilson, R., Witte, K., Wu, S., Wulff, D., Xiong, H., & Schulz, E. (2024). Centaur: A foundation model of human cognition. (preprint)
F
P
Campbell, D., Rane, S., Giallanza, T., De Sabbata, N., Ghods, K., Joshi, A., Ku, A., Frankland, S. M., Griffiths, T. L., & Cohen, J. D., & Webb, T. W. (2024). Understanding the limits of vision language models through the lens of the binding problem. Advances in Neural Information Processing Systems 38. (pdf)
F
Collins, K. M., Sucholutsky, I., Bhatt, U., Chandra, K., Wong, L., Lee, M., Zhang, C. E., Zhi-Xuan, T., Ho, M., Mansinghka, V., Weller, A., Tenenbaum, J. B., & Griffiths, T. L. (2024). Building machines that learn and think with people. Nature Human Behaviour, 8(10), 1851-1863. (pdf)
F
PR
Griffiths, T. L., Zhu, J. Q., Grant, E., & McCoy, R. T. (2024). Bayes in the age of intelligent machines. Current Directions in Psychological Science, 33(5), 283-291. (pdf)
F
SML
Ichien, N., Bhatia, S., Ivanova, A., Webb, T., Griffiths, T., & Binz, M. (2024). Higher cognition in large language models. 46th Annual Meeting of the Cognitive Science Society. (pdf)
F
CI
Lu, Q., Nguyen, T. T., Zhang, Q., Hasson, U., Griffiths, T. L., & Zacks, J. M. (2024). Reconciling shared versus context-specific information in a neural network model of latent causes. Scientific Reports, 14(1), 16782. (pdf)
F
PR
Malaviya, M., Sucholutsky, I., & Griffiths, T. L. (2024). Pushing the limits of learning from limited data. Proceedings of the AAAI Symposium Series, 3 (1), 559-561. (pdf)
F
SML
McCoy, R. T., Yao, S., Friedman, D., Hardy, M. D., & Griffiths, T. L. (2024). Embers of autoregression show how large language models are shaped by the problem they are trained to solve. Proceedings of the National Academy of Sciences, 121(41), e2322420121. (pdf)
F
SML
McCoy, R. T., Yao, S., Friedman, D., Hardy, M. D., & Griffiths, T. L. (2024). When a language model is optimized for reasoning, does it still show embers of autoregression? An analysis of OpenAI o1. (preprint)
F
S&C
Sucholutsky, I., Collins, K. M., Malaviya, M., Jacoby, N., Liu, W., Sumers, T. R., Korakakis, M., Bhatt, U., Ho, M., Tenenbaum, J. B., Love, B., Pardos, Z. A., Weller, A., & Griffiths, T. L. (2024). Representational alignment supports effective machine teaching. (preprint)
F
P
Zuo, Y., Kayan, K., Wang, M., Jeon, K., Deng, J., & Griffiths, T. L. (2024). Towards foundation models for 3D vision: How close are we? International Conference on 3D Vision 2025. (preprint)
F
Griffiths, T. L., Kumar, S., & McCoy, R. T. (2023). On the hazards of relating representations and inductive biases. Behavioral and Brain Sciences, 46, e275. (pdf)
F
SML
Sumers, T. R., Yao, S., Narasimhan, K., & Griffiths, T. L. (2023). Cognitive architectures for language agents. Transactions on Machine Learning Research 2024(preprint)
F
Almaatouq, A., Griffiths, T. L., Suchow, J. W., Whiting, M. E., Evans, J., Watts, D. J. Beyond playing 20 questions with nature: Integrative experiment design in the social and behavioral sciences. Behavioral and Brain Sciences, 47, e33. >(pdf)
F
DMRL
Dubey, R., Griffiths, T. L., & Dayan, P. (2022). The pursuit of happiness: A reinforcement learning perspective on habituation and comparisons. PLoS Computational Biology, 18(8), e1010316. (pdf)
F
DMRL
Ho, M. K., & Griffiths, T. L. (2022). Cognitive science as a source of forward and inverse models of human decisions for robotics and control. Annual Review of Control, Robotics, and Autonomous Systems, 5, 33-53. (pdf)
F
E
DMRL
Dubey, R., Ho, M. K., Mehta, H., & Griffiths, T. L. (2021). Aha! Moments correspond to meta-cognitive prediction errors. (preprint)
F
DMRL
Gates, V., Griffiths, T. L., & Dragan, A. D. (2020). How to be helpful to multiple people at once. Cognitive Science, 44(6), e12841. (pdf)
F
RPM
Griffiths, T. L. (2020). Understanding human intelligence via human limitations. Trends in Cognitive Sciences, 24(11), 873-883. (pdf)
F
DMRL
Ho, M. K., Abel, D., Griffiths, T. L., & Littman, M. L. (2019). The value of abstraction. Current Opinion in Behavioral Sciences, 29, 111-116. (pdf)
F
RPM
Griffiths, T. L., Callaway, F., Chang, M. B., Grant, E., Krueger, P. M., & Lieder, F. (2019). Doing more with less: meta-reasoning and meta-learning in humans and machines. Current Opinion in Behavioral Sciences, 29, 24-30. (pdf)
F
CEIL
Krafft, P. M., & Griffiths, T. L. (2018). Levels of analysis in computational social science. Proceedings of the 40th Annual Conference of the Cognitive Science Society. (pdf)
F
