Meylan, S. C., & Griffiths, T. L. (2024). Word Forms Reflect Trade‐Offs Between Speaker Effort and Robust Listener Recognition. Cognitive Science, 48(7), e13478. (pdf)
Oktar, K., Sumers, T., & Griffiths, T. L. (2024). A Rational Model of Vigilance in Motivated Communication. 46th Annual Meeting of the Cognitive Science Society.(pdf)
Zhu, J. Q., & Griffiths, T. L. (2024). Incoherent Probability Judgments in Large Language Models. 46th Annual Meeting of the Cognitive Science Society.(pdf)
Zhu, J. Q., Yan, H., & Griffiths, T. (2024). Recovering Mental Representations from Large Language Models with Markov Chain Monte Carlo. 46th Annual Meeting of the Cognitive Science Society. (pdf)
Li, M. Y., Grant, E., & Griffiths, T. L. (2023). Gaussian process surrogate models for neural networks. Proceedings of the 39th Conference on Uncertainty in Artificial Intelligence. (pdf)
Sucholutsky, I., & Griffiths, T. L. (2023). Alignment with human representations supports robust few-shot learning. Advances in Neural Information Processing Systems, 37. (pdf)
Dubey, R., Griffiths, T. L., & Lombrozo, T. (2022). If it’s important, then I’m curious: Increasing perceived usefulness stimulates curiosity. Cognition, 226, 105193. (pdf)
Hawkins, R. D., Liu, I., Goldberg, A. E., Griffiths, T. L. (2021). Respect the code: Speakers expect novel conventions to generalize within but not across social group boundaries. Proceedings of the 43rd Annual Conference of the Cognitive Science Society.(pdf)
Wilson, S., Arora, S., Zhang, Q., & Griffiths, T.L. (2021). A rational account of anchor effects in hindsight bias. Proceedings of the 43th Annual Conference of the Cognitive Science Society. (pdf)
Dubey, R., & Griffths, T.L. (2020). Understanding exploration in humans and machines by formalizing the function of curiosity. Current Opinion in Behavioral Sciences, 35, 118-124. (pdf)
Ho, M. K., Korman, J., & Griffiths, T. L. (2019). The computational structure of unintentional meaning. Proceedings of the 41st Annual Conference of the Cognitive Science Society. (pdf)
Lieder, F., Griffiths, T. L., & Hsu, M (2018). Over-representation of extreme events in decision making reflects rational use of cognitive resources. Psychological Review, 125(1), 1-32. (pdf)
Meng, Y., Griffiths, T. L., & Xu, F. (2017). Inferring intentional agents from violation of randomness. Proceedings of the 39th Annual Conference of the Cognitive Science Society.(pdf)
Dubey, R., & Griffiths, T. L. (2017). A rational analysis of curiosity. Proceedings of the 39th Annual Conference of the Cognitive Science Society.(pdf)
Milli, S., Lieder, F., & Griffiths, T. L. (2017) When does bounded-optimal metareasoning favor few cognitive systems? Proceedings of the 31st AAAI Conference on Artificial Intelligence. (pdf)
O'Grady, S., Griffiths, T. L., & Xu, F. (2016). Do simple probability judgements rely on integer approximation? Proceedings of the 38th Annual Conference of the Cognitive Science Society. (pdf)
Suchow, J. W., & Griffiths, T. L. (2016). Deciding to remember: Memory maintenance as a Markov Decision Process. Proceedings of the 38th Annual Conference of the Cognitive Science Society. (pdf)
Lieder, F., & Griffiths, T. L. (2015). When to use which heuristic: A rational solution to the strategy selection problem. Proceedings of the 37th Annual Conference of the Cognitive Science Society. (pdf)
Lieder, F., Sim, Z., Hu, J. C., & Griffiths, T. L. (2015). Children and adults differ in their strategies for social learning. Proceedings of the 37th Annual Conference of the Cognitive Science Society. (pdf)
Bonawitz, E., Denison, S., Griffiths, T. L., & Gopnik, A. (2014). Probabilistic models, learning algorithms, and response variability: Sampling in cognitive development. Trends in Cognitive Sciences, 18, 497-500. (pdf)
Shafto, P., Goodman, N. D., & Griffiths, T. L. (2014). A rational account of pedagogical reasoning: Teaching by, and learning from, examples. Cognitive Psychology, 71, 55-89. (pdf)
