Gupta, M., Rane, S., McCoy, R. T., & Griffiths, T. L. (2025). Convolutional neural networks can (meta-) learn the same-different relation. Proceeding of the Annual Meeting of the Cognitive Science Society, 47.(pdf)
McCoy, R. T., & Griffiths, T. L. (2025). Modeling rapid language learning by distilling Bayesian priors into artificial neural networks. Nature Communications, 16(1) (pdf)
Bencomo, G. M., Snell, J. C., & Griffiths, T. L. (2024). Implicit Maximum a Posteriori Filtering via adaptive optimization. Proceedings of the 12th International Conference on Learning Representations (ICLR).(preprint)
Sucholutsky, I., & Griffiths, T. L. (2024). Why should we care if machines learn human-like representations? AAAI-24 Spring Symposium on Human-Like Learning. (pdf)
Zhang, L., Nelson, L., & Griffiths, T. L. (2024). Analyzing the benefits of prototypes for semi-supervised category learning. 46th Annual Meeting of the Cognitive Science Society.(pdf)
Zhu, J. Q., Yan, H., & Griffiths, T. (2024). Recovering mental representations from large language models with Markov chain Monte Carlo. 46th Annual Meeting of the Cognitive Science Society. (pdf)
Sucholutsky, I., & Griffiths, T. L. (2023). Alignment with human representations supports robust few-shot learning. Advances in Neural Information Processing Systems 37. (pdf)
Dasgupta, I., Grant, E., & Griffiths, T. L. (2022). Distinguishing rule- and exemplar-based generalization in learning systems. Proceedings of the International Conference on Machine Learning.(pdf)
Thompson, B., & Griffiths, T. L. (2019). Inductive biases constrain cumulative cultural evolution. Proceedings of the 41st Annual Conference of the Cognitive Science Society. (pdf)
Peterson, J. C., Abbott, J. T., & Griffiths, T. L. (2018). Evaluating (and improving) the correspondence between deep neural networks and human representations. Cognitive Science, 42, 2648-2669. (pdf)