Publications

View By Topic:
All Topics
F Foundations
P Perception
E Education
CI Causal Induction
CD Cognitive Development
PR Probabilistic Reasoning
RPM Rational Process Models
S&C Similarity and Categorization
SML Statistical Models of Language
NBM Nonparametric Bayesian Models
CEIL Cultural Evolution and Iterated Learning
DMRL Decision Making and Reinforcement Learning

(Click on an author's name to view all papers by that author.)


Filter publications

Perception
P
Campbell, D., Kumar, S., Giallanza, T., Griffiths, T. L., & Cohen, J. D. (2024). Human-Like Geometric Abstraction in Large Pre-trained Neural Networks. 46th Annual Meeting of the Cognitive Science Society. (pdf)
P
Chen, A., Sucholutsky, I., Russakovsky, O., & Griffiths, T. L. (2024). Analyzing the Roles of Language and Vision in Learning from Limited Data. 46th Annual Meeting of the Cognitive Science Society. (pdf)
P
DMRL
Dubey, R., Hardy, M., Griffiths, T., & Bhui, R. (2024). AI-generated visuals of car-free American cities help increase support for sustainable transport policies. Nature Sustainability, 7, 399–403. (pdf)
P
SML
Kumar, S., Marjieh, R., Zhang, B., Campbell, D., Hu, M. Y., Bhatt, U., Lake, B. M., & Griffiths, T. L. (2024). Comparing Abstraction in Humans and Large Language Models Using Multimodal Serial Reproduction. 46th Annual Meeting of the Cognitive Science Society. (pdf)
P
S&C
Marjieh, R., Jacoby, N., Peterson, J. C., & Griffiths, T. L. (2024). The Universal Law of Generalization holds for naturalistic stimuli. Journal of Experimental Psychology: General, 153(3), 573–589. (pdf)
P
PR
Marjieh, R., Kumar, S., Campbell, D., Zhang, L., Bencomo, G., Snell, J., & Griffiths, T. L. (2024). Using Contrastive Learning with Generative Similarity to Learn Spaces that Capture Human Inductive Biases. (preprint)
P
Marjieh, R., van Rijn, P., Sucholutsky, I., Lee, H., Griffiths, T. L., & Jacoby, N. (2024). A Rational Analysis of the Speech-to-Song Illusion. 46th Annual Meeting of the Cognitive Science Society. (pdf)
P
SML
Marjieh, R., van Rijn, P., Sucholutsky, I., Lee, H., Jacoby, N., & Griffiths, T. L. (2024). Characterizing the large-scale structure of grounded semantic networks. (preprint)
P
Niedermann, J. P., Sucholutsky, I., Marjieh, R., Çelen, E., Griffiths, T., Jacoby, N., & van Rijn, P. (2024) Studying the Effect of Globalization on Color Perception using Multilingual Online Recruitment and Large Language Models. 46th Annual Meeting of the Cognitive Science Society. (pdf)
P
Rane, S., Ku, A., Baldridge, J., Tenney, I., Griffiths, T. L., & Kim, B. (2024). Can Generative Multimodal Models Count to Ten? 46th Annual Meeting of the Cognitive Science Society. (pdf)
P
Urano, Y., Marjieh, R., Griffiths, T. L., & Jacoby, N. (2024). The Influence of Social Information and Presentation Interface on Aesthetic Evaluations. 46th Annual Meeting of the Cognitive Science Society. (pdf)
P
Campbell, D., Kumar, S., Giallanza, T., Cohen, J. D., & Griffiths, T. L. (2023). Relational constraints on neural networks reproduce human biases towards abstract geometric regularity. (preprint)
P
SML
Dedhia, B., Chang, M., Snell, J. C., Griffiths, T. L., & Jha, N. K. (2023). Im-Promptu: In-context composition from image prompts. (pdf)
P
S&C
Jha, A., Peterson, J. C., & Griffiths, T. L. (2023). Extracting low‐dimensional psychological representations from convolutional neural networks. Cognitive Science, 47(1), e13226. (pdf)
P
S&C
Marjieh, R., Griffiths, T. L., & Jacoby, N. (2023). Musical pitch has multiple psychological geometries. (preprint)
P
PR
Marjieh, R., Sucholutsky, I., Langlois, T. A., Jacoby, N., & Griffiths, T. L. (2023) Analyzing Diffusion as Serial Reproduction. Proceedings of the 40th International Conference on Machine Learning (ICML), 202 24005-24019. (preprint)
P
SML
Marjieh, R., Sucholutsky, I., van Rijn, P., Jacoby, N., & Griffiths, T. L. (2023). What language reveals about perception: Distilling psychophysical knowledge from large language models. 45th Annual Meeting of the Cognitive Science Society. (pdf)
P
CD
Rane, S., Nencheva, M. L., Wang, Z., Lew-Williams, C., Russakovsky, O., & Griffiths, T. L. (2023). Predicting word learning in children from the performance of computer vision systems. 45th Annual Meeting of the Cognitive Science Society. (pdf)
P
PR
Sucholutsky, I., & Griffiths, T. L. (2023). Alignment with human representations supports robust few-shot learning. Advances in Neural Information Processing Systems, 37. (pdf)