Bertolero, M. A., & Griffiths, T. L. (2014). Is holism a problem for inductive inference? A computational analysis. Proceedings of the 36th Annual Conference of the Cognitive Science Society. (pdf)
Hamrick, J. B., & Griffiths, T. L. (2014). What to simulate? Inferring the right direction for mental rotation. Proceedings of the 36th Annual Conference of the Cognitive Science Society. (pdf)
Lieder, F., Hsu, M., & Griffiths, T. L. (2014). The high availability of extreme events serves resource-rational decision-making. Proceedings of the 36th Annual Conference of the Cognitive Science Society. (pdf)
Williams, J. J., & Griffiths, T. L. (2013). Why are people bad at detecting randomness? A statistical argument. Journal of Experimental Psychology: Learning, Memory & Cognition, 39, 1473-1490. (pdf)
Abbott, J. T., Hamrick, J. B., & Griffiths, T. L. (2013). Approximating Bayesian inference with a sparse distributed memory system. Proceedings of the 35th Annual Conference of the Cognitive Science Society.(pdf)
Whalen, A., Buchsbaum, D., & Griffiths, T. L. (2013). How do you know that? Sensitivity to statistical dependency in social learning. Proceedings of the 35th Annual Conference of the Cognitive Science Society.(pdf)
Little, D., Lewandowsky, S., & Griffiths, T. L. (2012). A Bayesian model of rule induction in Raven's progressive matrices. Proceedings of the 34th Annual Conference of the Cognitive Science Society.(pdf)
Griffiths, T. L., & Tenenbaum, J. B. (2011). Predicting the future as Bayesian inference: People combine prior knowledge with observations when estimating duration and extent. Journal of Experimental Psychology: General, 140, 725-743. (pdf)
Bonawitz, E. B., & Griffiths, T. L. (2010). Deconfounding hypothesis generation and evaluation in Bayesian models. Proceedings of the 32nd Annual Conference of the Cognitive Science Society.(pdf)
Shi, L., & Griffiths, T. L. (2009). Neural implementation of hierarchical Bayesian inference by importance sampling. Advances in Neural Information Processing Systems 22.(pdf)
Lewandowsky, S., Griffiths, T. L., & Kalish, M. L. (2009). The wisdom of individuals: Exploring peoples knowledge about everyday events using iterated learning. Cognitive Science, 33, 969-998. (pdf)
Lucas, C., Griffiths, T. L., Xu, F., & Fawcett, C. (2009). A rational model of preference learning and choice prediction by children. Advances in Neural Information Processing Systems 21.(pdf)
Austerweil, J., & Griffiths, T. L. (2008). A rational analysis of confirmation with deterministic hypotheses. Proceedings of the 30th Annual Conference of the Cognitive Science Society.(pdf)
Williams, J. J., & Griffiths, T. L. (2008). Why are people bad at detecting randomness? Because it is hard. Proceedings of the 30th Annual Conference of the Cognitive Science Society.(pdf)
Schreiber, E., & Griffiths, T. L. (2007) Subjective randomness and natural scene statistics. Proceedings of the Twenty-Ninth Annual Conference of the Cognitive Science Society.(pdf)
Griffiths, T. L., & Tenenbaum, J. B. (2004). From algorithmic to subjective randomness. Advances in Neural Information Processing Systems 16.(pdf) (winner of the Best Student Paper prize)
Griffiths, T. L., & Tenenbaum, J. B. (2003). Probability, algorithmic complexity, and subjective randomness. Proceedings of the 25th Annual Conference of the Cognitive Science Society.(pdf)
Griffiths, T. L., & Tenenbaum, J. B. (2001). Randomness and coincidences: Reconciling intuition and probability theory. Proceedings of the 23rd Annual Conference of the Cognitive Science Society. (pdf)
Tenenbaum, J. B., & Griffiths, T. L. (2001). The rational basis of representativeness. Proceedings of the 23rd Annual Conference of the Cognitive Science Society. (pdf)
Griffiths, T. L., & Tenenbaum, J. B. (2000). Teacakes, trains, toxins, and taxicabs: A Bayesian account of predicting the future. Proceedings of the 22nd Annual Conference of the Cognitive Science Society. (pdf)