Publications
View By Topic:
All Topics
F Foundations P Perception E Education CI Causal Induction CD Cognitive Development PR Probabilistic Reasoning RPM Rational Process Models S&C Similarity and Categorization SML Statistical Models of Language NBM Nonparametric Bayesian Models CEIL Cultural Evolution and Iterated Learning DMRL Decision Making and Reinforcement Learning
(Click on an author's name to view all papers by that author.)
Filter publications
By McCoy, R.Bencomo, G. , Gupta, M. , Marinescu, I. , McCoy, R. T. , & Griffiths, T. L. (2025). Teasing apart architecture and initial weights as sources of inductive bias in neural networks. (preprint)
S&C Gupta, M. , Rane, S. , McCoy, R. T. , & Griffiths, T. L. (2025). Convolutional neural networks can (meta-) learn the same-different relation. (preprint)
F Ku, A. , Campbell, D. , Bai, X. , Geng, J. , Liu, R. , Marjieh, R. , McCoy, R. T. , Nam, A. , Sucholutsky, I. , Veselovsky, V. , Zhang, L. , Zhu, J. Q. , & Griffiths, T. L. (2025). Using the tools of cognitive science to understand large language models at different levels of analysis. (preprint)
S&C Marinescu, I. , McCoy, R. T. , & Griffiths, T. L. (2025). Neural networks can capture human concept learning without assuming symbolic representations. (preprint)
PR SML Zhang, L. , Veselovsky, V. , McCoy, R. T. , & Griffiths, T. L. (2025). Identifying and mitigating the influence of the prior distribution in large language models. (preprint)
F PR Griffiths, T. L. , Zhu, J. Q. , Grant, E. , & McCoy, R. T. (2024). Bayes in the age of intelligent machines. Current Directions in Psychological Science, 33(5) , 283-291. (pdf)
PR S&C Marinescu, I. R. , Thomas McCoy, R. T. , & Griffiths, T. (2024). Distilling symbolic priors for concept learning into neural networks. 46th Annual Meeting of the Cognitive Science Society. (pdf)
F SML McCoy, R. T. , Yao, S. , Friedman, D. , Hardy, M. D. , & Griffiths, T. L. (2024). Embers of autoregression show how large language models are shaped by the problem they are trained to solve. Proceedings of the National Academy of Sciences, 121 (41), e2322420121. (pdf)
F SML McCoy, R. T. , Yao, S. , Friedman, D. , Hardy, M. D. , & Griffiths, T. L. (2024). When a language model is optimized for reasoning, does it still show embers of autoregression? An analysis of OpenAI o1. (preprint)
PR SML Prabhakar, A. , Griffiths, T. L. , & McCoy, R. T. (2024). Deciphering the factors influencing the efficacy of chain-of-thought: Probability, memorization, and noisy reasoning. Proceedings of the 19th Conference on Empirical Methods in Natural Language Processing. (pdf)
F Griffiths, T. L. , Kumar, S. , & McCoy, R. T. (2023). On the hazards of relating representations and inductive biases. Behavioral and Brain Sciences, 46 , e275. (pdf)
SML McCoy, R. T. , & Griffiths, T. L. (2023). Modeling rapid language learning by distilling Bayesian priors into artificial neural networks. (preprint)
SML McCoy, R. T. , Grant, E. , Smolensky, P. , Griffiths, T. L. , & Linzen, T. (2020). Universal linguistic inductive biases via meta-learning. Proceedings of the 42nd Annual Conference of the Cognitive Science Society . (pdf)