View By Topic:
All Topics
F Foundations
P Perception
E Education
CI Causal Induction
CD Cognitive Development
PR Probabilistic Reasoning
RPM Rational Process Models
S&C Similarity and Categorization
SML Statistical Models of Language
NBM Nonparametric Bayesian Models
CEIL Cultural Evolution and Iterated Learning
DMRL Decision Making and Reinforcement Learning

(Click on an author's name to view all papers by that author.)

Filter publications

By Thompson, B.
Hardy, M. D., Thompson, B., Krafft, P. M., & Griffiths, T. L. (2023). Resampling reduces bias amplification in experimental social networks. Nature Human Behavior, 7, 2084-2098. (pdf)
Uddenberg, S., Thompson, B. D., Vlasceanu, M., Griffiths, T. L., & Todorov, A. (2023). Iterated learning reveals stereotypes of facial trustworthiness that propagate in the absence of evidence. Cognition, 237, 105452. (pdf)
Vélez, N., Christian, B., Hardy, M., Thompson, B. D., & Griffiths, T. L. (2023). How do humans overcome individual computational limitations by working together? Cognitive Science, 47(1), e13232. (pdf)
Hardy, M. D., Krafft, P. M., Thompson, B., & Griffiths, T. L. (2022). Overcoming Individual Limitations Through Distributed Computation: Rational Information Accumulation in Multigenerational Populations. Topics in Cognitive Science, 14(3), 550–573. (pdf)
Thompson, B., van Opheusden, B., Sumers, T., & Griffiths, T. L. (2022). Complex cognitive algorithms preserved by selective social learning in experimental populations. Science, 376(6588), 95-98. (pdf)
Grewal, K., Peterson, J. C., Thompson, B., & Griffiths, T. L. (2021). Exploring the Structure of Human Adjective Representations. SVRHM 2021 Workshop @ NeurIPS. (pdf)
Thompson, B., & Griffiths, T. L. (2021). Human biases limit cumulative innovation. Proceedings of the Royal Society B, 288, 20202752. (pdf)
Thompson, B., & Griffiths, T. L. (2019). Inductive biases constrain cumulative cultural evolution. Proceedings of the 41st Annual Conference of the Cognitive Science Society. (pdf)

© 2024 Computational Cognitive Science Lab  |  Department of Psychology  |  Princeton University