Publications

View By Topic:
All Topics
F Foundations
P Perception
E Education
CI Causal Induction
CD Cognitive Development
PR Probabilistic Reasoning
RPM Rational Process Models
S&C Similarity and Categorization
SML Statistical Models of Language
NBM Nonparametric Bayesian Models
CEIL Cultural Evolution and Iterated Learning
DMRL Decision Making and Reinforcement Learning

(Click on an author's name to view all papers by that author.)


Filter publications

By Sanborn, A.
RPM
Zhu, J. Q., Sanborn, A., Chater, N., & Griffiths, T. (2023). Computation-Limited Bayesian updating. 45th Annual Meeting of the Cognitive Science Society. (pdf)
PR
S&C
Hsu, A. S., Martin, J. B., Sanborn, A. N., & Griffiths, T. L. (2019). Identifying category representations for complex stimuli using discrete Markov chain Monte Carlo with people. Behavior Research Methods, 51, 1706-1716. (pdf)
F
Sanborn, A. N., & Griffiths, T. L. (2015). Exploring the structure of mental representations by implementing computer algorithms with people. In Raaijmakers, J. G. W., Criss, A. H., Goldstone, R. L., Nosofsky, R. M., & Steyvers, M. (Eds.). Cognitive Modeling in Perception and Memory: A Festschrift for Richard M. Shiffrin. New York: Psychology Press. (pdf)
P
CI
Sanborn, A. N., Mansinghka, V. K., & Griffiths, T. L. (2013). Reconciling intuitive physics and Newtonian mechanics for colliding objects. Psychological Review, 120, 411-437. (pdf)
S&C
Martin, J. B., Griffiths, T. L., & Sanborn, A. N. (2012). Testing the efficiency of Markov chain Monte Carlo with people using facial affect categories. Cognitive Science, 36, 150-162. (pdf)
F
RPM
Griffiths, T. L., Vul, E., & Sanborn, A. N. (2012). Bridging levels of analysis for probabilistic models of cognition. Current Directions in Psychological Science, 21(4), 263-268. (pdf)
S&C
CEIL
Hsu, A. S, Martin, J. B., Sanborn, A. N., & Griffiths, T. L. (2012). Identifying representations of categories of discrete items using Markov chain Monte Carlo with People. Proceedings of the 34th Annual Conference of the Cognitive Science Society. (pdf)
S&C
Blundell, C., Sanborn, A. N., & Griffiths, T. L. (2012). Look-ahead Monte Carlo with people. Proceedings of the 34th Annual Conference of the Cognitive Science Society. (pdf)
S&C
NBM
Griffiths, T. L., Sanborn, A. N., Canini, K. R., Navarro, D. J., & Tenenbaum, J. B. (2011). Nonparametric Bayesian models of category learning. In E. M. Pothos & A. J. W.ills (Eds.) Formal approaches in categorization. Cambridge, UK: Cambridge University Press. (book)
RPM
S&C
NBM
Sanborn, A. N., Griffiths, T. L., & Navarro, D. J. (2010). Rational approximations to rational models: Alternative algorithms for category learning. Psychological Review, 117 (4), 1144-1167.(pdf)
PR
RPM
S&C
Shi, L., Griffiths, T. L., Feldman, N. H., & Sanborn, A. N. (2010). Exemplar models as a mechanism for performing Bayesian inference. Psychonomic Bulletin & Review, 17 (4), 443-464. (pdf)
PR
RPM
S&C
Sanborn, A. N., Griffiths, T. L., & Shiffrin, R. (2010). Uncovering mental representations with Markov chain Monte Carlo. Cognitive Psychology, 60, 63-106. (pdf)
CI
Sanborn, A. N., Mansinghka, V. K., & Griffiths, T. L. (2009). A Bayesian framework for modeling intuitive dynamics. Proceedings of the 31st Annual Conference of the Cognitive Science Society. (pdf)
S&C
Sanborn, A. N., & Griffiths, T. L. (2008). Markov chain Monte Carlo with people. Advances in Neural Information Processing Systems, 20. (pdf) (winner of the Outstanding Student Paper prize)
S&C
NBM
Griffiths, T. L., Sanborn, A. N., Canini, K. R., & Navarro, D. J. (2008). Categorization as nonparametric Bayesian density estimation. In M. Oaksford and N. Chater (Eds.). The probabilistic mind: Prospects for rational models of cognition. Oxford: Oxford University Press. (pdf)
S&C
NBM
Griffiths, T. L., Canini, K. R., Sanborn, A. N., & Navarro, D. J (2007) Unifying rational models of categorization via the hierarchical Dirichlet process. Proceedings of the Twenty-Ninth Annual Conference of the Cognitive Science Society. (pdf)
RPM
S&C
NBM
Sanborn, A. N., Griffiths, T. L., & Navarro, D. J. (2006). A more rational model of categorization. Proceedings of the 28th Annual Conference of the Cognitive Science Society. (pdf)

© 2024 Computational Cognitive Science Lab  |  Department of Psychology  |  Princeton University