Publications

View By Topic:
All Topics
F Foundations
P Perception
E Education
CI Causal Induction
CD Cognitive Development
PR Probabilistic Reasoning
RPM Rational Process Models
S&C Similarity and Categorization
SML Statistical Models of Language
NBM Nonparametric Bayesian Models
CEIL Cultural Evolution and Iterated Learning
DMRL Decision Making and Reinforcement Learning

(Click on an author's name to view all papers by that author.)


Filter publications

By Mansinghka, V.
F
Collins, K. M., Sucholutsky, I., Bhatt, U., Chandra, K., Wong, L., Lee, M., Zhang, C. E., Zhi-Xuan, T., Ho, M., Mansinghka, V., Weller, A., Tenenbaum, J. B., & Griffiths, T. L. (2024). Building machines that learn and think with people. Nature Human Behaviour, 8(10), 1851-1863. (pdf)
P
CI
Sanborn, A. N., Mansinghka, V. K., & Griffiths, T. L. (2013). Reconciling intuitive physics and Newtonian mechanics for colliding objects. Psychological Review, 120, 411-437. (pdf)
CI
Sanborn, A. N., Mansinghka, V. K., & Griffiths, T. L. (2009). A Bayesian framework for modeling intuitive dynamics. Proceedings of the 31st Annual Conference of the Cognitive Science Society. (pdf)
SML
Frank, M. C., Goldwater, S., Mansinghka, V., Griffiths, T., & Tenenbaum, J. B. (2007). Modeling human performance in statistical word segmentation. Proceedings of the Twenty-Ninth Annual Conference of the Cognitive Science Society. (pdf)
CI
NBM
Mansinghka, V. K., Kemp, C., Tenenbaum, J. B., & Griffiths, T. L. (2006). Structured priors for structure learning. Proceedings of the Twenty-Second Conference on Uncertainty in Artificial Intelligence (UAI 2006). (pdf)

© 2024 Computational Cognitive Science Lab  |  Department of Psychology  |  Princeton University