P
DMRL
Turner, C. R., Morgan, T., & Griffiths, T. (2023). The joint evolution of sensory systems and decision policy allows cognition. 45th Annual Meeting of the Cognitive Science Society. (pdf)
P
SML
Murthy, S. K., Hawkins, R. D., & Griffiths, T. L. (2022). Shades of confusion: Lexical uncertainty modulates ad hoc coordination in an interactive communication task. Cognition, 225, 105152. (pdf)
P
S&C
Peterson, J. C., Uddenberg, S., Griffiths, T. L., Todorov, A., & Suchow, J. W. (2022). Deep models of superficial face judgments. Proceedings of the National Academy of Sciences, 119(17), e2115228119. (pdf)
P
S&C
Battleday, R. M., Peterson, J. C., & Griffiths, T. L. (2021). From convolutional neural networks to models of higher-level cognition (and back again). Annals of the New York Academy of Sciences. (pdf)
P
S&C
Grewal, K., Peterson, J. C., Thompson, B., & Griffiths, T. L. (2021). Exploring the Structure of Human Adjective Representations. SVRHM 2021 Workshop @ NeurIPS. (pdf)
P
CEIL
Langlois, T. A., Jacoby, N., Suchow, J. W., & Griffiths, T. L. (2021). Serial reproduction reveals the geometry of visuospatial representations. Proceedings of the National Academy of Sciences, 118(13), e2012938118. (pdf)
P
Langlois, T. A., Zhao, H. C., Grant, E., Dasgupta, I., Griffiths, T. L., & Jacoby, N. (2021). Passive attention in artificial neural networks predicts human visual selectivity. Advances in Neural Information Processing Systems, 34. (pdf)
P
Tuli, S., Dasgupta, I., Grant, E., & Griffiths, T. L. (2021). Are Convolutional Neural Networks or Transformers more like human vision?. Proceedings of the 43rd Annual Meeting of the Cognitive Science Society. (link)
P
S&C
Battleday, R. M., Peterson, J. C., & Griffiths, T. L. (2020). Capturing human categorization of natural images by combining deep networks and cognitive models. Nature Communications, 11(1), 1-14. (pdf)
P
S&C
Jha, A., Peterson, J. C., & Griffiths, T. L. (2020). Extracting low-dimensional psychological representations from convolutional neural networks. Proceedings of the 42nd Annual Conference of the Cognitive Science Society. (pdf)
P
S&C
Singh, P., Peterson, J. C., Battleday, R. M., & Griffiths, T. L. (2020). End-to-end deep prototype and exemplar models for predicting human behavior. Proceedings of the 42nd Annual Conference of the Cognitive Science Society. (pdf)
P
DMRL
Sumers, T. R., Ho, M. K., & Griffiths, T. L. (2020). Show or tell? Demonstration is more robust to changes in shared perception than explanation. Proceedings of the 42nd Annual Conference of the Cognitive Science Society. (pdf)
P
S&C
Grant, E., Peterson, J. C., & Griffiths, T. (2019). Learning deep taxonomic priors for concept learning from few positive examples. Proceedings of the 41st Annual Conference of the Cognitive Science Society. (pdf)
P
S&C
Peterson, J. C., Battleday, R., Griffiths, T. L., & Russakovsky, O. (2019). Human uncertainty makes classification more robust. Proceedings of the IEEE International Conference on Computer Vision. (pdf)
P
S&C
Peterson, J. C., Abbott, J. T., & Griffiths, T. L. (2018). Evaluating (and improving) the correspondence between deep neural networks and human representations. Cognitive Science, 42, 2648-2669. (pdf)
P
S&C
Suchow, J. W., Peterson, J. C., & Griffiths, T. L. (2018). Learning a face space for experiments on human identity. Proceedings of the 40th Annual Conference of the Cognitive Science Society. (pdf)
P
Austerweil, J. L., Griffiths, T. L., & Palmer, S. E. (2017). Learning to be (in) variant: Combining prior knowledge and experience to infer orientation invariance in object recognition. Cognitive Science, 41(S5), 1183-1201. (pdf)
P
CEIL
Langlois, T. A., Jacoby, N., Suchow, J. W., & Griffiths, T. L. (2017). Uncovering visual priors in spatial memory using serial reproduction. Proceedings of the 39th Annual Conference of the Cognitive Science Society. (pdf)
P
CI
Callaway, F., Hamrick, J. B., & Griffiths, T. L. (2017). Discovering simple heuristics from mental simulation. Proceedings of the 39th Annual Conference of the Cognitive Science Society. (pdf)
P
S&C
Peterson, J. C., & Griffiths, T. L. (2017). Evidence for the size principle in semantic and perceptual domains. Proceedings of the 39th Annual Conference of the Cognitive Science Society. (pdf)
P
CI
PR