Alon, N., Reichman, D., Shinkar, I., Wagner, T., Musslick, S., Cohen, J. D., Griffiths, T. L., Dey, B., & Ozcimder, K. (2017). A graph-theoretic approach to multitasking. Advances in Neural Information Processing Systems, 2100-2109. (pdf)
F
Paxton, A., & Griffiths, T. L.(2017). Finding the traces of behavioral and cognitive processes in big data and naturally occurring datasets. Behavior Research Methods, 49(5), 1630-1638.(pdf)
F
CEIL
Suchow, J. W., Bourgin, D. D., & Griffiths, T. L. (2017). Evolution in mind: Evolutionary dynamics, cognitive processes, and Bayesian inference. Trends in Cognitive Sciences, 21(7), 522-530. (pdf)
F
P
Griffiths, T. L., Abbott, J. T., & Hsu, A. S. (2016). Exploring human cognition using large image databases. Topics in Cognitive Science, 8(3), 569-588. (pdf)
F
CEIL
Suchow, J. W., & Griffiths, T. L. (2016). Rethinking experiment design as algorithm design. CrowdML – NIPS '16 Workshop on Crowdsourcing and Machine Learning. (pdf)
F
Sanborn, A. N., & Griffiths, T. L. (2015). Exploring the structure of mental representations by implementing computer algorithms with people. In Raaijmakers, J. G. W., Criss, A. H., Goldstone, R. L., Nosofsky, R. M., & Steyvers, M. (Eds.). Cognitive Modeling in Perception and Memory: A Festschrift for Richard M. Shiffrin. New York: Psychology Press. (pdf)
F
RPM
Griffiths, T. L., Lieder, F., & Goodman, N. D. (2015). Rational use of cognitive resources: Levels of analysis between the computational and the algorithmic. Topics in Cognitive Science, 7, 217-229. (pdf)
F
Goodman, N. D., Frank, M. C., Griffiths, T. L., Tenenbaum, J. B., Battaglia, P., & Hamrick, J. B. (2015). Relevant and robust. A response to Marcus and Davis. Psychological Science, 26, 539-541. (pdf)
F
Griffiths, T. L. (2015). Manifesto for a new (computational) cognitive revolution. Cognition, 135, 21-23. (pdf)
F
Griffiths, T. L., Tenenbaum, J. B., & Kemp, C. (2012). Bayesian inference. In K. J. Holyoak & R. G. Morrison, (Eds.) Oxford Handbook of Thinking and Reasoning. Oxford: Oxford University Press. (book)
F
Griffiths, T. L., Chater, N., Norris, D., & Pouget, A. (2012). How the Bayesians got their beliefs (and what those beliefs actually are). Psychological Bulletin, 138, 415-422. (pdf)
F
RPM
Griffiths, T. L., Vul, E., & Sanborn, A. N. (2012). Bridging levels of analysis for probabilistic models of cognition. Current Directions in Psychological Science, 21(4), 263-268. (pdf)
F
Griffiths, T. L., Austerweil, J. L., & Berthiaume, V. G. (2012). Comparing the inductive biases of simple neural networks and Bayesian models. Proceedings of the 34th Annual Conference of the Cognitive Science Society. (pdf)
F
CD
Perfors, A., Tenenbaum, J. B., Griffiths, T. L., & Xu, F. (2011). A tutorial introduction to Bayesian models of cognitive development. Cognition, 120, 302-321. (pdf)
F
CD
Tenenbaum, J. B., Kemp, C., Griffiths, T. L., & Goodman, N. D. (2011) How to grow a mind: Statistics, structure, and abstraction. Science, 331, 1279-1285. (pdf)
F
Griffiths, T. L., Chater, N., Kemp, C., Perfors, A., & Tenenbaum, J. B. (2010). Probabilistic models of cognition: Exploring representations and inductive biases. Trends in Cognitive Sciences, 14, 357-364. (pdf)
F
Griffiths, T. L. (2010). Bayesian models as tools for exploring inductive biases. In M. Banich & D. Caccamise (Eds.) Generalization of knowledge: Multidisciplinary perspectives. New York: Psychology Press.
F
Griffiths, T. L. (2009). Connecting human and machine learning via probabilistic models of cognition. InterSpeech 2009. (pdf)
F
Griffiths, T. L., & Yuille, A. (2008). A primer on probabilistic inference. In M. Oaksford and N. Chater (Eds.). The probabilistic mind: Prospects for rational models of cognition. Oxford: Oxford University Press. (pdf)
F
Griffiths, T. L., Kemp, C., & Tenenbaum, J. B. (2008). Bayesian models of cognition. In Ron Sun (ed.), The Cambridge handbook of computational cognitive modeling. Cambridge University Press. (pdf)
F
Griffiths, T. L., & Yuille, A. (2006). A primer on probabilistic inference. Trends in Cognitive Sciences. Supplement to special issue on Probabilistic Models of Cognition (volume 10, issue 7). (pdf)
F
CI
Tenenbaum, J. B., Griffiths, T. L., & Kemp, C. (2006). Theory-based Bayesian models of inductive learning and reasoning. Trends in Cognitive Science, 10, 309-318. (pdf)
F
PR
Griffiths, T. L., & Tenenbaum, J. B. (2006). Statistics and the Bayesian mind. Significance, 3, 130-133. (pdf)

© 2025 Computational Cognitive Science Lab  |  Department of Psychology  |  Princeton University