Hamrick, J. B., Battaglia, P. W., Griffiths, T. L., Tenenbaum, J. B. (2016). Inferring mass in complex scenes by mental simulation. Cognition, 157, 61-76. (pdf)
F
P
Griffiths, T. L., Abbott, J. T., & Hsu, A. S. (2016). Exploring human cognition using large image databases. Topics in Cognitive Science, 8(3), 569-588. (pdf)
P
S&C
Abbott, J. T., Griffiths, T. L., & Regier, T. (2016). Focal colors across languages are representative members of color categories. Proceedings of the National Academy of Sciences, 113(40), 11178-11183. (pdf)
P
CEIL
Suchow, J. W., Pacer, M. D., & Griffiths, T. L. (2016). Design from Zeroth Principles. Proceedings of the 38th Annual Conference of the Cognitive Science Society. (pdf)
P
S&C
Peterson, J. C., Abbott, J. T., & Griffiths, T. L. (2016). Adapting deep network features to capture psychological representations. Proceedings of the 38th Annual Conference of the Cognitive Science Society. (pdf) (Winner of the Computational Modeling Prize in Perception/Action)
P
PR
Liu, C., Hamrick, J. B., Fisac, J. F., Dragan, A. D, Hendrick, J. K., Sastry, S. S, & Griffiths, T. L. (2016). Goal inference improves objective and perceived performance in human-robot collaboration. Proceedings of the 2016 International Conference on Autonomous Agents & Multiagent Systems. (pdf)
P
RPM
Hamrick, J., Smith, K. A., Griffiths, T. L., & Vul, E. (2015). Think again? The amount of mental simulation tracks uncertainty in the outcome. Proceedings of the 37th Annual Conference of the Cognitive Science Society (pdf)
P
S&C
Jia, Y., Abbott, J. T., Austerweil, J. L., Griffiths, T. L., & Darrell, T. (2013). Visual concept learning: Combining machine vision and Bayesian generalization on concept hierarchies. Advances in Neural Information Processing Systems, 26. (pdf)
P
CI
Sanborn, A. N., Mansinghka, V. K., & Griffiths, T. L. (2013). Reconciling intuitive physics and Newtonian mechanics for colliding objects. Psychological Review, 120, 411-437. (pdf)
P
S&C
Austerweil, J. L., & Griffiths, T. L. (2012). Human feature learning. Encyclopedia of the sciences of learning. N. M. Seel, ed. New York: Springer. (book)
P
S&C
Abbott, J. T., Regier, T., & Griffiths, T. L. (2012). Predicting focal colors with a rational model of representativeness. Proceedings of the 34th Annual Conference of the Cognitive Science Society. (pdf)
P
S&C
Abbott, J. T., Austerweil, J. L., & Griffiths, T. L. (2012). Constructing a hypothesis space from the Web for large-scale Bayesian word learning. Proceedings of the 34th Annual Conference of the Cognitive Science Society. (pdf)
P
NBM
Austerweil, J. L., Friesen, A. L., & Griffiths, T. L. (2011). An ideal observer model for identifying the reference frame of objects. Advances in Neural Information Processing Systems, 24. (pdf)
P
NBM
Austerweil, J. L., & Griffiths, T. L. (2011). A rational model of the effects of distributional information on feature learning. Cognitive Psychology, 63, 173-209. (pdf)
P
SML
Buchsbaum, D., Canini, K. R., & Griffiths, T. L. (2011). Segmenting and recognizing human action using low-level video features. Proceedings of the 33rd Annual Conference of the Cognitive Science Society.(pdf)
P
S&C
NBM
Austerweil, J. L., & Griffiths, T. L. (2010). Learning invariant features using the Transformed Indian Buffet Process. Advances in Neural Information Processing Systems 23. (pdf)
P
S&C
CEIL
Xu, J., Griffiths, T. L., & Dowman, M. (2010). Replicating color term universals through human iterated learning. Proceedings of the 32nd Annual Conference of the Cognitive Science Society. (pdf)
P
S&C
Austerweil, J. L., & Griffiths, T. L. (2010). Learning hypothesis spaces and dimensions through concept learning. Proceedings of the 32nd Annual Conference of the Cognitive Science Society. (pdf)
P
S&C
SML
Feldman, N. H., Griffiths, T. L., & Morgan, J. L. (2009). The influence of categories on perception: Explaining the perceptual magnet effect as optimal statistical inference. Psychological Review, 116, 752-782. (pdf)
P
S&C
NBM
Austerweil, J., & Griffiths, T. L. (2009). Analyzing human feature learning as nonparametric Bayesian inference. Advances in Neural Information Processing Systems 21. (pdf)
P
S&C
NBM
Austerweil, J. L., & Griffiths, T. L. (2009). The effect of distributional information on feature learning. Proceedings of the 31st Annual Conference of the Cognitive Science Society. (pdf)

© 2024 Computational Cognitive Science Lab  |  Department of Psychology  |  Princeton University